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Abstract Let Mn be a smooth, compact manifold without boundary, and F0 : Mn
→

Rn+1 a smooth immersion which is convex. The one-parameter families F ( · , t) : Mn
×

[0, T ) → Rn+1 of hypersurfaces Mn

t = F ( · , t)(Mn) satisfy an initial value problem
dF

d t
( · , t) = −Hk( · , t)ν( · , t), F ( · , 0) = F0( · ), where H is the mean curvature and ν( · , t)

is the outer unit normal at F ( · , t), such that −Hν =
−→

H is the mean curvature vector, and
k > 0 is a constant. This problem is called Hk-flow. Such flow will develop singularities
after finite time. According to the blow-up rate of the square norm of the second fun-
damental forms, the authors analyze the structure of the rescaled limit by classifying the
singularities as two types, i.e., Type I and Type II. It is proved that for Type I singularity,
the limiting hypersurface satisfies an elliptic equation; for Type II singularity, the limiting
hypersurface must be a translating soliton.
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1 Introduction

Evolving a hypersurface in Euclidean space (or some Riemannian manifolds) in the direction

of its inner normal with speed given by some curvature function deduces a large class of parabolic

equations which have been studied extensively before. The simplest case in this class is the

mean curvature flow, in which the curvature function is the mean curvature. G. Huisken [15]

showed that the convex hypersurfaces moving under such equations contract to points in finite

time, and that the hypersurfaces become spherical in shape in the process. This argument

has been extended to many processes where convex hypersurfaces move with speeds given by

homogeneous degree one, concave or convex monotone symmetric functions of the principal

curvatures: B. Chow considered flows by the nth root of the Gauss curvature (see [7]) and the

square root of the scalar curvature (see [8]), and B. Andrews considered a general class of such

evolution equations (see [1]). Corresponding results for flows where the speed has other positive

degrees of homogeneity in the curvature seem much harder to prove. K. Tso [25] and B. Chow

[7] have shown that the hypersurfaces moving with speed equal to any positive power k of the

Gauss curvature contract to points in finite time. In [3], B. Andrews proved that the limit

of the solutions evolve purely by homothetic contraction to the final point for k ∈ ( 1
n+2 , 1

n
].

For the noncompact solutions, Urbas considered the same evolution equations, and proved the

existence of the solutions which evolve by homothetically expanding or translating (see [26]).
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For k = 1
n+2 , the evolution equation becomes affine invariant. B. Andrews proved in [5] that

the convex initial data contract smoothly to a point in finite time, with ellipsoids as the natural

unique limiting shape. In the case of curves in the plane, M. E. Gage and R. Hamilton [11]

showed that convex curves contract to points in finite time and become round under the curve

shortening flow (where the speed of motion equals the curvature), and M. Grayson extended this

by showing that any embedded curve eventually becomes convex (see [13]). This was extended

to include anisotropic analogues of the curve-shortening flow by M. E. Gage in the convex case

(see [10]), and by J. Oaks [23], K. S. Chou and X. P. Zhu [6] for nonconvex curves. B. Andrews

[4] showed the classification of limiting shapes for the initial convex data.

On the other hand, in the case of mean curvature flow, it is well-known that for closed initial

hypersurfaces the solution to the mean curvature flow exists on a maximal time interval [0, T ),

0 < T ≤ ∞. If T < ∞, the curvature of the hypersurfaces becomes unbounded for t → T .

One would like to understand the singular behavior for t → T in detail. The structure of the

rescaled limit depends on the blow-up rate of the singularity. If the quantity sup(T − t)|A|2

is uniformly bounded (Type I singularity), the rescaling yields a selfsimilar, homothetically

shrinking solution of the flow which is completely classified in the case of positive mean curvature

(see [16]). If the quantity sup(T − t)|A|2 is unbounded (Type II singularity), the rescaling of

the singularity can be done in such a way that an “eternal solution” of the mean curvature flow

results where the maximum of the curvature is attained on the hypersurface. In the convex

case, such solutions were shown by R. Hamilton to move isometrically by translations (see [14]).

G. Huisken and C. Sinestrari [18, 19] showed a description of all possible singularities (Types

I and II) in the mean convex case. For further description of the singularities of the mean

curvature flow, see [28, 29], etc.

In this paper, we consider the following problem. Let Mn be a smooth, compact manifold

without boundary, and F0 : Mn → Rn+1 a smooth immersion which is convex. The one-

parameter families F ( · , t) : Mn × [0, T ) → Rn+1 of hypersurfaces Mn
t = F ( · , t)(Mn) satisfy

an initial value problem
dF

dt
( · , t) = −Hk( · , t)ν( · , t),

F ( · , 0) = F0( · ),
(1.1)

where H is the mean curvature and ν( · , t) is the outer unit normal at F ( · , t), such that

−Hν =
−→
H is the mean curvature vector, and k > 0 is a constant. This problem has been

considered in [2, 17, 24], etc. In [24], F. Schulze called this flow Hk-flow. F. Schulze proved the

following theorem.

Theorem 1.1 (see [24]) Let F0 : Mn → Rn+1 be a smooth immersion, where H(F0(M
n)) >

0. Then there exists a unique, smooth solution to the initial value problem (1.1) on a maximal

finite time interval [0, T ). For k ≥ 1, we have the bound T ≥ C(k, n)−1
(

max
p∈M

|A|(p, 0)
)−(k+1)

.

In the case that

( i ) F0(M
n) is strictly convex for 0 < k < 1,

(ii) F0(M
n) is weakly convex for k ≥ 1,

then the surfaces F (Mn, t) are strictly convex for all t > 0 and contract for t → T to a point

in Rn+1.

