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integro-differential operator equations is investigated. It is shown that the corresponding

differential operator is positive and satisfies coercive estimate. Moreover, these results are

used to establish maximal regularity for infinite systems of integro-differential equations.

Keywords Banach-valued Besov spaces, Operator-valued multipliers,

Boundary value problems, Integro-differential equations

2000 MR Subject Classification 34G10, 35J25, 35J70

1 Introduction, Notations and Background

In recent years, the maximal regularity of differential operator equations has been studied

extensively, e.g. in [1–4, 7–9]. Moreover, integro-differential equations (IDEs) have been studied,

e.g. in [6, 10–12] and the reference therein. However, the integro-differential operator equation

(IDOE) is a relatively less investigated subject. The main aim of present paper is to establish

the maximal regularity of convolution differential operator equation

Lu =

l∑

k=0

ak ∗
dku

dxk
+ A ∗ u = f(x)

in E-valued Besov spaces, where E is an arbitrary Banach space, A = A(x) is a possible

unbounded operator in E, ak = ak(x) are complex-valued functions. Particularly, we prove

that the differential operator generated by this equation is a generator of analytic semigroup.

Let x = (x1, x2, · · · , xn) ∈ Ω ⊂ Rn. Lp(Ω; E) denotes the space of all strongly measurable

E-valued functions that are defined on the measurable subset Ω ⊂ Rn with the norm

‖f‖Lp(Ω;E) =
(∫

‖f(x)‖p
Edx

) 1

p

, 1 ≤ p ≤ ∞,

‖f‖L∞(Ω;E) = ess sup
x∈Ω

[‖f(x)‖E ].

Let S = S(Rn; E) denote a Schwartz class, i.e., a space of E-valued rapidly decreasing

smooth functions on Rn and S′(Rn; E) denotes the space of E-valued tempered distributions.

Let α = (α1, α2, · · · , αn), where αi are integers. An E-valued generalized function Dαf is called
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a generalized derivative in the sense of Schwartz distributions of the function f ∈ S′(Rn, E), if

the equality

〈Dαf, ϕ〉 = (−1)|α|〈f, Dαϕ〉

holds for all ϕ ∈ S.

It is known that

F (Dα
x f) = (iξ1)

α1 · · · (iξn)αn f̂ ,

Dα
ξ (F (f)) = F [(−ixn)α1 · · · (−ixn)αnf ]

for all f ∈ S′(Rn; E).

Let E1 and E2 be two Banach spaces. A function Ψ ∈ L∞(Rn; B(E1, E2)) is called a

multiplier from Bs
p,θ(R

n; E1) to Bs
q,θ(R

n; E2) for p ∈ (1,∞) and q ∈ [1,∞] if the map u →

Ku = F−1Ψ(ξ)Fu, u ∈ S(Rn; E1) is well defined and extends to a bounded linear operator

K : Bs
p,θ(R

n; E1) → Bs
q,θ(R

n; E2).

Definition 1.1 Let X be a Banach space and 1 ≤ p ≤ 2. Let X be such that

‖Ff‖Lp′(Rn,X) ≤ C‖f‖Lp(Rn,X) for each f ∈ S(Rn, X),

where 1
p

+ 1
p′

= 1. Then the space X is said to be the Fourier type p.

Let C be the set of complex numbers and

Sϕ = {λ : λ ∈ C, | arg λ| ≤ ϕ} ∪ {0}, 0 ≤ ϕ ≤ π.

A linear operator A = A(x) is said to be uniformly positive in a Banach space E, if D(A(x))

is dense in E and does not depend on x,

‖(A(x) + λI)−1‖B(E) ≤ M(1 + |λ|)−1 for every x

with M > 0, λ ∈ Sϕ, ϕ ∈ [0, π), where I is the identity operator in E and B(E) is the space of

all bounded linear operators in E. Sometimes instead of A+λI we will write A+λ and denote

it by Aλ.

