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1 Introduction

For a Riemannian manifold, its curvature and topology have a very close relation and form

the core of differential geometry. On one hand, the curvature of a Riemannian manifold will

reflect its topology. Many famous theorems in differential geometry, like Myer’s theorem, the

Volume Comparison Theorem, the 1
4 -pinching sphere theorem, etc., have fully reflected this

point. On the other hand, the topology of a Riemannian manifold can also control the curvature

of the manifold as shown by the Gauss-Bonnet-Chern formula, the Hamilton’s theorem and so

on. Among all these results, the sphere theorems have always been an interesting subject in

differential geometry and lots of references of this respect appear during recent years (see [2–5, 9,

10, 14]). As a celebrated result to reflect the geometry and topology of a manifold, Klingenberg’s
1
4 -pinching sphere theorem attracted much attention and many related similar results gave

the generalization from various aspects. In 1977, for instance, K. Grove and K. Shiohama

[5] concluded that M would be homeomorphic to n-sphere Sn if the sectional curvature of M

satisfies that KM ≥ 1 while its diameter diam(M) > π
2 . Another theorem belongs to L. Coghlan

and Y. Itokawa [2] which says that a compact, simply connected Riemannian manifold without

boundary M2n must be homeomorphic to S2n if its sectional curvature KM varies in (0, 1] and

the volume V (M) is less than 3
2V (S2n). Recently, J. Y. Wu [3] and Y. Wen [4] respectively

gave a little step forward towards its original conjecture in which the volume condition was

0 < V (M) < 3V (S2n).
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All the topological sphere theorems above can be understood roughly as follows: when the

geometry conditions perturbed in a controlled manner based on those of the standard sphere

Sn, one can also derive that the topology is the same as Sn.

For the topological sphere theorems, one of the important but difficult questions is to gen-

eralize them up to the differentiable sphere theorems (see [22–28]). As is well known, if the

dimension n ≤ 6, a manifold being homeomorphic to Sn must be diffeomorphic to Sn, but it is

not true when the dimension n ≥ 7. The famous Milnor’s exotic sphere, for example, tells this

point. Joint with the discussions above, we may conjecture that if we perturb the geometry

conditions in a more slight manner than in the topological sphere theorem, we can expect that

the differential structure of the manifolds concerned is the same as the standard sphere Sn.

Actually, a lot of proved results about differentiable sphere theorem (see [22–28]) have shown

this point.

As one of the generalizations of the 1
4 -pinching sphere theorem, L. Coghlan and Y. Itokawa’s

theorem then faces the problem whether it is sufficient to conclude the diffeomorphisim. In their

original paper, L. Coghlan and Y. Itokawa have also submitted this problem. This problem

is still open now, and it causes the great interest to study the topology and geometry of the

manifolds with 0 < KM ≤ 1. And we have some related results about this subject (see [34–36]).

Here, we introduce the Hausdorff convergence to discuss a differentiable sphere theorem

with perturbed geometry conditions based on the ones on the standard Sn and finally derive a

rigidity phenomena on this kind of manifolds.

2 Preliminaries

According to Gromov’s idea, if we have a sequence of manifolds satisfying some geometric

conditions, we can think about the limit of them in the sense of Hausdorff convergence. In this

section, we list some relevant definitions and preliminaries.

The first concept we need is the Hausdorff convergence of manifolds. Here we only give a

rough introduction to this point and just list some important definitions and lemmas as the

tools. One can refer to [14–18, 21–27] for their detailed explanations.

Definition 2.1 A sequence of Riemannian n-manifolds {(Mi, gi)} is said to converge in the

C1,α topology to a C1,α Riemannian manifold (M, g), denoted by lim
i→∞

(Mi, gi) = (M, g), if M

is a smooth manifold with a C1,α metric tensor g, and there is a sequence of diffeomorphisms

Fi : M → Mi, for i sufficiently large, such that the pull back metrics F ∗
i gi converge to g in the

C1,α topology on M .

