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1 Introduction

1.1 In this paper, we consider the Cauchy problem for the quasilinear dissipative hyperbolic

evolution equation

εutt + ut − aij(∇u)∂i∂ju = f, (1.1)

with ε ∈ ]0, 1], f = f(t, x), t ≥ 0, x ∈ R
N , and u subject to the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x). (1.2)

In (1.1), as well as in the sequel, summation for i, j from 1 to N is understood. Our goal is

to prove an almost global existence result for strong solutions of (1.1), corresponding to initial

data u0, u1, and source term f , of arbitrary size, at least if the hyperbolicity parameter ε is

sufficiently small. More precisely, given T > 0 and a set of data {u0, u1, f}, we show that there

is ε0 ∈]0, 1] such that if ε ∈]0, ε0], then problem (1.1)–(1.2) admits a solution u, defined in

all of [0, T ]. The spaces in which the data are taken, and the solution is found, are specified,

respectively, in (2.14), (2.15), and (2.16) below.

The choice of ε0 depends, in general, not only on the data {f, u0, u1}, but also on T . As

far as we can show, the latter dependence is explicit, in the sense that we can define a function

T 7→ ε0(T ), but for this function,

lim inf
T→+∞

ε0(T ) = 0. (1.3)

Thus, at the moment, the question of the asymptotic behavior of u is open; this is why we

call our result an “almost global” existence one. Nevertheless, we would like to emphasize the
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fact that we do not put any restriction on the size of the data (except that, if the data depend

on ε, they should be bounded as ε → 0). Indeed, if the data are sufficiently small, a direct

application of Matsumura’s technique of [7] shows that problem (1.1) is globally solvable; on

the other hand, if the data are large, blow up of solutions of nonlinear hyperbolic problems in

finite time may in general be expected.

1.2 The major interest of this result resides in our previous result of [9], which related the

global solvability of (1.1), for data {u0, u1, f} of arbitrary size, to that of the corresponding

parabolic quasilinear equation

ut − aij(∇u)∂i∂ju = g, (1.4)

with initial condition

u(0, · ) = v0, (1.5)

for data {v0, g} also of arbitrary size. More precisely, in [9] we were able to show that these two

problems are equivalent, in the sense that equation (1.4) is globally solvable for data {v0, g} of

arbitrary size, if and only if equation (1.1) is globally solvable for data {u0, u1, f} of arbitrary

size, and ε is sufficiently small. However, we were not able to provide a global solvability result

for either problem. In contrast, for the corresponding initial-boundary value problems in a

bounded domain of R
N , with homogeneous Dirichlet boundary conditions, we were able not

only to prove the analogous equivalence result (see [10]), but also, independently, the global

solvability of (1.4) (see [10]). The result presented here, together with the equivalence result of

[9], allows us therefore to show that the parabolic initial value problem is also globally solvable,

for data {v0, g} of arbitrary size; in fact, the solution of (1.4) can be obtained by a singular

convergence process as ε → 0, taking the same first initial value u0 = v0, an arbitrary u1

independent of ε, and for f a suitable regularization of g. On the other hand, while in this

paper we focus on the hyperbolic equation (1.1), it will be clear that the proof we give carries

over in a straightforward manner to the parabolic equation (1.4). Thus, it is possible to present

a unified approach to the question of (almost) global existence for either problem.

1.3 This paper is organized as follows. In Section 2 we recall a local existence result for

solutions to (1.1), in a nested family (Xm)m≥0 of function spaces, the case m = 0 corresponding

to that of so-called “minimal” regularity, and state our global existence result. In Section 3 we

report a basic energy estimate on the solutions of (1.1), together with a Schauder estimate for

classical solutions of the parabolic equation (1.4), which we prove in Section 4. In Section 5 we

consider more regular solutions (i.e., in Xm, m ≥ 4) and, writing (1.1) in the form

ut − aij(∇u)∂i∂ju = f − εutt, (1.6)

use the Schauder estimate of Section 3 to deduce time-independent bounds for ∂i∂ju, if ε is

sufficiently small (so as to take advantage of the term εutt at the right side of (1.6)). This

second set of estimates allows us to deduce that these more regular solutions of (1.1) can be

extended to all of [0, T ]. In Section 6 we resort to an approximation argument to deduce a

corresponding almost global existence result for solutions of minimal regularity.

1.4 We conclude this introduction by mentioning that the possibility of resorting to classical

estimates for the parabolic equation (1.4) highlights once more the essentially parabolic nature
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of the dissipative equation (1.1), when ε is small. Another aspect of this feature is described

by the so-called diffusion phenomenon of hyperbolic waves, which can sometimes be proven for

equations similar to (1.1) and (1.4). For an example concerning the study of this phenomenon

for quasilinear equations in divergence form, we refer e.g. to [15]. Finally, we refer to [9] for a

more detailed discussion of our main motivations and possible applications of our results.