In this paper, we will analyze the the structure of the rescaled limit, according to the blow-

up rate of the singularity under the conditions in the above theorem. We will prove that if the
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solution F ( · , t) of the flow (1.1) is convex and converges to a point when t → T and T < +∞,

then there exists a constant C(k, n) such that

max
F ( · ,t)

|A|2 ≥
C(k, n)

(T − t)
2

k+1

(see Proposition 3.1). Modifying the classification of singularities in the mean curvature flow

(see [16]), we may say that the Hk-flow is of Type I, if there is a constant C0 such that

max
F ( · ,t)

|A|2 ≤
C0

(T − t)
2

k+1

for all t ∈ [0, T ). Otherwise it is said to be of Type II (see Section 3 for details). We get the

following

Theorem 1.2 Let F0 : Mn → Rn+1 be a smooth immersion, where F0(M
n) is strictly

convex for 0 < k < 1, and F0(M
n) is weakly convex for k ≥ 1. For the Type I flow, after

rescaling the Hk-flow (1.1) by setting

F̃ (x, τ) = (F (x, t) − F (x, T ))[(k + 1)(T − t)]−
1

k+1 ,

where

τ = −
1

(k + 1)
log

(T − t

T

)
∈ [0, +∞)

and [0, T ) is the maximal finite time interval that the solution to the flow (1.1) exists, the

limiting hypersurface F̃∞, as τ → ∞, satisfies

H̃
k+1

2 + |
−→
F̃ |

k−1

2 〈
−→
F̃ ,−→n 〉 = 0, (1.2)

where −→n is the inner normal vector of the rescaled surface, and H̃ is the mean curvature of F̃∞.

For the Type II flow, after rescaling, the limiting hypersurface must be a translating soliton.

Remark 1.1 We may write (1.2) as

〈
−→
F̃ ,−→n 〉 + σH̃ = 0,

where σ = H̃
k−1
2

|F̃ |
k−1
2

. For k = 1, σ ≡ 1, it was proved by G. Huisken [16] that F̃ is a round sphere.

For k 6= 1 and k > 0, we do not know if the limiting hypersurface is a round sphere.

2 The H
k-Flow for Convex Hypersurfaces

Let Mn be an n-dimensional smooth manifold and

F : Mn → Rn+1

be a smooth hypersurface immersion in Rn+1. In a local coordinate system {xi}, 1 ≤ i ≤ n,

the metric and the second fundamental form on F (Mn) can be expressed as

gij =
〈 ∂F

∂xi
,
∂F

∂xj

〉



54 W. M. Sheng and C. Wu

and

hij =
〈
ν,

∂2F

∂xi∂xj

〉
,

where ν is the unit outer normal vector to the hypersurface. The mean curvature of the

hypersurface F (Mn) is denoted by H = gijhij , and |A|2 denotes the square norm of the second

fundamental forms. It is obvious that |∇H |2 ≤ n|∇A|2. By [15], we also have

|∇A|2 ≥
3

n + 2
|∇H |2,

|∇A|2 −
|∇H |2

n
≥

2(n − 1)

3n
|∇A|2.

Now we consider the Hk-flow (1.1). We first derive the evolution equations for gij , ν, hij , hi
j ,

H , |A|2 and 〈F, ν〉. By [24], we have

Lemma 2.1

( i )
∂

∂t
gij = −2Hkhij ,

( ii )
∂

∂t
ν = kHk−1∇H,

(iii)
∂

∂t
hij = kHk−1∆hij + k(k − 1)Hk−2∇iH∇jH − (k + 1)Hkhjlg

lmhmi + kHk−1|A|2hij ,

(iv)
∂

∂t
hi

j = kHk−1∆hi
j + k(k − 1)Hk−2∇iH∇jH − (k − 1)Hkhi

lh
l
j + kHk−1|A|2hi

j ,

( v )
∂

∂t
H = kHk−1∆H + k(k − 1)Hk−2|∇H |2 + |A|2Hk,

(vi)
∂

∂t
〈F, ν〉 = kHk−1∆〈F, ν〉 − (k + 1)Hk + kHk−1|A|2〈F, ν〉,

(vii)
∂

∂t
|A|2 = kHk−1∆|A|2 + 2k(k − 1)Hk−2hlm∇iH∇jHgilgjm

− 2kHk−1|∇A|2 − 2(k − 1)HkC + 2kHk−1|A|4,

where C = trA3.

The eigenvalues of the second fundamental form hij with respect to the metric gij (i.e., the

eigenvalues of the matrix hijg
jk) are called the principal curvatures of the hypersurface F , and

are denoted by κ1, κ2, · · · , κn. In particular, the mean curvature is given by H = κ1 + · · ·+κn.

We call 1
κ1

, · · · , 1
κn

the principal radii of the hypersurface F . We denote λi = 1
κi

(i = 1, · · · , n),

which are the eigenvalues of the map W−1
p = {bi

j} : TpM → TpM .

By the strong maximum principle to the evolution equation of H , we know that H > 0 on

Mn × [0, T ). By [24], we have

Lemma 2.2 Let F0(M
n) be strictly convex and F : Mn × [0, T ) → Rn+1 be an Hk-flow,

k > 0. Then all Mt, t ∈ [0, T ) are strictly convex and κmin(t) is monotonically increasing.

For convex surfaces, i.e., hij ≥ 0, the full second fundamental form is controlled by its trace:

|A| ≤ H . We have (see [24])

Lemma 2.3 Let F : Mn × [0, T ) → Rn+1 be an Hk-flow and F0(M
n) be weakly convex.

Then F (Mn, t) is weakly convex for all t ∈ [0, T ) and Tmax ≥ 1
k+1 (Hmax(0))−(k+1).

For k ≥ 1 weakly hypersurfaces, we have
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Lemma 2.4 Let F0(M
n) be a weakly convex hypersurface with H(F0) ≥ δ > 0, and F :

Mn × [0, T ) → Rn+1 be the corresponding Hk-flow with k > 1. Then Mt is strictly convex for

all t ∈ (0, T ).

Example 2.1 For the Hk-flow of a sphere Sn(R0) with radius R0, we obtain

R(t) = (Rk+1
0 − (1 + k)nkt)

1
k+1 ,

which implies a maximal existence time T =
R

k+1

0

nk(1+k)
.