When one talks about the Hausdorff convergence and the properties of the limit manifolds,

an essential tool— harmonic coordinate— is usually proposed. Here, we also list a rough sketch

of the related definitions and theorems about the harmonic coordinate for the proceeding of

our results. Let 0 < α < 1. For a function f on M , the scaling invariant C1,α-norm of f on

Br(x) is defined by

‖f‖∗C1,α = sup
y∈Br(x)

|f(y)| + r sup
y∈Br(x)

{|D1f(x)|} + r1+α sup
y∈Br(x)

{ |D1f(y1) − D1f(y2)|
d(y1, y2)α

}

.
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Definition 2.2 Let M be a manifold, x ∈ M . Given Q ≥ 1, the C1,α harmonic radius

at x with respect to Q is the largest number rh(x) > 0, such that the metric ball Br(x) has a

harmonic coordinate satisfying the following two conditions:

(1) Q−1δij ≤ (gij) ≤ Qδij as tensors;

(2) ‖gij‖∗C1,α ≤ Q.

The harmonic radius of M , denoted by rh(M), is the infimum of the harmonic radii at all

points.

Obviously, the estimate of the lower bound of the harmonic radius of M is an important

matter if one wants to use this special coordinate. Here, we introduce the following theorem

without the proof, and one can refer to [21].

Lemma 2.1 Let α ∈ (0, 1), Q > 1 and (M, g) be a smooth n-dimensional Riemannian

manifold. Suppose that for some positive numbers Λ and i, we have

|Ric| ≤ Λ and Inj(M) ≥ i.

Then there exists a positive constant C = C(n, Q, α, i,Λ) such that the harmonic radius of M

satisfies rh(M) ≥ C.

We also point out that the harmonic coordinate is in some sense almost the best one among

all kinds of coordinates, and it simplifies some expressions on the manifold such as the curvature,

Laplacian, etc. For example, under the harmonic coordinate, the Ricci curvature and the

Laplacian can take respectively the following forms:

∆ = gij ∂2

∂ui∂uj
, −Ricij =

1

2
∆gij + Q(g, ∂g),

where Q is some universal analytic expression that is a polynomial in the matrix g, quadratic

in ∂g and has a denominator term depending on
√

det gij .

The following lemma indicates that the C1,α harmonic radius is continuous in the C1,α

topology.

Lemma 2.2 Let {(Mi, gi)} be a sequence of Riemannian manifolds which converge strongly

in the C1,α topology to a limit C1,α manifold (M, g). Then

rh(M) = lim
i→∞

rh(Mi).

Proof One can refer to [26, Chapter 10] or proceed just as [23, Proposition 1.1], which

gives the continuous property of the L1,p harmonic radius in the L1,p topology.

In the sequel, we cite an essential convergence theorem of the manifolds (see [22, Theorem

1.1]).

Lemma 2.3 Given three positive numbers λ, i, D. Let {(Mi, gi)} be a sequence of manifolds

satisfying

|Ric| ≤ λ, Inj ≥ i, diam ≤ D.

Then there is a subsequence of {(Mi, gi)}, also denoted by {(Mi, gi)}, converging in the C1,α

topology to a C1,α Riemannian manifold (M, g).
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Proposition 2.1 A sequence of closed Riemannian n-manifolds {(Mi, gi)} converges in the

C1,α topology to a C1,α Riemannian manifold (M, g). We identify Mi with M via diffeomor-

phism Fi. Denote the distance function to p ∈ M by ρi and ρ respectively under the metric gi

and g. Then for any smooth functions f ∈ C∞(R), φ ∈ C∞(M), we have

lim
i→∞

∫

M

f(ρi)∆iφdvolgi
=

∫

M

f(ρ)∆φdvolg,

where ∆i and ∆ respectively denote the Laplacian of the metric gi and g.

Proof It is just similar to [24, Proposition 2.5]. But we here list the outline. Firstly,

following the discussions in Lemmas 2.1 and 2.2 above about the harmonic radius and its

continuity, we know that on the limit manifold (M, g) one can also talk about the Laplacian

with the simple form. Now, the following two points then ensure the proof of our proposition.

Fact 1 Under the assumptions of the proposition, ρi will converge to ρ uniformly.