Let E(A) denote the space D(A) with graphical norm

‖u‖E(A) = (‖u‖p + ‖Au‖p)
1

p , 1 ≤ p < ∞.

Definition 1.2 Let A = A(t) ∈ S′(R; B(D(A), E)). Then the Fourier transformation of

A(t) in the sense of Schwartz distributions is defined as follows:

〈Âu, ϕ〉 = 〈Au, ϕ̂〉, u ∈ D(A) and ϕ ∈ S(R).

For details see [2, p. 7].

Definition 1.3 Let A = A(t) be a uniformly positive operator in E. Then, it is differentiable

if for all u ∈ E(A),

( d

dt
A

)
u = A′(t)u = lim

h→0

‖A(t + h)u − A(t)u‖E

h
< ∞.
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Definition 1.4 Let A = A(t) be a uniformly positive operator in E and u ∈ Bs
p,q(R; E(A))

and

(A ∗ u)(t) =

∫

R

A(t − y)u(y)dy.

Let y ∈ R, m ∈ N and ei, i = 1, 2, · · · , n, be standard unit vectors of Rn. Let

∆i(y)f(x) = f(x + yei) − f(x), · · · , ∆m
i (y)f(x)

= ∆i(y)[∆m−1
i (y)f(x)]

=
m∑

k=0

(−1)m+kCk
mf(x + kyei).

Let

∆i(Ω, y) =

{
∆i(y)f(x) for [x, x + myei] ⊂ Ω,

0 for [x, x + myei] /∈ Ω.

Let mi be integers, si be positive numbers and

mi > si, s = (s1, s2, · · · , sn), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, y0 > 0.

The space Bs
p,q(Ω; E) is E-valued Besov space, i.e.,

Bs
p,q(Ω; E) =

{
f : f ∈ Lp(Ω; E),

‖f‖Bs
p,q(Ω;E) =

n∑

i=1

(∫ y0

0

y−(siq+1)‖∆mi

i (y, Ω)f(x)‖q

Lp(Ω;E)dy
) 1

q

< ∞
}
,

‖f‖Bs
p,∞(Ω;E) =

n∑

i=1

sup
0<y≤y0

‖∆mi

i (y, Ω)f(x)‖Lp(Ω;E)

ysi
, 1 ≤ p ≤ ∞, 1 ≤ q < ∞.

Let

Bl,s
p,q(R; E0, E) =

{
u : u ∈ Bs

p,q(R; E0), Dlu ∈ Bs
p,q(R; E),

‖u‖
B

l,s
p,q(R;E0,E) = ‖u‖Bs

p,q(R;E0) + ‖Dlu‖Bs
p,q(R;E) < ∞

}
.

The spaces C(Ω; E) and C(m)(Ω; E) will denote the spaces of E-valued bounded, continuous and

m-times continuously differentiable functions on Ω, respectively, and D(Ω; E) will denote the

collection of infinitely differentiable E-valued functions with compact support on Ω.

2 Integro-Differential Operator Equations

Let us first recall an important fact (see [5, Corollary 4.11]) that will be used in this section.

Theorem 2.1 Let p, r ∈ [1,∞]. If m ∈ Cl(Rn, B(X, Y )) satisfies, for some constant A,

sup
t∈Rn

‖(1 + |t|)|α|Dαm(t)‖B(X,Y ) ≤ A

for each multi-index α with |α| ≤ δ, then m is Fourier multiplier from Bs
p,r(R

n, X) to

Bs
p,r(R

n, Y ), provided one of the following conditions holds:
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(a) X and Y are arbitrary Banach spaces and δ = n + 1.

(b) X and Y are uniformly convex Banach spaces and δ = n.

(c) X and Y have Fourier type p and δ = ⌈n
p
⌉ + 1.

Through this section the Fourier transform of a function f will be denoted by f̂ and d
dξ

A(ξ)

by A′(ξ).

