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Abstract The authors achieve a general law of precise asymptotics for a new kind of
complete moment convergence of i.i.d. random variables, which includes complete con-
vergence as a special case. It can describe the relations among the boundary function,
weighted function, convergence rate and limit value in studies of complete convergence.
This extends and generalizes the corresponding results of Liu and Lin in 2006.
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1 Introduction

Throughout this paper, let {X, X,,,n > 1} be a sequence of i.i.d. random variables, S,, =

n

> X; and N be the standard normal random variable. C' denotes positive constants, possibly
i=1

varying from place to place, and [z] denotes the largest integer < x.

Since P. L. Hsu and H. Robbins [6] introduced the concept of complete convergence, there
have been extensions in several directions. One of them is to discuss the precise rate and limit
value of i o(n)P{|S,| > eg(n)} ase | a, a > 0, where ¢(z) and g(z) are the positive functions
defined cr)Ln: %O, 00). We call p(x) and g(z) weighted function and boundary function respectively.
The first result in this direction was due to C. C. Heyde [5], who proved that

lime? Y P{|S,| > en} = EX? 1.1

;{516;1 {ISn] 2 en} : (1.1)
where EX = 0 and EX? < oo. For analogous results in more general case, see [2, 3, 9, 11],
etc. The research in this field is called the precise asymptotics. W. D. Liu and Z. Y. Lin [7]
studied the precise asymptotics for a new kind of complete moment convergence of i.i.d. random

variables.
W. D. Liu and Z. Y. Lin [7] achieved the following three results.
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Theorem 1.1 Suppose that

EX =0, EX?=0¢% and EX?log"|X|< c0. (1.2)
Then we have
1
| —ES;I{|Sy] > en} = 20°. 1.
slﬁ)l—loggnglrﬁ Sn {|S |_5n} o ( 3)

Conversely, if (1.3) is true, then (1.2) holds.

Theorem 1.2 Suppose that

EX =0, EX?=0%< . (1.4)
Then we have
: 2—p P _ 2
lallnga 321 —an|Sn| I{|Sy| > en} = g _po (1.5)

for 0 <p < 2. Conversely, if (1.5) is true for some 0 < p < 2, then (1.4) holds.

Theorem 1.3 Suppose that
EX =0, EX?=0% and EX?*(og"|X|)° < oo, (1.6)

where 0 < 6 < 1. Then we have

lime? 2B OOg") ES21{|S | > ey/nlogn} = E|N|25+2. (1.7)

n=1

Conversely, if (1.7) is true, then (1.6) holds.

In this paper, we will extend the scope of the weighted functions and boundary functions,
and give a general law of precise asymptotics of i.i.d. random variables, which extend and

generalize the direct part of [7, Theorems 1.1-1.3].

2 Main Results

We will make some appropriate limitations to ¢(z) and g(z) in the following theorems, and
then get some corollaries according to the kind of g(z). From these corollaries we can conclude

a series of interesting results, which contain the direct part of [7, Theorems 1.1-1.3].

Theorem 2.1 Let g(x) be a positive and differentiable function defined on [ng, 00), which

is strictly increasing to co. g'(x) is monotone. If ¢'(x) is monotone nondecreasing, we assume

lim g/g(fzz)l) = 1. Assume that p(z) = gg/(%)) is monotone, and if p(x) is monotone nondecreas-

n—oo
ing, we assume lim % = 1. And assume that the following condition is satisfied:
n—oo
lim sup ng(n) < oco. (2.1)
n—oo

Finally suppose that the following conditions of i.i.d. random wvariables {X,X,,n > 1} are
satisfied:
EX =0, EX?=0¢% and EX?log"|X|< c0. (2.2)
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Then we have

2I{|S’n| > ey/ng(n)} = 20°. (2.3)