If the hypersurface Mt is strictly convex, we can study the inverse W−1
p = {bi

j} : TpM →

TpM of the Weingarten map W , i.e., bi
lh

l
j = δi

j . By [24], we have

Lemma 2.5 Let k > 0 and Mt be a flow of strictly convex hypersurfaces. Then

∂

∂t
bi
j = kHk−1∆bi

j − 2kHk−1hl
m∇pb

i
l∇

pbm
j

−k(k − 1)Hk−2(bi
l∇

lH)(bm
j ∇mH) + (k − 1)Hkδi

j − kHk−1bi
j |A|2

≤ kHk−1∆bi
j + (k − 1)Hkδi

j − kHk−1bi
j|A|2. (2.1)

Furthermore, we have

Lemma 2.6 Let Mt be a strictly convex solution to the Hk-flow (1.1). If 0 < k < 1, we

have

∂

∂t
bi
j ≥ kHk−1∆bi

j −
4k2

k + 1
Hk−1hl

m∇pb
i
l∇

pbm
j + (k − 1)Hkδi

j − kHk−1bi
j |A|2.

Proof For 0 < k < 1, we employ the following method in [24]. At first we write Hk(κ) =

(Qk
n(λ))−1, where Qn(λ) = Sn(λ)

Sn−1(λ) , and Sl(λ) =
∑

1≤i1<···<il≤n

λi1λi2 · · ·λil
for λ = (λ1, · · · , λn),

where λ1, · · · , λn are the principle curvature radii. It is well-known that Qn(λ) is concave on

the positive cone Γn = {λ ∈ Rn | λ1 > 0, · · · , λn > 0}. Now we have

k(k − 1)Hk−2δm
l δq

p =
∂2(Hk(κ))

∂hm
l ∂h

q
p

= 2k2Hk−2δm
l δq

p − H2k ∂2(Qk
n(λ))

∂bn
o ∂br

s

bnqbopb
rmbsl

− kHk−1δlpb
mq − kHk−1δmqblp.

By multiplication with ∇vhm
l ∇whq

p and summation,

k(k − 1)Hk−2∇vH∇wH = 2k2Hk−2∇vH∇wH − H2k ∂2(Qk
n(λ))

∂bn
o∂br

s

(bnqbop∇whp
q)(b

rmbsl∇
vhl

m)

− 2kHk−1bmq∇whp
q∇

vhpm.

Using the concavity of Qk
n(λ) for 0 < k ≤ 1, we have

−k(k + 1)Hk−2∇vH∇wH ≥ −2kHk−1bmq∇ph
v
m∇phqw.

From this, we have

k(k + 1)Hk−2(bi
l∇

lH)(bm
j ∇mH) ≤ 2kHk−1hl

m∇pb
i
l∇

pbm
j .

Substituting this inequality into bi
j’s evolution equation, we may get the desired inequality.
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3 Rescaling the Singularity

In the first step, we prove a lower bound for the blow-up rate of the curvature.

Proposition 3.1 If the solution F ( · , t) of the flow (1.1) is convex and converges to a point

when t → T and T < +∞, then there exists a constant C(k, n) such that

max
F ( · ,t)

|A|2 ≥
C(k, n)

(T − t)
2

k+1

. (3.1)

Proof We denote Hmax(t) = max
p∈F ( · ,t)

H(p, t). By Lemma 2.1(v), we have

d

dt
Hmax(t) ≤ |A|2(p0, t)H

k
max(t) ≤ Hk+2

max(t),

where H(p0, t) = max
p∈F ( · ,t)

H(p, t). Then

−
1

k + 1
dH−(k+1)

max (t) ≤ dt,

and
1

k + 1
H−(k+1)

max (t) ≤ (T − t).

Thus we have

Hmax(t) ≥ [(k + 1)(T − t)]−
1

k+1

and

max
F ( · ,t)

|A|2 ≥
1

n
H2

max(t) ≥
1

n
[(k + 1)(T − t)]−

2
k+1 .

A point P ∈ Rn+1 is said to be a singularity of the flow (1.1), if there is x ∈ Mn such that

( i ) F (x, t) → P as t → T , and

(ii) |A(x, t)| becomes unbounded as t tends to T .

We say that the flow is of Type I, if there is a constant C0 such that

max
F ( · ,t)

|A|2 ≤
C0

(T − t)
2

k+1

(3.2)

for all t ∈ [0, T ). Otherwise it is said to be of Type II.

Here we concentrate on the case of Type I. In this case we rescale the flow by setting

F̃ (x, τ) = (F (x, t) − F (x, T ))[(k + 1)(T − t)]−
1

k+1 , (3.3)

where

τ = −
1

(k + 1)
log

(T − t

T

)
∈ [0, +∞).

Then
∂t

∂τ
= [(k + 1)(T − t)]

and

H̃( · , t) = [(k + 1)(T − t)]
1

k+1 H( · , t).
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The evolution equation for F̃ (x, τ) is

∂F̃ (x, τ)

∂τ
= F̃ (x, τ) − H̃k( · , τ)ν̃( · , τ) (3.4)

for (x, τ) ∈ Mn × [0,∞), where H̃ and ν̃ are the mean curvature and the unit outer normal of

F̃ ( · , τ) respectively. It is easy to see that

g̃ij = [(k + 1)(T − t)]−
2

k+1 gij ,

h̃ij = [(k + 1)(T − t)]−
1

k+1 hij ,

|Ã|2g̃ = [(k + 1)(T − t)]
2

k+1 |A|2g.

In the case of Type I, we have

|Ã|2g̃(x, τ) ≤ C0 (3.5)

for all (x, τ) ∈ Mn × [0,∞). From (3.1) and (3.2), we also have |Ã|2g̃(x, τ) ≥ C > 0 for all

(x, τ) ∈ Mn × [0,∞).

4 Gradient Estimates

In this section, we will show that all higher derivatives of the second fundamental form Ã

are bounded. We discuss Hk-flow (1.1) at first. We have

Proposition 4.1 Let F0(M
n) be strictly convex and F : Mn × [0, T ) → Rn+1 be a Hk-flow

(1.1), k > 0. If the norm of the second fundamental form of the solution F ( · , t) is uniformly

bounded on Mn × [0, T ], that is,

|A|2(x, t) ≤ C0 for (x, t) ∈ Mn × [0, T ],

then |∇A|2 is also bounded.