Fact 2 ∆iφ will converge to ∆φ in the Cα topology (see [26]) because of the existence

of harmonic coordinate on (M, g) (see [25]) and the simple expression of the Laplacian ∆ =

gij ∂2

∂ui∂uj under the harmonic coordinate.

3 The Rigidity Theorem

Before coming to our differentiable sphere theorem, we first list the following preliminaries.

Definition 3.1 A smooth manifold Mn is called a twisted sphere if there are smooth em-

beddings h1, h2 : B1+ǫ → Mn such that

h1(B1) ∪ h2(B1) = Mn, h1(B1) ∩ h2(B1) = ∅,

where Br ⊂ R
n denotes the open ball of radius r and B1 denotes the closure of B1.

Definition 3.2 Notations as above, denote the diffeomorphism h−1
2 ◦ h1 : ∂B1 = Sn−1 →

Sn−1 by f : Sn−1 → Sn−1. f is said to be isotopic to a diffeomorphism g : Sn−1 → Sn−1, if

there exists a smooth 1-parameter family of diffeomorphism Ft such that F1 = f and F0 = g.

With the above definitions, we have the following proposition to conclude the diffeomorphism

between the manifold and the standard sphere Sn. The proof will be omitted and one can check

it from [1].

Lemma 3.1 Notations as above, let Mn be a twisted sphere. If f is isotopic to the identity

Id, then Mn is diffeomorphic to the standard sphere Sn. Especially, Mn will be diffeomorphic

to the standard sphere Sn if f = Id.

We in the sequel give a geometrical element which is zero on the unit standard sphere Sn.

Definition 3.3 We define the π-excess of a manifold M , denoted by eπ(M), to be eπ(M) =

sup
x∈M

sup
d(p,q)=π

(d(p, x) + d(q, x) − d(p, q)).

Now we state the main rigidity theorem.
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Theorem 3.1 For any positive integer n, there exists a positive number η depending only

on n such that if (M2n, g) is a 2n-dimensional compact, simply connected Riemannian manifold

without boundary, with the metric g and satisfies

0 < KM ≤ 1, eπ(M) ≤ η,

then M2n is diffeomorphic to S2n.

Proof We prove this theorem by contradiction. If not, there exists a decreasing positive

sequence {ηi} satisfying that ηi → 0 as i → ∞ and a sequence of 2n-dimensional Riemannian

manifolds {(Mi, gi)} exists which satisfies, for each i,

0 < KMi
≤ 1, eπ(Mi) ≤ ηi,

and Mi is not diffeomorphic to S2n.

Firstly, we conclude that the sequence {(Mi, gi)} satisfies the conditions in Lemma 2.3.

As we all know, the injectivity radius of each Mi satisfies that Inj(Mi) ≥ π. Now what we

need to do is to give a uniform upper bound of the diameter. We get this by showing that

lim sup
i→∞

diam(Mi) = π, (3.1)

where diam(Mi) is the diameter of Mi with respect to the metric gi. For that, let pi, qi be

some points of Mi with d(pi, qi) = diam(Mi), where d(pi, qi) is the distance between points pi

and qi with respect to gi of Mi. If lim sup
i→∞

diam(Mi) > π + ǫ, without loss of generality, we

assume that lim
i→∞

diam(Mi) > π + ǫ. We then easily choose a point wi between pi and qi for

large i such that d(pi, wi) = π. Then ηi ≥ eπ(Mi) ≥ d(pi, qi) + d(wi, qi) − d(wi, pi) ≥ 2ǫ. Let

i → ∞. We then get the contradiction and (3.1) is then valid for us to conclude the existence

of the uniform upper bound of the diameter of Mi.

From the discussion above, taking advantage of Lemma 2.3, a subsequence of {(Mi, gi)} can

be chosen, also denoted by {(Mi, gi)}, such that lim
j→∞

(Mj , gj) = (M, g) in the C1,α topology

and the limit smooth manifold M carries the properties described in the lemmas in Section 2.

Especially, the limit metric satisfies that g ∈ C1,α. In the following, we come to draw out the

limit manifold M with the limit metric g.