1 O S
I B|>%
c10 —loge Z o) vn

n=ngo

Theorem 2.2 Let g(x) be a positive and differentiable function defined on [ng, 00), which

is strictly increasing to oo. ¢'(x) is monotone. If g'(x) is monotone nondecreasing, we assume

lim g,(,’E*)l) = 1. Assume that o(z) = q%;((xm)) is monotone, where 1 > p > 0. If p(x) is
monotone nondecreasing, we assume lim “"(’z+)1) = 1. And assume that the following condition
1s satisfied:

limsupn? p(n) < co. (2.4)

Finally suppose that the following conditions of i.4.d. random variables {X, Xp,n > 1} are
satisfied:

EX =0, EX?=02<o00 for0<p<2; (2.5)
EX =0, EX?=0% EX?log" |X| <00 forp=2; (2.6)
EX =0, EX?=0% E|X|P<oco forp>2. (2.7)

Then we have

1
ags 1
s

E|N
1—ps

"1{|Sn] > ev/ng*(n)} =

- S

lime: B~ 2.8
lim & n;g QB (2.8)
Remark 2.1 In Theorem 2.1 or Theorem 2.2, lim % =1, (2.1) and (2.4) are all mild
conditions. g(x) = 2%, (logz)?, (loglogz)” with some suitable conditions of a > 0, 3 > 0,

~v > 0 and some others all satisfy these conditions.

Remark 2.2 Letting g(x) = « in Theorem 2.1, we can get the direct part of [7,
Theorem 1].

Remark 2.3 If s = %, 0 < p < 2and g(x) = z, we can get the direct part of [7,
Theorem 2].

Remark 2.4 If s = ﬁ, p =2 and g(z) = (logz)®*!, we can get the direct part of [7,
Theorem 3] with EX?log™ |X| < oo instead of EX?(log™ |X|)® < co. W. D. Liu and Z. Y. Lin

[7] restricts 0 < 6 < 1, but in our theorem we only restrict 6 > 0.

Remark 2.5 If p = 0, the conditions of Theorem 2.2 still hold, then we can get [1, Theorem
1] with o = 2.

Remark 2.6 If p =0, s = 3, g(z) = loglog z, we can get [3, Theorem 2].

Remark 2.7 If p = 0, s = %, glz) = 27 1 for 0 <t <2, r >t we can get [2,

Corollary 1].

3 Several Lemmas

To prove our theorems, we need some lemmas as follows.
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Lemma 3.1 (see [1]) Suppose that 0 < a < 2, {X,X,,n > 1} is a sequence of i.i.d.
random variables which belongs to the normal domain of attraction of a nondegenerate stable
distribution G, with characteristic exponent o and EX = 0 when 1 < o < 2. Let g(x) be a

positive and differentiable function defined on [ng,o0), which is strictly increasing to co. g'(x)

!
is monotone. If ¢’ (x) is monotone nondecreasing, we assume lim gg(fzz)l) =1. Then, Vs > 1,

we have - n_}oo
. 1 12 s 1
s — > = s
151%15 Z g (n)P{[Sn — an| = ebng®(n)} = E|Za|*,
n=ngo

where Z,, is a random variable having the distribution Gy, a, and b, are the centralizing and

normalizing constants respectively.

Lemma 3.2 Suppose that {X,X,,n > 1} is a sequence of i.i.d. random wvariables with
n

E|X|? < oo, where 1 < 3<2. Let S, = >_ X;. Then ¥V x,y >0, we have

1=1
P{IS,| > o} < nP{X| >y} + 205 (XY 3.1
{10] = ) <nP(1X] 2 9} + 208 (T ) (3.1)
Proof To prove (3.1), it suffices to show that
a nE|X|? 4
P{|S,| > z} < nP{|X| > 2( ) 3.2
(1512 2} < nPYIX| 2 4} + 268 (s (32)

However, (3.2) is [11, Lemma 2], which, in turn, is based on [8, Theorem 1.2].