Proof By Lemma 2.2, we may assume 0 < a ≤ κmin ≤ κmax ≤ b < +∞. Then we have

na2 ≤ |A|2 ≤ nb2 and n
b2

≤ |B|2 ≤ n
a2 , where |B|2 = bi

jb
j
i . Instead of |A|2, we consider the

quantity |B|2. By Lemma 2.5, we have

∂

∂t
|B|2 = 2

( ∂

∂t
bi
j

)
b
j
i

= 2(kHk−1∆bi
j − k(k − 1)Hk−2(bi

l∇
lH)(bm

j ∇mH)

− 2kHk−1hl
m∇pb

i
l∇

pbm
j + (k − 1)Hkδi

j − kHk−1bi
j|A|2)bj

i

= kHk−1∆|B|2 − 2kHk−1|∇B|2 − 2k(k − 1)Hk−2b
j
i (b

i
l∇

lH)(bm
j ∇mH)

− 4kHk−1hl
mb

j
i∇pb

i
l∇

pbm
j + 2(k − 1)Hk(trB) − 2kHk−1|A|2|B|2.

If k ≥ 1, we have

∂

∂t
|B|2 ≤ kHk−1∆|B|2 − 2kHk−1|∇B|2 + 2(k − 1)Hk(trB) − 2kHk−1|A|2|B|2.

If 0 < k < 1, by the following inequality

−k(k + 1)Hk−2∇vH∇wH ≥ −2kHk−1bmq∇ph
v
m∇phqw,
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we have

k(k + 1)Hk−2(bi
v∇

vH)(bw
j ∇wH) ≤ 2kHk−1hl

m∇pb
i
l∇

pbm
j .

(See [24] for details.) Then

−k(k − 1)Hk−2b
j
i (b

i
v∇

vH)(bw
j ∇wH) =

1 − k

1 + k
k(k + 1)Hk−2b

j
i (b

i
v∇

vH)(bw
j ∇wH)

≤ 2k
1 − k

1 + k
Hk−1hl

mb
j
i∇pb

i
l∇

pbm
j

= 2k
(
1 −

2k

1 + k

)
Hk−1hl

mb
j
i∇pb

i
l∇

pbm
j .

We then have

∂

∂t
|B|2 ≤ kHk−1∆|B|2 − 2kHk−1|∇B|2 + 2(k − 1)Hk(trB) − 2kHk−1|A|2|B|2.

The covariant derivative ∇ involves the Christoffel symbols Γi
jk, and their time derivative is

∂

∂t
Γi

jm =
1

2
gil{∇jg

′
ml + ∇mg′jl −∇lg

′
jm}

= −gil{∇j(H
khml) + ∇m(Hkhjl) −∇l(H

khjm)}

= −kHk−1{∇jHhi
m + ∇mHhi

j −∇iHhjm} − Hk∇jh
i
m.

Here we use the normal coordinate at a fixed point. Now we consider

∂

∂t
(∇lb

i
j) =

∂

∂t
(∂lb

i
j + b

p
jΓ

i
lp − bi

pΓ
p
lj)

= ∂l

∂

∂t
(bi

j) +
∂

∂t
(bp

j )Γ
i
lp + b

p
j

∂

∂t
(Γi

lp) −
∂

∂t
(bi

p)Γ
p
lj − bi

p

∂

∂t
(Γp

lj)

= ∇l

[ ∂

∂t
(bi

j)
]

+ b
p
j

∂

∂t
(Γi

lp) − bi
p

∂

∂t
(Γp

lj)

= ∇l[kHk−1∆bi
j − 2kHk−1hq

m∇pb
i
q∇

pbm
j + (k − 1)Hkδi

j

− k(k − 1)Hk−2(bi
q∇

qH)(bm
j ∇mH) − kHk−1bi

j|A|2]

− kHk−1{∇lHδi
j + ∇pHhi

lb
p
j −∇iHδlj} − Hkb

p
j∇lh

i
p

+ kHk−1{∇lHδi
j + ∇jHδi

l −∇pHhljb
i
p} + Hkbi

p∇lh
p
j

= kHk−1{∇l∆bi
j − 2∇lh

q
m∇pb

i
q∇

pbm
j + (k − 1)H−1∇lH∆bi

j

− 2(k − 1)H−1∇lHhq
m∇pb

i
q∇

pbm
j − 4hq

m∇l∇pb
i
q∇

pbm
j

− 2(k − 1)H−1(∇lb
i
q∇

qH + bi
q∇l∇

qH)(bm
j ∇mH)

− (k − 1)(k − 2)H−2∇lH(bi
q∇

qH)(bm
j ∇mH)} + · · · ,

where · · · denotes the terms composed by at most two of ∇lb
i
j . Then

∂

∂t
|∇B|2 =

∂

∂t
(gipg

jqglm∇lb
i
j∇mbp

q)

= −2Hkhipg
jqglm∇lb

i
j∇mbp

q + 2Hkgiph
jqglm∇lb

i
j∇mbp

q

+ 2Hkgipg
jqhlm∇lb

i
j∇mbp

q + 2gipg
jqglm

( ∂

∂t
(∇lb

i
j)

)
∇mbp

q

= 2kHk−1gipg
jqglm∇mbp

q{∇l∆bi
j − 2∇lh

s
u∇rb

i
s∇

rbu
j + (k − 1)H−1∇lH∆bi

j

− 2(k − 1)H−1∇lHhu
r∇vbi

u∇
vbr

j − 2(k − 1)H−1(∇lb
i
u∇

uH + bi
u∇l∇

uH)(br
j∇rH)
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− (k − 1)(k − 2)H−2∇lH(bi
u∇

uH)(bv
j∇vH) − 4hu

r∇l∇vb
i
u∇

vbr
j + · · · }

+ 2Hkgipg
jqhlm∇lb

i
j∇mbp

q .