It is easy to know from the convergence of the metric that (M, g) has diameter diam(M) = π,

eπ(M) = 0. Also, according to [29], we know that Inj(M) ≥ lim sup
j→∞

Inj(Mj) if the convergence

is in the C1 topology. So the injectivity radius of M satisfies that Inj(M) = π.

In the following, we set out to prove that the limit metric g is not only in C1,α, but actually

smooth. We describe this in three steps.

Step 1 The equation that the distance function on M satisfies.

Fixed a point p on M , it is obviously from the geometry of M that one can find a point q

such that d(p, q) = π. Let x ∈ M be any point and denote the distance function from p and q

respectively by ρp(x) and ρq(x). We conclude from eπ(M) = 0 that

ρp(x) + ρq(x) = π
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for any x ∈ M .

We now set out to give out the equation which the function ρp(x) satisfies.

Let φ ≥ 0 be a smooth function on M . From the discussion about harmonic coordinates

and harmonic radius on M , the simple expression of Laplacian and Proposition 2.1, identifying

Mi with M via diffeomorphism Fi, we can deduce together with the curvature conditions that
∫

M

ρp∆φdvolg = lim
j→∞

∫

M

(ρj)p∆jφdvolgj
= lim

j→∞

∫

M

φ∆j(ρj)pdvolgj

≥ lim
j→∞

(2n − 1)

∫

M

φ
cos(ρj)p

sin(ρj)p

dvolgj
= (2n − 1)

∫

M

φ
cos ρp

sin ρp

dvolg.

Similarly,
∫

M

ρq∆φdvolg ≥ (2n − 1)

∫

M

φ
cos ρq

sinρq

dvolg.

However, we already have ρp(x) + ρq(x) = π. Hence,

∫

M

ρp∆φdvolg = −
∫

M

ρq∆φdvolg ≤ −(2n − 1)

∫

M

φ
cos ρq

sin ρq

dvolg

= −(2n − 1)

∫

M

φ
cos(π − ρp)

sin(π − ρp)
dvolg = (2n − 1)

∫

M

φ
cos ρp

sinρp

dvolg.

Therefore,
∫

M

ρp∆φdvolg = (2n − 1)

∫

M

φ
cos ρp

sinρp

dvolg.

This means that

∆ρp = (2n − 1)
cosρp

sin ρp

weakly. This is just the equation we want to derive in this step.

Step 2 The expression of g in terms of the distance function ρp.

Following M. Anderson and J. Cheeger [23], for any x ∈ M , choose an orthonormal basis ei

of TxM and consider the following n(2n + 1) unit vectors

ei,

√
2

2
(ei + ej), i, j = 1, 2, · · · , 2n and i < j.

Name these vectors as v1, · · · , vn(2n+1). Let γm, m = 1, · · · , n(2n+1) be the minimal geodesics

from some points nearby x, denoted by pm, passing through x with velocity vm. Denote ρm(x)

to be the distance functions from pm. Since |∇ρm(x)| = 1, we have the following system of

n(2n + 1) equations

gkl ∂ρm

∂uk

∂ρm

∂ul
= 1, m = 1, · · · , n(2n + 1).

In order to continue, we need a simple observation of the knowledge in higher algebra stated

in the following proposition.

Proposition 3.1 ei (i = 1, · · · , n) is an orthonormal basis of an n-dimensional Hilbert

space. We construct
n(n+1)

2 unit vectors

ei,

√
2

2
(ei + ej), i, j = 1, 2, · · · , n and i < j
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and denote them by v1, · · · , vn(n+1)
2

. Let vi be coordinated under some orthonormal basis by

vi = {bi
1, b

i
2, · · · , bi

n}. Then the matrix

A = (bi
kbi

l)n(n+1)
2 ×n2

has rank
n(n+1)

2 .

Proof For simplicity, we denote

ei = eii = {b1
ii, b

2
ii, · · · , bn

ii},
√

2

2
(ei + ej) = eij = {b1

ij, b
2
ij , · · · , bn

ij}, i < j

and denote by A the following block matrix

A =





















b1
11e11 b2

11e11 · · · bn
11e11

b1
12e12 b2

12e12 · · · bn
12e12

...
...