Condition 2.1 Suppose

ak ∈ L1(R), L(ξ) =

l∑

k=0

âk(ξ)(iξ)k ∈ S(ϕ1), ϕ1 + ϕ < π, |L(ξ)| ≥ C|ξ|l
l∑

k=0

|âk(ξ)|.

Lemma 2.1 Let Condition 2.1 be satisfied and A(ξ) be a uniformly ϕ-positive (ϕ ∈ [0, π))

operator in a Banach space E, λ ∈ S(ϕ). Then, operator functions

σ0(ξ, λ) = λ[A(ξ) + (λ + L(ξ))]−1,

σ1(ξ, λ) = A(ξ)[A(ξ) + (λ + L(ξ))]−1,

σ2(ξ, λ) =

l∑

k=0

|λ|1−
k
l âk(ξ)(iξ)k [A(ξ) + (λ + L(ξ))]−1

are uniformly bounded.

Proof Let us note that for the sake of simplicity we shall not change constants in every

step. By using the resolvent properties of positive operators we obtain

‖σ0(ξ, λ)‖B(E) ≤ M |λ|(1 + |λ + L(ξ)|)−1 ≤ M,

‖σ1(ξ, λ)‖B(E) = ‖A(ξ)[A(ξ) + (λ + L(ξ))]−1‖B(E)

= ‖I − (λ + L(ξ))[A(ξ) + (λ + L(ξ))]−1‖B(E)

≤ 1 + |λ + L(ξ)|‖[A(ξ) + (λ + L(ξ))]−1‖B(E)

≤ 1 + M |λ + L(ξ)|(1 + |λ + L(ξ)|)−1

≤ 1 + M.

Next, let us consider σ2. It is clear to see that

‖σ2(ξ, λ)‖B(E) =
∥∥∥

l∑

k=0

|λ|1−
k
l âk(ξ)(iξ)k [A(ξ) + (λ + L(ξ))]−1

∥∥∥
B(E)

≤ C

l∑

k=0

|λ||âk|[|ξ||λ|
− 1

l ]k‖[A(ξ) + (λ + L(ξ))]−1‖B(E).

Therefore, σ2(ξ, λ) is bounded if

‖I‖B(E) =

l∑

k=0

|λ||âk|[|ξ||λ|
− 1

l ]k‖[A(ξ) + (λ + L(ξ))]−1‖B(E) ≤ C.

Since A is a uniformly ϕ-positive and L(ξ) ∈ S(ϕ1) for all ξ ∈ R, we have

‖I‖B(E) ≤ C

l∑

k=0

|λ||âk|[1 + |ξ|l|λ|−1][1 + |λ + L(ξ)|]−1.
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Since ak ∈ L1(R), Housdorff-Youngs inequality implies that
l∑

k=0

|âk| ≤ C. Taking into

account Condition 2.1 and by using [4, Lemma 2.3], we get

‖σ2(ξ, λ)‖B(E) ≤ C‖I‖B(E)

≤ C

l∑

k=0

[|λ||âk| + |âk||ξ|
l][1 + |λ| + |L(ξ)|]−1

≤ C
[
|λ| + |ξ|l

l∑

k=0

|âk|
][

1 + |λ| +
∣∣∣

l∑

k=0

âk(ξ)(iξ)k
∣∣∣
]−1

≤ C.

Lemma 2.2 Let Condition 2.1 be satisfied, A(ξ) be a uniformly ϕ-positive operator in a

Banach space E, λ ∈ S(ϕ) for |λ| ≥ |λ0| and

âk ∈ C(m)(R), k = 0, 1, · · · , l, m = 1, 2,

A(ξ)A−1(ξ0) ∈ C(m)(R; B(E)), ξ0 ∈ R.