2 Preliminaries

2.1 Notations and function spaces

2.1.1 We adopt the following notations throughout this paper. Bounded intervals of R are

denoted by [a, b] if closed, ]a, b[ if open, [a, b[ or ]a, b] otherwise. For unbounded intervals, we

occasionally adopt the notation R≥a := [a,+∞[ , R>a := ]a,+∞[ , and similarly (a ∈ R). In

analogy, we abbreviate N≥m := {n ∈ N | n ≥ m}, etc. If (t, x) 7→ u(t, x) is a smooth function,

we denote its partial derivatives with respect to t by ut, utt, etc., and with respect to the space

variables by ∂ju, ∂i∂ju, etc. We also set ∇u := (∂1u, · · · , ∂Nu) and Du := {ut,∇u}. More

generally, given a multi-index α = (α1, · · · , αN ) ∈ N
N , we denote by |α| := α1 + · · · + αN its

length, and set ∂αu := ∂α1
1 · · · ∂αN

N u. Given a positive integer k, we denote by ∂k
xu and ∂k

t u the

set of all derivatives of u of order k, with respect to the space or the time variables.

2.1.2 For m ∈ N, we denote by Cm
b (RN ) the Banach space of all m-times continuously

differentiable functions on R
N which are bounded, together with all their derivatives of order

up to m, with norm

|f |Cm
b (RN ) := max

|α|≤m
sup

x∈RN

|∂αu(x)|. (2.1)

Given also α ∈]0, 1[, we consider the Hölder spaces on R
N

C(m,α)(RN ) := {f ∈ Cm
b (RN ) | Hα(∂m

x f) <∞}, (2.2)

where

Hα(f) := sup
x,y∈RN

x 6=y

|f(x) − f(y)|
|x− y|α . (2.3)

These are also Banach spaces, with norm

|f |(m,α) := |f |Cm
b (RN ) +Hα(∂m

x f). (2.4)

An analogous definition holds for the Banach spaces Cm
b (Q), where Q := ]0, T [×R

N , T > 0; in

addition, for α ∈ ]0, 1[ we consider the Hölder spaces on Q

C [0,α](Q) := {f ∈ C0
b(Q) | H̃α(f) <∞}, (2.5)

C [2,α](Q) := {f ∈ C1
b(Q) | ∂2

xf ∈ Cb(Q), H̃α(ft), H̃α(∂2
xf) <∞}, (2.6)

where

H̃α(f) := sup
(t,x),(s,y)∈Q
(t,x) 6=(s,y)

|f(t, x) − f(s, y)|
(|t− s| + |x− y|2)α

2
. (2.7)
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These are again Banach spaces, with norms

|f |[0,α] := |f |C0
b(Q) + H̃α(f), (2.8)

|f |[2,α] := |f |C1
b(Q) + |∂2

xf |C0
b(Q) + H̃α(ft) + H̃α(∂2

xf). (2.9)

For the main properties of these spaces, we refer e.g. to Krylov, [4, §8.5] (where these spaces

are denoted by C
α
2 ,α(Q) and C1+ α

2 ,2+α(Q)).

2.1.3 For 1 ≤ p ≤ +∞, we denote by | · |p the norm in the Lebesgue space Lp := Lp(RN ),

and abbreviate ‖ · ‖ = ‖ · ‖0 = | · |2 for the norm in L2. For m ∈ N, we denote by Hm the usual

Sobolev space Wm,2(RN ) of those functions in L2, whose distributional derivatives of order up

to m are again in L2. We denote its norm by ‖ · ‖m, identify H0 = L2, and denote the scalar

products in Hm and L2, respectively, by 〈 · , · 〉m and 〈 · , · 〉. We recall that if ℓ ∈ R> N
2
, the

continuous embedding

Hℓ(RN ) →֒ C(r,α)(RN ) (2.10)

holds, with r = ⌊ℓ − N+1
2 ⌋ and 0 < α ≤ α0 := ⌊N

2 ⌋ + 1 − N
2 (see e.g. [1]; ⌊x⌋ denotes the

integer part of x); we call CS the norm of the imbedding (2.10). Finally, we need the following

so-called “calculus inequality”, for a proof of which we refer e.g. to Racke, [13, Lemma 4.7].