...
b1
ijeij b2

ijeij · · · bn
ijeij

...
...

...
b1
nnenn b2

nnenn · · · bn
nnenn





















.

What we need to do is to show that the row vectors of A are linearly independent. For this,

denote the row with subscript ij by βij and assume that

k11β11 + k12β12 + · · · + kijβ11 + · · · + knnβnn = 0.

This equality immediately means that






































k11b
1
11e11 + k12b

1
12e12 + · · · + knnb1

nnenn = 0,

k11b
2
11e11 + k12b

2
12e12 + · · · + knnb2

nnenn = 0,

· · ·
k11b

l
11e11 + k12b

l
12e12 + · · · + knnbl

nnenn = 0,

· · ·
k11b

n
11e11 + k12b

n
12e12 + · · · + knnbn

nnenn = 0.

Taking the inner product with e1 for each equation above, we then derive from the orthonormal

property that






























































k11b
1
11 +

√
2

2
k12b

1
12 +

√
2

2
k13b

1
13 + · · · +

√
2

2
k1nb1

1n = 0,

k11b
2
11 +

√
2

2
k12b

2
12 +

√
2

2
k13b

2
13 + · · · +

√
2

2
k1nb2

1n = 0,

· · ·

k11b
l
11 +

√
2

2
k12b

l
12 +

√
2

2
k13b

l
13 + · · · +

√
2

2
k1nbl

1n = 0,

· · ·

k11b
n
11 +

√
2

2
k12b

n
12 +

√
2

2
k13b

n
13 + · · · +

√
2

2
k1nbn

1n = 0,

which means that

k11e11 +

√
2

2
k12e12 + · · · +

√
2

2
k1ne1n = 0
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and then shows that

k11e11 +
1

2
k12(e11 + e22) + · · · + 1

2
k1n(e11 + enn) = 0.

For eii (i = 1, 2, · · · , n) is a basis, one can easily deduce that k1j = 0. The same procedure

then shows that kij = 0 and the proposition now is proved.

Going on with the equations gkl ∂ρm

∂uk

∂ρm

∂ul = 1, m = 1, · · · , n(2n + 1), k, l = 1, · · · , 2n, one

views this as a system of linear equation with gkl as unknown and (∂ρm

∂uk

∂ρm

∂ul ) as coefficient.

According to Proposition 3.1, at the point x, the coefficient matrix has rank n(2n + 1). Then

after elementary operations, we will derive that the following system

∑

k≤l

gklωkl

∂ρm

∂uk

∂ρm

∂ul
= 1, m = 1, · · · , n(2n + 1), k, l = 1, · · · , 2n

has nonsingular coefficient matrix, where ωkl = 1 for k = l and ωkl = 2 for k < l. By continuity,

the coefficient matrix is nonsingular in a neighborhood of x. Hence one can solve gkl in terms

of ∂ρm

∂uk . This gives the expression of g in terms of the distance function ρp.

Step 3 The smoothness of the metric g.

Together with Step 1, we have the weak equation gkl ∂2ρp

∂uk∂ul − (2n − 1)
cos ρp

sin ρp
= 0, and the

regularity theory (see [30]) immediately shows that ρp ∈ C3,α since gkl ∈ C1,α. Turn to Step 2,

we then get that gkl ∈ C2,α since ρp ∈ C3,α. Continuing this bootstrap argument shows that g

is actually smooth.

After the three steps above, we conclude that the limit manifold (M, g) is actually a smooth

Riemannian manifold with injectivity radius Inj(M) = π = diam(M) and eπ(M) = 0. In the

following, we come to prove that (M, g) is diffeomorphic to S2n.

Fix two points p, q ∈ M with d(p, q) = π. From the fact that the injectivity radius of M is π,

we know that the exponential maps expp, expq : B 2π
3
→ M are both smooth embeddings. Here,

B 2π
3

⊂ R
2n is the standard ball with radius 2π

3 . Also, one can easily deduce that expp(Bπ
2
) ∩

expq(Bπ
2
) = ∅ and expp(Bπ

2
)∪expq(Bπ

2
) = M , which states that M is actually a twisted sphere.