Suppose that there are positive constants Ci, i = 1, · · · , 4 such that

‖A(m)(ξ)A−1(ξ)‖B(E) ≤ C1, ‖ξmA(m)(ξ)A−1(ξ)‖B(E) ≤ C2, (2.1)

|ξmâk(ξ)| ≤ M,
∣∣∣

dm

dξm
âk(ξ)

∣∣∣ ≤ C3,
∣∣∣ξm dm

dξm
âk(ξ)

∣∣∣ ≤ C4. (2.2)

Then, operator functions dm

dξm σi(ξ, λ), i = 0, 1, 2, are uniformly bounded.

Proof Let us first prove the case of d
dξ

σ1(ξ, λ). Really,

∥∥∥
d

dξ
σ1(ξ, λ)

∥∥∥
B(E)

≤ ‖I1‖B(E) + ‖I2‖B(E) + ‖I3‖B(E),

where

I1 = A′(ξ)[A(ξ) + (λ + L(ξ))]−1,

I2 = A(ξ)A′(ξ)[A(ξ) + (λ + L(ξ))]−2,

I3 = A(ξ)L′(ξ)[A(ξ) + (λ + L(ξ))]−2.

By using (2.1), we get

‖I1‖B(E) = ‖A′(ξ)A−1(ξ)A(ξ)[A(ξ) + (λ + L(ξ))]−1‖B(E)

≤ ‖A′(ξ)A−1(ξ)‖B(E)‖A(ξ)[A(ξ) + (λ + L(ξ))]−1‖B(E)

≤ C.

Taking into account the fact that A is closed and linear operator and by using (2.1), we obtain

‖I2‖B(E) ≤ ‖A′(ξ)[A(ξ) + (λ + L(ξ))]−1‖B(E)‖A(ξ)[A(ξ) + (λ + L(ξ))]−1‖B(E) ≤ C.
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Since A(ξ) is a uniformly ϕ-positive, L(ξ) ∈ S(ϕ1) and λ ∈ S(ϕ) with ϕ1 + ϕ < π, we get

‖I3‖B(E) ≤ |L′(ξ)|‖[A(ξ) + (λ + L(ξ))]−1‖B(E)‖A(ξ)[A(ξ) + (λ + L(ξ))]−1‖B(E)

≤ C|L′(ξ)|[1 + |λ + L(ξ)|]−1.

Then, by using [4, Lemma 2.3], we have

‖I3‖B(E) ≤ C|L′(ξ)|
[
1 + |λ| +

∣∣∣
l∑

k=0

âk(ξ)(iξ)k
∣∣∣
]−1

.

It is clear to see that

|L′(ξ)| ≤
∣∣∣

l∑

k=0

d

dξ
âk(ξ)(iξ)k

∣∣∣ + C
∣∣∣

l∑

k=1

âk(ξ)(iξ)k−1
∣∣∣. (2.3)

By using (2.2) and (2.3), we obtain

∣∣∣
l∑

k=0

d

dξ
âk(ξ)(iξ)k

∣∣∣ ≤ C
[
1 + |λ| +

∣∣∣
l∑

k=0

âk(ξ)(iξ)k
∣∣∣
]
,

∣∣∣
l∑

k=1

âk(ξ)(iξ)k−1
∣∣∣ ≤ C

[
1 + |λ| +

∣∣∣
l∑

k=0

âk(ξ)(iξ)k
∣∣∣
]
.

That implies

‖I3‖B(E) ≤ C

l∑

k=0

∣∣∣
d

dξ
[âk(ξ)ξk]

∣∣∣
[
1 + |λ| +

∣∣∣
l∑

k=0

âk(ξ)(iξ)k
∣∣∣
]−1

≤ C. (2.4)

Next we shall prove that d
dξ

σ2(ξ, λ) is uniformly bounded. Similarly,

∥∥∥
d

dξ
σ2(ξ, λ)

∥∥∥
B(E)