Lemma 3.3 (see [10]) Suppose that {X, X,,,n > 1} is a sequence of i.i.d. random variables,
Sp = > X;. We have

1=1

CINTZEXZI{|X| > A} < ) P{|Sn] = nA} < CoAEX?I{|X| > A} (3.3)

n=1

for any X\ > 0, where C1 and Cy are positive absolute constants.

4 Proof of Theorem 2.1

Set b(e) = [g~1(¢7?)], where g~!(z) is the inverse function of g(x). Without loss of gener-

ality, we assume that o2 = 1.

Proposition 4.1

im <pn/ 2¢cP{|N| > z}dx = 2.
cl0 —logan;[) (n) e/a(n) {Ivl }

Proof At first, we discuss the relations between the integral and the series. If p(y) is

nonincreasing, then p(y) faof/q(_u) 2¢P{|N| > x}dx is nonincreasing. Hence we have

cp(y)/ 2eP{|N| > z}dady < cp(n)/ 2¢P{|N| > xz}dx
/7104'1 e/ 9(y) n:nzo+1 ey/g(n)

< [ o) [ 2aP{N| = apdady.
n e/ 9(v)

0
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Then we have

oo

1 oo
lim 80”/ 20P{|N| = z}dx
10 —logan;() () ey/g(n) v }
1 oo/ 8]
— lim / g (y)/ 20P{|N| > z}dady
clo —loge /., 9(y) Je 9(y)

1 <1 [
= lim / —/ 2¢P{|N| > z}dadt
elo —loge Jymne) t Jevi

2 o 1 [
= lim / —/ 2xP{|N| > z}dzdy
elo —loge Jo\ /gty ¥ Jy

= 1im2/ 2¢P{|N| > z}dz
=10 Jey/g(no)

If (y) is nondecreasing, then by lim “"(":1)

=1 for any 0 < § < 1, there exists n; = n1(9),

such that “’gz:)l) <14+ § and % > 1— 6 for n > ny. Thus we have

(1+8) / o) / 2:P{|N| > r}dady
n e/ 9(y)

1+1
< > e[ 2eP(N|za)da
n:nzl+1 €4/ g(n)

<(1- 5)*1/00 oy) /jﬁ 20P{|N| > z}dady.

1

Therefore

1 oo o0
lim 1+6*1/ cpy/ 20 P{|N| > z}dzdy
aio—loga( ) ; (y) o {IN] = =}

1+1
< lim gpn/ 20P{|N| > z}dz
i oz 3 el [ 2PN 2 2)

1

1 oo o
< lim 1—(5_1/ y/ 2¢P{|N| > z}dzdy.
i (=07 [ e [ 2ep(N 2 )

And then by (4.1), we know

o0

2(1+46)"" <lim cpn/ 20 P{|N|> z}dz < 2(1 —§) L.
(1+96) 510—1ogsn;0 (n) /o {IN] = =} (1-9)
Let 6 | 0. Then we can conclude
lim cpn/ 20P{|N| > z}dz = 2.
i gz 2wl [ 2PN 2)

Remark 4.1 In the following, for simplicity, we will omit the discuss of (z), but the
process is similar to the discussion of Proposition 4.1.
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Proposition 4.2

1 b(e)
151%1 —loge Z ()
n=ngo

2:P{|N| > x}dx‘ —0. (4.2)

n

/sjm2xp{|s"| > Jaz}da — /jg_)

Proof Obviously,

b(e) 0o 00

n 2xP{|S, nrtdxr — 2¢P{|N rldx
nz,;f“/am {10] > vz} /m {IN] > z}dz]
b(s

Z 2(z + ey/g(n) )P{IS,| = Vil(z +e/g(n) ) }da

- / 2(a+ ev/glm) )P{IN| = (2 +2\/g(0) )}z

0

!
S Z g (n) (Anl + An2 + AnS)a

where

An = sup |P{|S,| = vnz} — P{IN| = x},

_1

AL
A, = /O 2(x +e\/g(n))|P{|Sn] > Vn(z +ev/g(n) )} — P{IN| > (z + /g(n) ) }|dz,
Aps = /Of 2(z +ev/g(n) )P{|Sn| = Vn(z +ev/g(n) ) }dz,

An
Ay — /:: 2z +ev/gn) )PIN| > (= + e/g() ) Hda.