Since

∆|∇B|2 = ∇r(2gipg
jqglm∇mbp

q∇r∇lb
i
j) = 2gipg

jqglm∇mbp
q∆∇lb

i
j + 2|∇2B|2,

we have

∂

∂t
|∇B|2 = kHk−1{∆|∇B|2 − 2|∇2B|2} + 2kHk−1gipg

jqglm∇mbp
q{2hs

vh
w
u∇lb

v
w∇rb

i
s∇

rbu
j

+ (k − 1)H−1∇lH∆bi
j − 2(k − 1)H−1∇lHhu

r∇vbi
u∇

vbr
j

− (k − 1)(k − 2)H−2∇lH(bi
u∇

uH)(bv
j∇vH)

− 2(k − 1)H−1(∇lb
i
u∇

uH + bi
u∇l∇

uH)(br
j∇rH) − 4hu

r∇l∇vbi
u∇

vbr
j + · · · }

+ 2Hkgipg
jqhlm∇lb

i
j∇mbp

q

≤ kHk−1{∆|∇B|2 − 2|∇2B|2} + 4kHk−1|A|2|∇B|4 + 2k|k − 1|Hk−1|A||∇2B||∇B|2

+ 4k|k − 1|Hk−1|A|2|∇B|4 + 8kHk−1|A||∇2B||∇B|2 + 4k|k − 1|Hk−1|A|2|∇B|4

+ k|k − 1||k − 2|Hk−1|A|2|∇B|4 + 4k|k − 1|Hk−1|A||∇2B||∇B|2 + O(|∇B|2)

≤ kHk−1{∆|∇B|2 − 2|∇2B|2 + C1|A||∇2B||∇B|2 + C2|A|2|∇B|4 + C3|A|2|∇B|2}

≤ kHk−1{∆|∇B|2 + C2|A|2|∇B|4 + C3|A|2|∇B|2},

where C1, C2, C2 and C3 are all positive constants depending only on n and k. Consider

G(x, t) = (1 + 1
2 |∇B|2)eφ(|B|2), where φ = φ(s) is a smooth function defined on [ n

b2
, n

a2 ]. Then

there exists a point (x0, t0) ∈ M × [0, T ] such that max
M×[0,T ]

G = G(x0, t0). Now at (x0, t0),

0 = ∇iG = 〈∇i∇B,∇B〉eφ(|B|2) + 2
(
1 +

1

2
|∇B|2

)
eφ(|B|2)φ′bm

n bn
m,i .

From this, we have

〈∇i∇B,∇B〉 = bm
n ,pi bn

m,p = −2
(
1 +

1

2
|∇B|2

)
φ′bm

n bn
m,i .

The second derivative of G at (x0, t0) gives

0 ≥ ∇j∇iG

= (bm
n ,pi bn

m,pj + bm
n ,pij bn

m,p)e
φ(|B|2)

+ 2(bm
n ,pi bn

m,p)e
φ(|B|2)φ′bq

rb
r
q,j + 2(bm

n ,pj bn
m,p)e

φ(|B|2)φ′bq
rb

r
q,i

+ 2
(
1 +

1

2
|∇B|2

)
eφ(2bm

n bn
m,j(φ

′)2bq
rb

r
q,i + 2φ′′bm

n bn
m,ib

q
rb

r
q,j + φ′bm

n,jb
n
m,i + φ′bm

n bn
m,ij)

= (bm
n ,pi bn

m,pj + bm
n ,pij bn

m,p)e
φ(|B|2) + 4

(
1 +

1

2
|∇B|2

)
eφbm

n bn
m,i bq

rb
r
q,j (φ′′ − (φ′)2)

+ 2
(
1 +

1

2
|∇B|2

)
eφφ′(bm

n,jb
n
m,i + bm

n bn
m,ij)

=
1

2
(∇j∇i|∇B|2)eφ(|B|2) +

(
1 +

1

2
|∇B|2

)
eφφ′∇j∇i|B|2

+ 4
(
1 +

1

2
|∇B|2

)
eφbm

n bn
m,i bq

rb
r
q,j (φ′′ − (φ′)2). (4.1)
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At (x0, t0), we also have

0 ≤
∂

∂t
G =

1

2

( ∂

∂t
|∇B|2

)
eφ(|B|2) +

(
1 +

1

2
|∇B|2

)
eφφ′ ∂

∂t
|B|2

≤
1

2
kHk−1{∆|∇B|2 + C2|A|2|∇B|4 + C3|A|2|∇B|2}eφ

+
(
1 +

1

2
|∇B|2

)
eφφ′kHk−1

(
∆|B|2 − 2|∇B|2 + 2

k − 1

k
H(trB) − 2|A|2|B|2

)
.

Then by (4.1), we have

0 ≥ kHk−1gij∇j∇iG

≥ −
1

2
kHk−1{C2|A|2|∇B|4 + C3|A|2|∇B|2}eφ + 2

(
1 +

1

2
|∇B|2

)
eφφ′kHk−1|∇B|2

−
(
1 +

1

2
|∇B|2

)
eφφ′kHk−1

(
2
k − 1

k
H(trB) − 2|A|2|B|2

)

+ 4
(
1 +

1

2
|∇B|2

)
eφkHk−1|∇|B|2|2(φ′′ − (φ′)2).

That is

0 ≥ −
C2

2
|A|2|∇B|4 + 2

(
1 +

1

2
|∇B|2

)
φ′|∇B|2 + 4

(
1 +

1

2
|∇B|2

)
|∇|B|2|2(φ′′ − (φ′)2)

−
1

2
C3|A|2|∇B|2 −

(
1 +

1

2
|∇B|2

)
φ′

(
2
k − 1

k
H(trB) − 2|A|2|B|2

)
. (4.2)

Now let L = C2nb2 and θ = arctanL. It is clear that 0 < θ < π
2 . If n

a2 − n
b2

< π
2 − θ, we may

choose θ0 = const. such that n
b2

+ θ0 = θ and let φ(s) = log sec(s + θ0) for s ∈ [ n
b2

, n
a2 ]. Then

φ′′(s) − (φ′)2(s) = sec2(s + θ0) − tan2(s + θ0) = 1 > 0

and

φ′(s) = tan(s + θ0) ≥ tan θ = L = C2nb2.