≤ ‖J1‖B(E) + ‖J2‖B(E) + ‖J3‖B(E) + ‖J4‖B(E),

where

J1 =

l∑

k=0

|λ|1−
k
l

d

dξ
âk(ξ)(iξ)k[A(ξ) + (λ + L(ξ))]−1,

J2 =
l∑

k=0

|λ|1−
k
l âk(ξ)ik(iξ)k−1[A(ξ) + (λ + L(ξ))]−1,

J3 =

l∑

k=0

|λ|1−
k
l âk(ξ)(iξ)kL′(ξ)[A(ξ) + (λ + L(ξ))]−2,

J4 =

l∑

k=0

|λ|1−
k
l âk(ξ)(iξ)kA′(ξ)[A(ξ) + (λ + L(ξ))]−2.

Let us first show that J1 is uniformly bounded. Since

‖J1‖B(E) ≤

l∑

k=0

∣∣∣
d

dξ
âk(ξ)

∣∣∣‖|λ|1−
k
l (iξ)k[A(ξ) + (λ + L(ξ))]−1‖B(E)
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by virtue of (2.2) and (2.4), we obtain ‖J1‖B(E) ≤ C. Second, with the help of (2.2) and the

fact that |λ| ≥ |λ0|, we get

‖J2‖B(E) ≤

l∑

k=1

|λ0|
− 1

l |âk(ξ)||λ|1−
k−1

l (iξ)k−1‖[A(ξ) + (λ + L(ξ))]−1‖B(E)

≤ C

l∑

k=1

|λ||âk(ξ)|[|λ|−
1

l |(iξ)|]k−1‖[A(ξ) + (λ + L(ξ))]−1‖B(E)

≤ C.

Similarly, with the help of (2.3), we have

‖J3‖B(E) ≤ C|L′(ξ)|‖[A(ξ) + (λ + L(ξ))]−1‖B(E)

·

l∑

k=0

|λ||âk(ξ)|[|λ|−
1

l |(iξ)|]k‖[A(ξ) + (λ + L(ξ))]−1‖B(E)

≤ C. (2.5)

Last, we need to show that J4 is uniformly bounded. Really, by using (2.3) and (2.4), we obtain

‖J4‖B(E) ≤ C
∥∥∥

d

dξ
A(ξ)A−1(ξ)A(ξ)[A(ξ) + (λ + L(ξ))]−1

∥∥∥
B(E)

×
l∑

k=0

|λ||ξ|k|λ|
−k

l ‖[A(ξ) + (λ + L(ξ))]−1‖B(E)

≤ C‖A′(ξ)A−1(ξ)‖B(E)‖A(ξ)[A(ξ) + (λ + L(ξ))]−1‖B(E)

≤ C.

Hence, operator functions d
dξ

σi(ξ, λ) are uniformly bounded. In a similar way the boundedness

of d2

dξ2 σi(ξ, λ) are obtained.

Lemma 2.3 Let all conditions of Lemma 2.2 be satisfied. Then the following estimates

hold: ∥∥∥|ξ|m
dm

dξm
σi(ξ, λ)

∥∥∥
L∞(B(E))

≤ Ai, m, i = 0, 1, 2.

Proof As a matter of fact, it is enough to prove

|ξ|‖Ii‖B(E) ≤ Ci and |ξ|‖Jj‖B(E) ≤ Dj

for some constants Ci and Dj , i = 1, 2, 3, j = 1, 2, 3, 4. It is easy to see from the proof of

Lemma 2.2 that

|ξ|‖I1‖B(E) ≤ C1‖ξA
′(ξ)A−1(ξ)‖B(E)‖A(ξ)[A(ξ) + (λ + L(ξ))]−1‖2

B(E),

|ξ|‖I2‖B(E) ≤ C2‖ξA
′(ξ)A−1(ξ)‖B(E)‖A(ξ)[A(ξ) + (λ + L(ξ))]−1‖B(E),

|ξ|‖I3‖B(E) ≤ C3|ξ||L
′(ξ)|

[
1 + |λ| +

l∑

k=0

|âk(ξ)||ξ|k
]−1

.
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From resolvent properties of positive operators, it follows that ξI1 and ξI2 are uniformly

bounded. By using (2.4) and (2.5), we obtain

|ξ|‖I3‖B(E) ≤ C3

l∑

k=0

|âk(ξ)||ξ|k
[
1 + |λ| +

l∑

k=0

|âk(ξ)||ξ|k
]−1

≤ C3.