Since n < b(e) implies £4/g(n) < 1, we have

A, 1
Ay < /0 2z +e/g(n) ) Andx < An(Ant +2/gn) )2 < (AS + AR, (4.3)

For A, 3, by Markov inequality, we have

Am<c | — 1 _qs<cal. (4.4)

At (z+ey/g(n))?

Now we estimate A,2. By Lemma 3.2, we have

An2</: 2z +ev/g(n) )n P{|X|27”(x+s g(n))}dx

+C/ 2(x + ev/g(n) )n? dz

211 + Is.
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By Fubini Theorem and the fact 0 < A,, <1, we have

L = E/Of 2z + e\/g(n) )n1{|X| > @(z—i—a\/g(n))}dx

Ay,
< EI{4|X| > \/ﬁ}/o 2z +e\/g(n) )nI{|X| > @(x +£\/g(n))}dx
< BI{4|X| > yi} / 7 2z + ev/g(n) )da
<AE|XPPI{4X| > /n}
and
oo 1 i

IL<C CAZ.

st laveyam) =

From (4.3)—(4.6) and the fact A,, — 0 as n — oo, we can get

Apt +Aps+ A3 — 0, asn — oo.

83

(4.7)

Then by (4.7), the monotonicity of ¢(z) and Toeplitz Lemma (see [4]), we get (4.2). The

proposition is now proved.

Proposition 4.3

1 E >
lim <p(n)/ 2eP{|N| > z}dx = 0.
clo —loge n_%ﬂ e\/9(n)

Proof By the monotonicity of ¢(z) and Markov inequality, we have

1 - >
im cp(n)/ 2¢P{|N| > xz}dx
el0 —loge n_bz(s;Jrl ev/9(n)
> > E|N|*
< lim Z cp(n)/ 2z |4| dz
elo —loge (e 41 e/9(n) T
& g
<lim ———
=20 —e2 loge n_%ﬂ g3(n)

1
§limL/ —dy < lim ¢ =0
clo —e2loge J. 2 y? 10 —loge

Proposition 4.4

1 = /°°
im p(n 22 P{|S,| > Vnx}dx = 0.
el0 —logésn_bz(g:)Jrl () e/9(n) S J

Proof Set

X =Xil{|X;| <A}, X! = X,I{|Xy] > A},

Sp=Y (X[ - EX]), Sp=>(X/-EX]),

=1 =1

(4.8)
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where A > 1. Clearly, S,, = S}, + S./. Therefore,

Y. weln) / jﬁ 20P{|Sy| = Vnz}dz

(n) /Ejm 2:CP{|S’| > \/—x}dx—i— Z /jMQxP{LS';” > @}dx

n=>b(e)+1

(]

For I3, by the monotonicity of ¢(z), Markov inequality and E|S’|* < Cn?)\*, we have

ol [eS) /14
lim ! I3 < lim ! E go(n)/ 2I4E|S | dz
elo —loge clo —loge vt e/9(n) n2g4

<11mL Z g'(n)

— .2 2
cl0 —¢ logsn b(s)+1g (n)
C <1 C
< lim ——— —d lim =0. 4.10
= elo Ze2 loge /72 Y2 y= <10 —loge (4.10)

For 14, by condition (2.1), Fubini Theorem and Lemma 3.3, we get

o(n) /Ooq(n 2:CP{|S”| > \/—x}

n) /OOO 2(t+s)P{|S;{| > n(t;g)}dt

oo

=b(e)+1
< C/OOO(t+€)ZP{|S,’{| > n(t;g)}dt

n=1
> EYPI{Y| > 5=}
gc/o (t+e) 1o 2
* H{|Y| > 5=}
—cn(pp [T )
0 (t+e)
< CE|Y|*log® 2|Y| — C(loge)E|Y|?,

I, =

>

n=b(e)+
>
b

dt

where Y denotes X{' — EX{. Then by (2.2) we have

lim lim sup I,=0. (4.11)

A—oo 10 —loge
From (4.10) and (4.11), we complete the proof of Proposition 4.4.