Then by (4.2), we have

C|∇B|4 ≤ C|∇B|2 + C

for some positive constant C. Therefore we get |∇B|2 ≤ C for some constant C depending only

on n, k and the bounds of |B|2. If n
a2 −

n
b2

≥ π
2 − θ, we may make dilation for the hypersurfaces

F ( · , t) so that

F̂ ( · , t) = τF ( · , t) (4.3)

for some positive constant τ depending on n, k and the bounds of |B|2 such that

|B̂|2ĝ ∈
[
τ2 n

b2
, τ2 n

a2

]

and

τ2 n

a2
− τ2 n

b2
<

π

2
− θ.

After making this dilation, the inequality (4.2) becomes

0 ≥ −
C2

2
τ2|Â|2ĝ|∇̂B̂|4ĝ + 2

(
1 +

1

2
|∇̂B̂|2ĝ

)
φ′|∇̂B̂|2ĝ

+4τ−2
(
1 +

1

2
|∇̂B̂|2ĝ

)
|∇̂|B̂|2ĝ|

2
ĝ(φ

′′ − (φ′)2) −
1

2
C3τ

2|Â|2ĝ|∇̂B̂|2ĝ

−
(
1 +

1

2
|∇̂B̂|2ĝ

)
φ′

(
2
k − 1

k
Ĥ(trB̂) − 2|Â|2ĝ|B̂|2ĝ

)
. (4.4)
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Since C2τ
2|Â|2ĝ = C2|A|2 ≤ L and |∇̂B̂|2ĝ = |∇B|2, according to the previous discussion, we

still have |∇B|2 ≤ C by choosing φ(s) = log sec(s + θ0) for s ∈ [τ2 n
b2

, τ2 n
a2 ]. Since ∇lh

i
j =

−hi
p(∇lb

p
q)h

q
j , we have |∇A|2 ≤ |A|4|∇B|2 ≤ C for some positive constant C depending on n,

k and a, b.

Next we consider the rescaling flow (3.4). In the case of Type I, we have

Proposition 4.2 For each m ≥ 0, there exists a constant C(m) depending only on m, n,

C0, k and the initial hypersurface such that

|∇̃mÃ|2 ≤ C(m)

on Mn × [1, +∞).

Proof At first, by the same discussion as Proposition 4.1, we have |∇̃Ã|2 ≤ C, where C

depends on n, C0, k and the initial hypersurface F0. Next we consider the high order derivatives

of Ã. If S and T are two tensors, we write S ∗ T for any linear combination of tensors formed

by contraction on Si···jTk···l using gik. Then

∂

∂t
∇A = ∇

( ∂

∂t
A

)
+ Hk−1∇A ∗ A ∗ A + Hk∇A ∗ A

= ∇(kHk−1∆A + Hk−2∇A ∗ ∇A + Hk−1A ∗ A ∗ A) + Hk−1∇A ∗ A ∗ A + Hk∇A ∗ A

= kHk−1∆∇A + kHk−1∇A ∗ A2 + k(k − 1)Hk−2∇A ∗ ∇2A

+ k(k − 1)(k − 2)Hk−3∇A ∗ ∇A ∗ ∇A + k(k + 1)Hk−1∇A ∗ A2

+ (k + 1)Hk∇A ∗ A + k(k − 1)Hk−2∇A ∗ A3 + Hk−1∇A ∗ A ∗ A + Hk∇A ∗ A

= kHk−1
(
∆∇A + H−2

∑

i+j=2

∇iA ∗ ∇jA ∗ ∇A + ∇A ∗ A2
)

and

∂

∂t
∇2A =

∂

∂t
∇(∇A) = ∇

( ∂

∂t
∇A

)
+

( ∂

∂t
Γ
)
∗ ∇A

= ∇
(
kHk−1

(
∆∇A + H−2

∑

i+j=2

∇iA ∗ ∇jA ∗ ∇A + ∇A ∗ A2
))

+ Hk−1∇A ∗ A ∗ ∇A

= kHk−1
[
∆∇2A + ∇2A ∗ A2 + H−1∇A ∗ ∇3A + H−3(∇A)2 ∗

∑

i+j=2

∇iA ∗ ∇jA

+
∑

i+j=2

H−2∇iA ∗ ∇jA ∗ ∇2A +
∑

i+j=3

H−2∇iA ∗ ∇jA ∗ ∇A + H−1(∇A)2 ∗ A2

+ ∇2A ∗ A2 + ∇A ∗ ∇A ∗ A
]

= kHk−1
(
∆∇2A + H−3

∑

i+j+l+m=4
i,j,l,m<4

∇iA ∗ ∇jA ∗ ∇lA ∗ ∇mA

+ ∇A ∗ ∇A ∗ A + ∇2A ∗ A2
)
.

In general, we may get

∂

∂t
∇mA = kHk−1∆∇mA + Hk−m−2

∑

i1+···+im+2=m+2
i1,··· ,im+2<m+2

∇i1A ∗ · · · ∗ ∇im+1A ∗ ∇im+2A
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+ Hk−1
∑

j1+j2+j3=m

∇j1A ∗ ∇j2A ∗ ∇j3A + Hk−1∇mA ∗ A2.

Then

∂

∂t
|∇mA|2 = kHk−1

(
∆|∇mA|2 − 2|∇m+1A|2

+ H−m−1
∑

i1+···+im+2=m+2
i1,··· ,im+2<m+2

∇mA ∗ ∇i1A ∗ · · · ∗ ∇im+1A ∗ ∇im+2A

+
∑

j1+j2+j3=m

∇mA ∗ ∇j1A ∗ ∇j2A ∗ ∇j3A

+ ∇mA ∗ ∇mA ∗ A2 + H∇mA ∗ ∇mA ∗ A
)
.