Similarly, from the proof of Lemma 2.2, it follows that

|ξ|‖J1‖B(E) ≤

l∑

k=0

∣∣∣ξ
d

dξ
âk(ξ)

∣∣∣‖|λ|1−
k
l (iξ)k[A(ξ) + (λ + L(ξ))]−1‖B(E),

|ξ|‖J2‖B(E) ≤
l∑

k=0

|âk(ξ)|‖|λ|1−
k
l (iξ)k[A(ξ) + (λ + L(ξ))]−1‖B(E),

|ξ|‖J3‖B(E) ≤ C|ξL′(ξ)|‖[A(ξ) + (λ + L(ξ))]−1‖B(E)

·

l∑

k=0

|λ||ξ|k|λ|
−k

l ‖[A(ξ) + (λ + L(ξ))]−1‖B(E),

|ξ|‖J4‖B(E) ≤ C‖ξA′(ξ)A−1(ξ)‖B(E)‖A(ξ)[A(ξ) + (λ + L(ξ))]−1‖B(E).

Using (2.1), (2.2), (2.4) and the fact that âk(ξ) ∈ L∞(R), we obtain uniformly boundedness

of |ξ|‖J1‖B(E), |ξ|‖J2‖B(E), |ξ|‖J3‖B(E) and |ξ|‖J4‖B(E) respectively. In a similar way, the

boundedness of |ξ|2 d2

dξ2 σi(ξ, λ) is obtained.

Corollary 2.1 Let all conditions of Lemma 2.3 be satisfied. Then operator-functions σi(ξ,λ)

are uniformly bounded multipliers in Bs
p,r(R; E).

Proof To prove that σi(ξ, λ) are uniformly bounded multipliers in Bs
p,r(R; E), we need to

show that σi ∈ C(m)(R; B(E)) and there exists a constant K > 0 such that

∥∥∥(1 + |ξ|)β dβ

dξβ
σi(ξ, λ)

∥∥∥
L∞(R;B(E))

≤ K

for each β ≤ 2. From Lemmas 2.1–2.3, it follows that σi ∈ C1(R; B(E)) and

∥∥∥
dm

dξm
σi(ξ, λ)

∥∥∥
L∞(B(E))

≤ A1,
∥∥∥|ξ|m

dm

dξm
σi(ξ, λ)

∥∥∥
L∞(B(E))

≤ A2

for every i, m = 0, 1, 2. Hence, σi(ξ, λ) are Fourier multipliers in Bs
p,r(R; E).

Now, let us consider an ordinary convolution differential operator equation

(L + λ)u =
l∑

k=0

ak ∗
dku

dxk
+ Aλ ∗ u = f(t) (2.6)

in Bs
p,r(R; E), where Aλ = A + λ, A = A(t) is a possible unbounded operator in E,

ak = ak(t)

are complex valued functions.
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Theorem 2.2 Let f ∈ Bs
p,r(R; E) for p, r ∈ [1,∞]. Then equation (2.6) has a unique

solution u ∈ Bl,s
p,r(R; E(A), E) and the following coercive uniform estimate holds for λ ∈ S(ϕ)

(ϕ ∈ [0, π) and |λ| ≥ |λ0|) :

l∑

k=0

|λ|1−
k
l

∥∥∥ak ∗
dku

dxk

∥∥∥
Bs

p,r(R;E)
+ ‖A ∗ u‖Bs

p,r(R;E) + |λ|‖u‖Bs
p,r(R;E) ≤ C‖f‖Bs

p,r(R;E), (2.7)

provided the below conditions are satisfied:

(1) E is a Banach space.