Proof of Theorem 2.1 Note that

vng(n)

n=no

3 g PS> gl b+ 3 o

20 P{|S,| > v/nx}dz.
n=ng n=ng /5\/9(")
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In order to prove (2.3), we just need to show that

2 o0
im g g (n)P{|S,]| > ey/ng(n)} =0 (4.12)
elo —loge =
and
J >
i > = 2. .
e n:EnD cp(n)/E — 20 P{|Sy,| > Vnx}dr =2 (4.13)

By the same argument of Lemma 3.1, we know that for any % > p,

o0

lime* 37 g'(n)P{ISa] = ev/ag®(n)} = BN

1
B

(4.14)

n=ngo

Let s = % in (4.14). Then we can obtain (4.12). (4.13) can be proved by Propositions 4.1-4.4

and the triangular inequality.

5 Proof of Theorem 2.2

Set d(e) = [¢~*(Me—*)], where g~ (x) is the inverse function of g(z), M > 1. Without loss

of generality, we assume that o2 = 1.

Proposition 5.1 For p > 0, we have

L1 e > _ ps 1
limes"" n / pxP LPLIN| > z}dx = E|N|s. 5.1
liny H;OSD( ) o {IN| =z} T s |N| (5.1)

Proof At first we discuss the relations between the integral and the series. If o(y) is

nonincreasing, then ¢(y) [ -

0 (v) prP~ L P{|N| > z}dx is nonincreasing. Hence we have

oo

[ e [ Nz ey 3D el [ per PN 2 0

o+1 9°(y) n=no-+1 €g°(n)

S/ w(y)/ paP ' P{|IN| > z}dady.
no cg* (1)

Then we have

lime® P Z go(n)/ paP ' P{|N| > z}dx
€l0 nemno cg*(n)
:limfi_”/ w(y)/ pa? ' P{IN| > z}dady
elo no 9°(y)
o0 1 [ee)
= limaéfp/ —/ prP L P{|N| > 2}dxdt
€l0 9(no) tPs [ 4o
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o 1
= lim - T
€l0 s cg* (no) tP B

oo 1 oo
= B/ n / 2P~ P{|N| > z}dadt
o tPTITS y

/ P71 P{|IN| > z}dadt
t

S
:1—9/ xP*1P{|N|zx}/ 1 dtde
s Jo o trtl—=

1

1
__ps / Lot-1pyIN| > o}da
0 S

1—ps
- P pix|t.
1—ps
If ©(y) is nondecreasing, then by lim “"gz:)l) = 1, the proof is similar to that of Proposition
n—oo

4.1. Thus we can get Proposition 5.1 by the above steps.

Remark 5.1 In the following, for simplicity, we will omit the discussion of ¢(z), but the

process is similar to the discussion of Proposition 5.1.

Proposition 5.2 For p > 0, we have

d(e) 0o 00
lime: 7 Z o(n) / pa? ' P{|S,| > Vnz}dx —/ prP ' P{|N| > x}dx} =0. (5.2)
sl = cg* () cg*(n)

Proof It is easy to see that

d(e)

g3 P Z ga(n)‘/ ( )pxp_1P{|Sn| > \/ﬁx}dx—/
— egs(n €

n=ngqo

pzP 'P{|N| > x}dx‘
g°(n)
d(e)