Also, from eπ(M) = 0 and Inj(M) = π, one can easily derive that ∂Bπ(p) = {q}. ∀x ∈ ∂Bπ
2
(q),

from the fact above, there exists one geodesic γp,x joining p with x and one γq,x joining q with x

which both have length π
2 . However, d(p, q) = π means that the two geodesics together form a

geodesic, denoted by γp,x,q, joining p with q. And Toponogov theorem then assures that this is

the unique geodesic joining p and q passing through x. So we can adapt ahead the coordinates

at TpM and TqM such that

expp

(π

2
, θ

)

= expq

(π

2
, θ

)

, ∀ θ ∈ S2n−1.

Then it is easy to show that

exp−1
p ◦ expq |∂B π

2
= Id : ∂Bπ

2
→ ∂Bπ

2

Then we claim that M is diffeomorphic to S2n according to Lemma 3.1. Therefore, the elements

of a subsequence of {Mi} are all diffeomorphic to S2n, which contradicts our construction of

{Mi}. Thus we complete the proof of the rigidity theorem.
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[19] Hartman, P., Oscillation criteria for self-adjoint second-oder differential systems and principle sectional
curvature, J. Diff. Eqs., 34, 1979, 326–338.

[20] Grove, K. and Wilhelm, F., Hard and soft packing radius theorems, Ann. of Math., 142(2), 1995, 213–237.

[21] Hebey, E., Nonlinear Analysisi on Manifolds: Sobolev Space and Inequalities, Courant Lecture Notes in
Math., Vol. 5, New York University, New York, 1998.

[22] Anderson, M., Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math., 102,
1990, 429–445.

[23] Anderson, M. and Cheeger, J., Cα-compactness for manifolds with Ricci curvature and injective radius
bounded below, J. Diff. Geom., 35(2), 1992, 265–281.

[24] Cai, M., Rigidity of manifolds with large volume, Math. Z., 213, 1992, 17–31.

[25] Rong, X. C., Introductin to the convergence and collapse theory in Riemannian Geometry, Lectures given
in Fudan University by Xiaochun Rong, 2007.

[26] Petersen, P., Riemannian Geometry, Springer, New York, 1998.

[27] Petersen, P., Convergence theorems in Riemannian geometry, Comparison Geom. MSRI Publ., 30, 1997,
167–202.

[28] Tuschmann, W., Smooth diameter and eigenvalue rigidity in positive Ricci curvature, Proc. Amer. Math.

Soc., 30, 2001, 303–306.

[29] Sakai, T., On continuity of injectivity radius function, Math. J. Okayama Univ., 25, 1983, 91–97.

[30] Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order, Second Edition,
Grundlehoen der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin, 1983.

[31] Kazdan, J. L., An isoperimetric inequality and Wiedersehen manifolds, Seminar on Differential Geometry,
S. T. Yau (ed.), Ann. Math. Stud., Vol. 102, Princeton University Press, Princeton, 1982, 143–157.



76 P. H. Wang and C. L. Shen

[32] Xin, Y. L., Mean curvature flow with convex Gauss image, Chin. Ann. Math., 29B(2), 2008, 121–134.

[33] Xin, Y. L., Ricci curvature and fundamental group, Chin. Ann. Math., 27B(2), 2006, 121–142.

[34] Wang, P., A gap phenomenon on Riemannian manifolds with reverse volume pinching, Acta Math. Hun-

garica, 115(1–2), 2007, 133–144.

[35] Wang, P., A differential sphere theorem on manifolds with reverse volume pinching, Acta Math. Hungarica,
119(1–2), 2008, 63–69.

[36] Wang, P. and Wen, Y., A rigidity phenomenon on Riemannian manifolds with reverse volume pinching,
Ann. Glob. Anal. Geo., 34, 2008, 69–76.

[37] Wang, P. and Wen, Y., A differentiable sphere theorem with positive Ricci curvature and reverse volume
pinching, J. Math. Anal. Appl., to appear.