(2) Condition 2.1 holds and

âk ∈ C(m)(R), k = 0, 1, · · · , l,

Â(ξ)Â−1(ξ0) ∈ C(m)(R; B(E)), ξ0 ∈ R.

(3) Â(ξ) is a uniformly ϕ-positive (ϕ ∈ [0, π)) operator in E. Moreover, there are positive

constants Ci, i = 1, · · · , 4 such that for m = 0, 1, 2,

|ξmâk(ξ)| ≤ M,
∣∣∣

dm

dξm
âk(ξ)

∣∣∣ ≤ C1,
∣∣∣ξm dm

dξm
âk(ξ)

∣∣∣ ≤ C2,

‖Â(m)(ξ)Â−1(ξ)‖B(E) ≤ C3, ‖ξmÂ(m)(ξ)Â−1(ξ)‖B(E) ≤ C4.

Proof By applying the Fourier transform to equation (2.6), we obtain

[Â(ξ) + (L(ξ) + λ)]u (̂ξ) = f (̂ξ).

Since L(ξ) ∈ S(ϕ1) for all ξ ∈ R and Â is positive, the operator Â(ξ)+(L(ξ)+λ) is invertible

in E. So we obtain that the solution of equation (2.6) can be represented in the form

u(x) = F−1[Â(ξ) + (λ + L(ξ))]−1f .̂ (2.8)

By using (2.8), we obtain

‖A ∗ u‖Bs
p,r(R;E) = ‖F−1[σ1(ξ, λ)fˆ]‖Bs

p,r(R;E),

l∑

k=0

|λ|1−
k
l

∥∥∥ak ∗
dku

dxk

∥∥∥
Bs

p,r(R;E)
= ‖F−1[σ2(ξ, λ)fˆ]‖Bs

p,r(R;E),

where

σ0(ξ, λ) = λ[Â(ξ) + (λ + L(ξ))]−1,

σ1(ξ, λ) = Â(ξ)[Â(ξ) + (λ + L(ξ))]−1,

σ2(ξ, λ) =

l∑

k=0

|λ|1−
k
l âk(ξ)(iξ)k[Â(ξ) + (λ + L(ξ))]−1.

By using Corollary 2.1, we obtain that operator-functions σi(ξ, λ) are uniformly bounded

multipliers in Bs
p,r(R; E).
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Since

‖A ∗ u‖Bs
p,r(R;E) ≤ C1‖f‖Bs

p,r(R;E),

l∑

k=0

|λ|1−
k
l

∥∥∥ak ∗
dku

dxk

∥∥∥
Bs

p,r(R;E)
≤ C2‖f‖Bs

p,r(R;E),

we obtain that for all f ∈ Bs
p,r(R; E), there is a unique solution to equation (2.6) in the form

u(x) = F−1[A + (λ + L(ξ))]−1fˆ

and the estimate (2.7) holds.

Let Q be the operator generated by problem (2.6), i.e.,

D(Q) = Bl,s
p,r(R; E(A), E), Qu =

l∑

k=0

ak ∗
dku

dxk
+ Aλ ∗ u.

Result 2.1 Assume that all conditions of Theorem 2.2 hold. Then, for all λ ∈ S(ϕ), the

resolvent of operator Q exists and the following estimate holds:

l∑

k=0

|λ|1−
k
l

∥∥∥ak ∗
[ dk

dxk
(Q + λ)−1

]∥∥∥
B(Bs

p,r(R;E))

· ‖λ(Q + λ)−1‖B(Bs
p,r(R;E)) + ‖A ∗ (Q + λ)−1‖B(Bs

p,r(R;E)) ≤ C.

Remark 2.1 Result 2.1 particularly implies that the operator Q + a, a > 0 is positive in

Bs
p,r(R; E), i.e., if Â is uniformly R-positive for ϕ ∈ (π

2 , π), then (see e.g. [4]) the operator

Q + a is a generator of analytic semigroup in Bs
p,r(R; E).