<> el /OOOP($+€95(H))”_1IP{ISnI > Vn(z +eg°(n)} = P{IN| = (z + £g°(n))}da

< Z p(n)(AL + ALy + AL),

/

A, 2P
1 = /0 pla +eg® ()" P{|Sa] > Vil +eg°(n)} = P{IN| > (z + eg°(n))}|da,
Ny = [y pla+ g )P PIS| 2 Vi + "0}
A, 2P
s = [ P+ e’ PUN| 2 (2 + 2" ()}
Since n < d(e) implies eg®(n) < M*, we have

A, %P 1 1 1
Al < / p(x + ags(n))p_lAndx < AL(AR PP +e9°(n))? < (ARP + MPAL)P. (5.3)
0

For A 5, by Markov inequality, we have

o0 1 l
AL, <O , ————————dx < CAE. 5.4
ns = /A (@ +eg )" = (54)
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Now we estimate A/ ,. First we consider 0 < p < 2. By Markov inequality, we have

o0 1
A, <C , ———————dax < CA
n2 = /A (@t egrm)Pr " =

For p > 2, by Lemma 3.2, choosing 3 = 2 and = = py, we know

N < [y vl ety np{1X] 2 L2e 4 o) o

1
2

AT

° 1
C s p—1_p d
O [ ey )y
éJl + Js.

By Fubini Theorem and the fact 0 < A,, < 1, we have

A °°_ plo +eg*(m)p~n{|X| > %x +eg"(m) e

> s p— \/ﬁ s
< BIIX| = Vi) [ pla+ eg’ )yt {1X] = Lo+ gt () o

rlX]|

—eg®(n)

<BrlX| = Vi) [T et eg )y nda

| X [P
< CEI{2p|X| > v/n}n 5
n2

< CEIXIPI{20|X| = v }

and

o0 1 1
Jo < C —  _dax < CAZ:.
2= /A— (@ +egs(n)p1°" =

From (5.3)—(5.7) and the fact A,, — 0 as n — oo, we can get

AL +ALL+ A, —0 asn— oo.

87

(5.5)

(5.8)

Then by (5.8), the monotonicity of ¢(z) and Toeplitz Lemma (see [4]), we get (5.2). The

proposition is now proved.

Proposition 5.3 For p > 0, we have

o0 o0

lim limsupes 7 Z <p(n)/ prP ' P{|N| > z}dx = 0.
M—oco €10 n=d(e)+1 £g°(n)

Proof By the monotonicity of ¢(z) and Markov inequality, we have

o0 [o'e)

lim limsupe* ” Z go(n)/ prP ' P{|N| > z}dx
— 00 |0 n:d(s)Jrl egs (n)
> > E|N|?
< lim limsupas%*p Z gs(n) / pxp71|—2|dx
—0 o neaimrr 97 Jegrmy v
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L« d )
< lim limsupCe™ s Z
M=o el0 n=d(e)+1

. . _1 [ 1
< lim limsupCe™ s . —dy
M=oo  ¢lo Me== Y

1
< lim limsupC— =0.
M—o0 €10 M

Proposition 5.4 For p > 0, we have

lim limes P n / 2P~ P{|S,| > /nzldx = 0. 5.10
Jim et 3 ol [ et YIS 2 V) (510)
n=d(e)+1 !

Proof Define X/, X!, S/ and S/ as in the proof of Proposition 4.4. Therefore

> e /m pa 1 P{[S,| > Var}da

P
n=d(e)+1 g°(n)
< S5 e[ [ wrte{isiz e [ prte{is) 2 45 Jasl
n=d(e)+1 eg®(n) 2 g (n) 2
éJ3+J4.