Thus for the rescale hypersurfaces F̃ ( · , τ),

∂

∂τ
|∇̃mÃ|2 =

∂

∂t
|∇̃mÃ|2

∂t

∂τ

≤ kH̃k−1{∆̃|∇̃mÃ|2 − 2|∇̃m+1Ã|2 + H̃−1|∇̃m+1Ã ∗ ∇̃mÃ ∗ ∇̃Ã|

+C(m, n, k)(1 + |∇̃mÃ|2)}

≤ kH̃k−1[∆̃|∇̃mÃ|2 + E(1 + |∇̃mÃ|2)] (4.5)

for some positive constants C(m, n, k) and E. In the last two inequalities, we have employed the

Cauchy inequality, the convexity fact of F̃ ( · , τ) and the inductive assumption that |∇̃iÃ|2 ≤

C(i) for i ≤ m − 1. From this, we have

∂

∂τ

( τ

τ + 1
|∇̃mÃ|2 + E|∇̃m−1Ã|2

)

≤ kH̃k−1
{ τ

τ + 1
[∆̃|∇̃mÃ|2 + E(1 + |∇̃mÃ|2)] +

1

(τ + 1)2
|∇̃mÃ|2

+ E
[(

∆̃|∇̃m−1Ã|2 −
3

2
|∇̃mÃ|2

)
+ E1

]}

≤ kH̃k−1∆̃
[ τ

τ + 1
|∇̃mÃ|2 + E|∇̃m−1Ã|2

]
−

E3

2
(E − 1)|∇̃mÃ|2 + E2

for some positive constants E1, E2 and E3. Thus we have the desired estimates from the

maximum principle and an induction argument. (In fact, E3 is determined by the lower bound

of kH̃k−1, E1 is from the first inequality of (4.5), and E2 = kEE1(nC0)
k−1

2 , where C0 is

from (3.5). We denote f(τ) = max
F̃ ( · ,τ)

[ τ
τ+1 |∇̃

mÃ|2 + E|∇̃m−1Ã|2]. Then df
dτ

≤ kH̃k−1∆̃f −

E3

2 (E − 1)|∇̃mÃ|2 + E2 ≤ −E3

2 (E − 1)|∇̃mÃ|2 + E2. If −E3

2 (E − 1)|∇̃mÃ|2 + E2 ≤ 0, then

the function f is monotonically decreasing. By an induction argument, we get the result. If

−E3

2 (E − 1)|∇̃mÃ|2 + E2 ≥ 0, we also get the desired inequality.)

Corollary 4.1 For each sequence τj → +∞, there is a subsequence τjk
such that F̃ ( · , τjk

)

converges smoothly to an immersed nonempty limiting hypersurface F̃∞.

Proof By the above proposition, we only need to show that the limit is nonempty. Since

|F (x, t) − F (x, T − 0)| ≤

∫ T

t

|Hk(x, τ)|dτ ≤

∫ T

t

|[(k + 1)(T − τ)]−
k

k+1 H̃k( · , τ)|dτ

≤ C

∫ T

t

[(k + 1)(T − τ)]−
k

k+1 dτ ≤ C[(k + 1)(T − t)]
1

k+1 ,
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by (3.2), we have

|F̃ (x, τ)| ≤ C.

Thus F̃ (x, τ) remains bounded as τ → +∞.

5 The Monotonicity Formula of the H
k-Flow

To understand the structure of F̃∞, we need the following monotonicity formula. It was

obtained by G. Huisken [16] in the case of mean curvature flow.

Theorem 5.1 If F̃ (x, τ) satisfies the rescaled evolution equation (3.3), then we have

d

dτ

∫

F̃ (x,τ)

ρ̃dµ̃τ ≤ −

∫

F̃ (x,τ)

ρ̃|F̃ |k−1|〈F̃ ,−→n 〉 + σH̃ |2dµ̃τ ,

where ρ̃(F̃ ) = exp(− 1
k+1 |F̃ |k+1), dµ̃τ is the volume element of F̃ (x, τ), and σ = H̃

k−1
2

|F̃ |
k−1
2

. Here

−→n is the inner normal vector of the rescaled surface, and H̃ > 0.

Proof First of all, we get the evolution equation of the metric

∂

∂τ
g̃ij =

∂

∂t

(gij

ϕ2

) ∂t

∂τ

=
(−2Hkhij

ϕ2
+

2ϕ1−kgij

ϕ4

)
(k + 1)(T − τ)

= −2Hkhijϕ
k−1 +

2gij

ϕ2

= −2H̃kh̃ij + 2g̃ij .

Here we denote ϕ = ((k + 1)(T − t))
1

k+1 . From this, we have

d

dτ
dµ̃τ = (−H̃k+1 + n)dµ̃τ

and
∂

∂τ
ρ̃ = −ρ̃

1

k + 1

k + 1

2
〈F̃ , F̃ 〉

k−1

2 · 2
〈∂F̃

∂τ
, F̃

〉
= −ρ̃|F̃ |k+1 − ρ̃H̃k|F̃ |k−1〈F̃ ,−→n 〉.

Then

d

dτ

∫

F̃ (x,τ)

ρ̃dµ̃τ =

∫

F̃ (x,τ)

−ρ̃[|F̃ |k+1 + H̃k−1|F̃ |k−1〈F̃ ,
−→
H̃ 〉 + H̃k+1 − n]dµ̃τ .

For a position vector F̃ = (x1, · · · , xn+1) and any tangent vector −→v =
n+1∑
α=1

vαeα of F̃ ( · , τ) at

this position,

D−→v F̃ =

n+1∑

α,β=1

vαDeα
xβeβ =

n+1∑

α,β=1

vαδβ
αeβ = −→v .

Now by the first variational formula,

−

∫

F̃ (x,τ)

div
−→
Y dµ̃τ =

∫

F̃ (x,τ)

〈
−→
H̃ ,

−→
Y 〉dµ̃τ .
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Let
−→
Y = ρ̃F̃ . Then for any orthonormal basis −→v 1, · · · ,−→v n for the tangent space of F̃ ( · , τ),

∫

F̃ (x,τ)

〈ρ̃F̃ ,
−→
H̃ 〉dµ̃τ = −

∫

F̃

div(ρ̃F̃ )dµ̃τ

= −

∫

F̃

∑
viDvi

(ρ̃F̃ )dµ̃τ

=

∫

F̃

ρ̃
[
|F̃ |k−1

∑

i

〈vi, F̃ 〉2 − n
]
dµ̃τ .