3 Infinite Systems of IDEs

Consider the following infinity system of convolution equation:

l∑

k=0

ak ∗
dkum

dxk
+

∞∑

j=1

(dj + λ) ∗ uj(x) = fm(x), x ∈ R, m = 1, 2, · · · ,∞. (3.1)

Condition 3.1 There are positive constants C1 and C2 such that for {dj(x)}∞1 ∈ lq, for all

x ∈ R and some x0 ∈ R,

C1|dj(x0)| ≤ |dj(x)| ≤ C2|dj(x0)|.

Suppose that âk, d̂m ∈ C(1)(R) and there are positive constants Mi, i = 1, · · · , 4 such that

∣∣∣ξj dj

dξj
âk(ξ)

∣∣∣ ≤ M1, |ξj âk(ξ)| ≤ M2,

dj
m(ξ)d−1

m (ξ) ≤ M3, |ξ|jdj
m(ξ)d−1

m (ξ) ≤ M4, j = 0, 1, 2.
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Let

D(x) = {dm(x)}, dm > 0, u = {um}, D ∗ u = {dm ∗ um}, m = 1, 2, · · ·∞,

lq(D) =
{
u : u ∈ lq, ‖u‖lq(D) = ‖D ∗ u‖lq =

( ∞∑

m=1

|dm ∗ um|q
) 1

q

< ∞
}

, 1 < q < ∞.

Let Q be a differential operator in Bs
p,r(R; lq) generated by the boundary value problem

(3.1). Let

B = B(Bs
p,r(R; lq)).

Theorem 3.1 Suppose that Conditions 2.1 and 3.1 are satisfied. Then

(a) For all f(x) = {fm(x)}∞1 ∈ Bs
p,r(R; lq(D)), for λ ∈ S(ϕ), ϕ ∈ [0, π) and for suffi-

ciently large |λ|, problem (3.1) has a unique solution u(x) = {um(x)}∞1 that belongs to space

Bl,s
p,r(R; lq(D), lq) and the coercive uniform estimate

l∑

k=0

|λ|1−
k
l

∥∥∥ak ∗
dku

dxk

∥∥∥
Bs

p,r(R;lq)
+ ‖D ∗ u‖Bs

p,r(Rn;lq) + |λ|‖u‖Bs
p,r(R;lq) ≤ C‖f‖Bs

p,r(R;lq) (3.2)

holds for the solution to problem (3.1).

(b) For sufficiently large |λ| > 0, there exists a resolvent (Q + λ)−1 of operator Q and

l∑

k=0

|λ|1−
k
l

∥∥∥ak ∗
[ dk

dxk
(Q + λ)−1

]∥∥∥
B

+ ‖D ∗ (Q + λ)−1‖B + ‖(1 + |λ|)(Q + λ)−1‖B ≤ C. (3.3)

Proof Really, let E = lq, A be infinite matrices, such that

A = [dm(t)δjm], m, j = 1, 2, · · ·∞.

It is clear to see that the operator A is uniformly positive in lq. Therefore, by virtue

of Theorem 2.2 and Result 2.1, we obtain that, for all f ∈ Bs
p,r(R; lq), for λ ∈ S(ϕ), ϕ ∈

(0, π) and sufficiently large |λ|, problem (3.1) has a unique solution u that belongs to space

Bl,s
p,r(G; lq(D), lq) and estimates (3.2) and (3.3) are satisfied.

Remark 3.1 There are a lot of positive operators in concrete Banach spaces. Therefore,

putting concrete Banach spaces instead of E and concrete positive differential, pseudo differen-

tial operators, or finite, infinite matrices, etc. instead of operator A on (2.6), we can obtain the

maximal regularity of different class of convolution equations or system of equations by virtue

of Theorem 2.2.
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