For Js, by the monotonicity of (), Markov inequality and E|S’|? < Cn* A%, we have

- - L, & © B
A}lgloohmsupgs Ja < A}E)noohmsupC'Es p Z sﬁ(n)/ pa? —dz
|0 €|l0 n=d(e)+1 eg®(n) NsxTs
R 1
< lim limsup Ces P Z sﬁ(n)/ ——dx
—% ¢]o n=d(e)+1 eg(n) &3 PF
. . 1 - g'(n)
< ]\4hl>noo lim sup Ce™ s Z 2(n)
£10 n=d(e)+1 7

<

. . 1 [ 1
< lim limsupCe™ s . —2d
M—oo g0 Me=s Y

1
< lim limsupC— = 0.
M —oo €10 M

For J4, by condition (2.4), Fubini Theorem and Lemma 3.3, we get

Ji= Z cp(n)/ pxp_lP{|S,’l'| > @}dx
n=d(e)+1 £9°(n)
— > - +
= Y ate [ e p{s > M a
n=d(e)+1 0

o [T e ot S pl g o M)
< pate 3 p{isil = S5 s
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2 T+
b EIVPIY| > 252y

SC/OOOP(%L&)

(o + e
o H{ly] > zte
:CpEY2/ de,
o (z+e)P

where Y denotes X{ — EX7.
Note that
Jy < CEY?log™ |Y| — C(loge)EY?

for p =2, and
Jy < CE|Y|F —C(eP2?)EY?

for p # 2, and note that % > p, so we know

lim limsupaé_p(h =0.
A—00 clo

From the above steps, we complete the proof.

Proof of Theorem 2.2 Since

H{IS0] > e gt (n)} = P{IS,| > ey g*(n)},

Sn

B| >

Vn

where p = 0, by (4.14) we can get Theorem 2.2. Therefore we just need to discuss the case
% > p > 0. Note that

oo

> GE[ [ 11,1 > evig* )
= 3 e PS> svig ) + 3 el [ Oj( P18 2 Ve

In order to prove (2.8), we just need to show that

oo

limet Y o/ )Pl 2 Vg () = BINT, (5.11)
n=ngo

lime: 7 pn / pxP 1 P{|S,| > Vnz}dx = P5_pINE 5.12

liny n;g (n) o {15 } T s | (5.12)

By (4.14), we can get (5.11). (5.12) can be proved by Propositions 5.1-5.4 and the triangular

inequality.

Acknowledgement The authors would like to thank the anonymous referee for many

valuable comments that have led to the improvements in this work.

References

[1] Cheng, F. Y. and Wang, Y. B., Precise asymptotics of partial sums for IID and NA sequences (in Chinese),
Acta. Math. Sin., Ser. A, 45(5), 2004, 965-972.



Y. Zhang, X. Y. Yang and Z. S. Dong

Gut, A. and Spataru, A., Precise asymptotics in the Baum-Katz and Davis law of large numbers, J. Math.
Anal. Appl., 248, 2000, 233-246.

Gut, A. and Spataru, A., Precise asymptotics in the law of the iterated logarithm, Ann. Prob., 28, 2000,
1870-1883.

Hall, P. and Heyde, C. C., Martingale Limit Theory and Its Application, Academic Press, New York, 1980.
Heyde, C. C., A supplement to the strong law of large numbers, J. Appl. Prob., 12, 1975, 173-175.

Hsu, P. L. and Robbins, H., Complete convergence and the strong law of large numbers, Proc. Nat. Acad.
Sci. USA, 33, 1947, 25-31.

Liu, W. D. and Lin, Z. Y., Precise asymptotics for a new kind of complete moment convergence, Stat.
Prob. Lett, 76, 2006, 1787-1799.

Nagaev, S. V., Large deviations of sums of independent random variables, Ann. Prob., 7(5), 1979, 745-789.

Pang, T. X. and Wang, J. F., Precise asymptotics in Chung’s law of the iterated logarithm via self-
normalization (in Chinese), Chin. Ann. Math., 28A(4), 2007, 507-518.

Pruss, A. R., A two-sided estimate in the Hsu-Robbins-Erdos law of large numbers, Stoch. Proc. Appl.,
70, 1997, 173-180.

Spataru, A., Precise asymptotics in Spitzer’s law of large numbers, J. Theor. Prob., 12, 1999, 811-819.