Therefore

d

dτ

∫

F̃ (x,τ)

ρ̃dµ̃τ =

∫

F̃

−ρ̃
[
|F̃ |k+1 + H̃k−1|F̃ |k−1〈F̃ ,

−→
H̃ 〉 + 〈F̃ ,

−→
H̃ 〉

+ H̃k+1 − |F̃ |k−1
∑

i

〈vi, F̃ 〉2
]
dµ̃τ

≤

∫

F̃

−ρ̃
[
|F̃ |k+1 + 2H̃

k−1

2 |F̃ |
k−1

2 〈F̃ ,
−→
H̃ 〉 + H̃k+1 − |F̃ |k−1

∑

i

〈vi, F̃ 〉2
]
dµ̃τ

=

∫

F̃

−ρ̃|F̃ |k−1
[
|F̃ |2 + 2σ〈F̃ ,

−→
H̃ 〉 + σ2H̃2 −

∑

i

〈vi, F̃ 〉2
]
dµ̃τ

=

∫

F̃

−ρ̃|F̃ |k−1
[
|F̃ + σ

−→
H̃ |2 −

∑

i

〈vi, F̃ 〉2
]
dµ̃τ

=

∫

F̃

−ρ̃|F̃ |k−1|〈F̃ ,−→n 〉 + σH̃ |2dµ̃τ .

Thus from the previous Corollary 4.1, we know that every limit hypersurface F̃∞ satisfies

the equation

〈
−→
F̃ ,−→n 〉 + σH̃ = 0,

i.e.,

H̃
k+1

2 + |
−→
F̃ |

k−1

2 〈
−→
F̃ ,−→n 〉 = 0. (5.1)

Therefore, we have

Theorem 5.2 Each limiting hypersurface F̃∞ as obtained in Corollary 4.1 satisfies equation

(5.1).

6 Type II Singularities

In this section, we discuss the Type II singularities. We will prove the following

Theorem 6.1 Let F ( · , t), t ∈ [0, T ), be a maximal solution of the Hk-flow, and k > 0.

Assume that the initial hypersurface F0 : Mn → Rn+1 (n ≥ 2) is compact and convex (as in

Theorem 1.1), and the flow will develop Type II singularities. Then after rescaling, the limit of

the solution must be translating soliton.

By Theorem 1.1, Mt = Ft(M) is always convex for t ∈ (0, T ). It shows that H2 and |A|2

have the same blow-up rate. We choose a sequence {(xi, ti)} as follows. For each integer i ≥ 1,

let ti ∈ [0, T − 1
i
], xi ∈ Mn, be such that

H2(xi, ti)
(
T −

1

i
− ti

) 2
k+1

= max
t≤T− 1

i

x∈Mn

H2(x, t)
(
T −

1

i
− t

) 2
k+1

. (6.1)
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Dilate the solution F ( · , t), t ∈ [0, T ) into

Fi( · , τ) =
F ( · , ti + εk+1

i τ) − F (xi, ti)

εi

for τ ∈
[
−

ti

εk+1
i

,
T − ti −

1
i

εk+1
i

]
,

where εi = (H(xi, ti))
−1.

Since we assume that the singularity is Type II, the right-hand side of (6.1) tends to +∞

as i → +∞. This shows that

T − ti −
1
i

εk+1
i

→ +∞, as i → +∞.

Then for any fixed τ ∈
[
− ti

ε
k+1

i

,
T−ti−

1
i

ε
k+1

i

)
, the mean curvature Hi of the rescaled hypersurface

Fi satisfies

H2
i ( · , τ) ≤

(T − 1
i
− ti

T − 1
i
− t

) 2
k+1

=
( T − 1

i
− ti

T − 1
i
− ti − εk+1

i τ

) 2
k+1

→ 1, as i → +∞.

It follows that for any ω > 0 and ε > 0, there exists k0 such that

max
Mn

Hi( · , τ) ≤ 1 + ε (6.2)

for any i ≥ k0, τ ∈ [−ω, ω].

We have already shown that the curvature bound in (6.2) implies analogous bounds on the

second fundamental form and all its covariant derivatives (see Section 4). Then by standard

method, based on the Arzela-Ascoli theorem, we can extract a subsequence of Fi( · , τ) converg-

ing uniformly on compact subsets of Rn+1 × R1 to a limiting solution F∞( · , τ) of the mean

curvature flow. Theorem 1.1 shows that the limit must be convex. So we get the following

result.

Proposition 6.1 Let F ( · , t), t ∈ [0, T ) be a maximal solution of the Hk-flow. Assume that

the initial hypersurface F0 : Mn → Rn+1 (n ≥ 2) is compact and convex (as in Theorem 1.1),

and that the flow develops a singularity of Type II as t → T . Then a sequence of the rescaled

flow Fi( · , τ) converges smoothly on every compact set to an Hk-flow F∞( · , τ), defined for all

τ ∈ (−∞, +∞). Moreover, the mean curvature H∞ of the limit flow satisfies 0 < H∞ ≤ 1

everywhere and is equal to 1 at least at one point.

Next we need to classify all such solutions. In [2], B. Andrews obtained Li-Yau-Hamilton

type inequalities for a class of curvature flows. His result holds for compact hypersurfaces. Re-

cently, J. Wang [27] proved a similar inequality which holds not only for compact hypersurfaces

but also for complete case. As its application, he obtained the following

Proposition 6.2 (See [27]) Any strictly convex solution F ( · , t) to the Hk-flow, for k > 0

if F ( · , t) is compact, for k > 1 if F ( · , t) is complete, where t ∈ (−∞, +∞), and the mean cur-

vature assumes its maximum value at a point in space-time, must be a strictly convex translating

soliton.

Now Theorem 6.1 follows from Propositions 6.1 and 6.2, and Theorem 1.2 follows from

Theorems 5.2 and 6.1.
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