Proposition 2.1 Let m ∈ N≥1, ϕ ∈ Cm(R), and u ∈ Hm ∩ L∞. Then, ϕ(u) ∈ L∞,

∇ϕ(u) ∈ Hm−1, and the estimate

|∂αϕ(u)|2 ≤ max
1≤k≤m

|ϕ(k)(|u|∞)|(1 + |u|m−1
∞ )|∂|α|u|2 (2.11)

holds, for all α ∈ N
N , with 1 ≤ |α| ≤ m.

2.2 Assumptions

2.2.1 We set s := ⌊N
2 ⌋ + 2, and assume that the coefficients aij of equation (1.1) satisfy

the following conditions.

(A1) Each aij ∈ Cs+m(RN ,R) for some m ∈ N, with derivatives satisfying a general growth

assumption

|∂k
paij(p)| ≤ αk(|p|), 0 ≤ k ≤ s+m, (2.12)

for suitable continuous, nondecreasing functions αk.

(A2) The matrix A(p) := [aij(p)] is symmetric for all p ∈ R
N , and satisfies the uniformly

strong ellipticity condition

∃ ν0 > 0, ∀ p, q ∈ R
N , aij(p)q

iqj ≥ ν0|q|2. (2.13)

Without loss of generality, we can assume ν0 = 1. We also assume that

f ∈ Zs+m(T ) := {u ∈ L2(0, T ;Hs+m) | ∂s+m
t u ∈ L2(0, T ;L2)}, (2.14)

u0 ∈ Hs+1+m, u1 ∈ Hs+m; (2.15)

correspondingly, we look for solutions of (1.1) in the anisotropic Sobolev space

Xs+m(T ) :=

s+1+m⋂

j=0

Cj([0, T ];Hs+1−j+m). (2.16)
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Solutions of “minimal regularity” correspond to the case m = 0. In the sequel, we set d :=

{u0, u1, f}, and consider the corresponding data space

Ds+m := Hs+1+m ×Hs+m × Zs+m(T ), (2.17)

endowed with the graph norm

‖d‖2
Ds+m

:= ‖u0‖2
s+1+m + ‖u1‖2

s+m +
s+m∑

j=0

∫ T

0

‖∂j
t f‖2

s−j+mdt. (2.18)

2.2.2 Global solutions of (1.1) are obtained by the usual continuation method; that is, by

extending local solutions to maximal ones, defined on some interval [0, Tε[⊂ [0, T ], and then

establishing time-independent a priori estimates on these maximal solutions. To this end, we

first note that, given τ ∈]0, T ], it is sufficient to estimate the norm of u in the subspace

Ys+m(τ) := C([0, τ ];Hs+1+m) ∩ C1([0, τ ];Hs+m), (2.19)

with bounds independent of τ . This is because if we do have such time-independent estimates

on u and ut, then we can derive time-independent estimates of the higher order derivatives,

i.e. of ∂j
t u, 2 ≤ j ≤ s+ 1 +m, in C([0, τ ];Hs+1−j+m), directly from equation (1.1), using the

algebra properties of the Sobolev spaces.

Thus, we take the productHs+1+m×Hs+m as the underlying phase space. For v ∈ Hs+1−m,

τ ∈ ]0, T ], u ∈ Ys+m(τ), t ∈ [0, τ ] and ε ∈ ]0, 1], we set

Qs+m(∇v) :=
∑

|α|≤s+m

〈aij(∇v)∂i∂
αv, ∂j∂

αv〉, (2.20)

Ns+m(u(t)) := ‖εut(t)‖2
s+m + 〈u(t), εut(t)〉s+m +

1

2
‖u(t)‖2

s+m

+ εQs+m(∇u(t)) +
1

2

∫ t

0

(ε‖ut‖2
s+m +Qs+m(∇u))dθ, (2.21)

9u9Ys+m(τ):= max
0≤t≤τ

√
Ns+m(u(t)), (2.22)

and note that (2.13) implies that for all v ∈ Hs+1+m,

Qs+m(∇v) ≥ ‖∇v‖2
s+m. (2.23)

2.2.3 Given the data u0, u1 and f as in (2.14) and (2.15), we define u2 ∈ Hs−1+m and

u3 ∈ Hs−2+m by

εu2 := f(0) + aij(∇u0)∂i∂ju0 − u1, (2.24)

εu3 := ft(0) + aij(∇u0)∂i∂ju1 + a′ij(∇u0) · ∇u1∂i∂ju0 − u2; (2.25)

note that if (1.1) has a solution u ∈ Xs+m(τ), for some τ ∈]0, T ], then u2 = utt(0) and u3 =

uttt(0). As we have stated above, our goal is to establish time-uniform bounds on Ns+m(u(t));
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as it turns out, we are able to obtain such estimates, in terms of the following quantities:

D2
m1 := ‖εu1‖2

s+m + 〈u0, εu1〉s+m +
1

2
‖u0‖2

s+m + εQs+m(∇u0) + 5

∫ T

0

‖f‖2
s+mdt, (2.26)

Dm2 := ‖εu2‖s−1+m, (2.27)

Dm3 := ε‖εu3‖s−2+m, (2.28)

F 2
m :=

∫ T

0

(‖f‖2
s+m + ‖ft‖2

s−1+m + ‖ftt‖2
s−2+m)dt. (2.29)

All these quantities depend only on the data u0, u1, f , and remain bounded as ε→ 0. We will

denote by ψj , j = 0, 1, · · · , various functions of Fm and Dm1, Dm2, Dm3, which can always

be determined explicitly, with formulas that either involve these quantities directly, or through

previously defined functions ψ’s. In general, these functions depend on such universal constants

as those in the Sobolev imbeddings (2.10), or in the trace inequalities

‖f‖C([0,T ];Hr) ≤ Ctr(‖f‖
1
2

L2(0,T ;Hr+1)‖ft‖
1
2

L2(0,T ;Hr) + ‖f‖L2(0,T ;Hr)) (2.30)

(see e.g. [6, Chapter 1, §3]). We denote such generic constants by C, with the understanding

that such C’s may vary from formula to formula, or even within the same formula.

2.3 Local existence and extension results

2.3.1 Local solutions to the hyperbolic problem (1.1)–(1.2) are provided by the following

result, which can be proven e.g. as in Kato [3].

Theorem 2.1 Let m ≥ 0, and assume that the coefficients aij satisfy conditions (A1) and

(A2), and the data u0, u1, f , are as in (2.14), (2.15). There exists τ0 ∈]0, 1
2T ], independent of

m, such that for all ε ∈ ]0, 1], problem (1.1)–(1.2) has a unique solution u ∈ Xs+m(2τ0). This

solution satisfies the estimate

max
0≤t≤2τ0

Ns+m(u(t)) ≤ 4D2
m1. (2.31)

Remark 2.1 (1) As mentioned in Subsection 2.2.2 above, in the proof of Theorem 2.1 one

first establishes the existence of u ∈ Ys+m(2τ0), satisfying (2.31), and then deduces the time

regularity by differentiation of (1.1).

(2) The value of τ0 depends only (in a usually decreasing fashion) on the value of D01; thus,

we explicitly point out that τ0 can be determined independently of ε. In addition, this means

that more regular solutions are defined on the same time interval [0, 2τ0]. This non-trivial result

is explicitly discussed in [3], and follows from estimates similar to (3.2) below. More precisely,

we can prove

Theorem 2.2 Assume that (2.14) and (2.15) hold for some m ≥ 1, and that problem (1.1)–

(1.2) has a corresponding solution u ∈ Xs+m(τ), for some ε ∈ ]0, 1] and τ ∈ ]0, T ]. Then, u

satisfies an estimate of the form

9u9Ys+m(τ) ≤ ‖d‖Ds+m
ϕ(9u9Ys(τ)), (2.32)

where ϕ : R>0 → R>0 is continuous and nondecreasing.
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(3) An analogous local existence result holds for the parabolic problem (1.4), albeit in

somewhat different function spaces.

2.3.2 By a standard continuation argument, we can extend u to a maximal interval [0, Tε[⊂
[0, T ], with Tε := sup T ,

T := {τ ∈ [0, T ] | (1.1) has a solution u ∈ Xs+m(τ)}; (2.33)

this set is not empty, since it contains 2τ0. Global existence consists in showing that Tε = max T ,

since in this case u ∈ Xs+m(Tε), and Tε = T , because if it were Tε < T , the local existence

theorem applied to (1.1) with initial values at t = Tε would yield an extension of u beyond

[0, Tε], contradicting Tε being a supremum. In turn, to show that Tε = maxT it is sufficient

to show that the function t 7→ Ns+m(u(t)) and its time derivative admit an upper bound in

[0, Tε[ . In fact, it is sufficient to bound Ns+m(u(t)), since then d
dt
Ns+m(u(t)) can be bounded

by means of estimates like (3.3) below. Our goal is then to prove

Theorem 2.3 Let assumptions (A1), (A2), (2.14) and (2.15) hold, for some m ≥ 0. There

exists εm ∈ ]0, 1] such that for all ε∈ ]0, εm], problem (1.1)–(1.2) admits a unique solution u ∈
Xs+m(T ).

2.3.3 The uniqueness part in Theorem 2.3 is known, and can be proven as in Theorem 2.1,

since the argument is independent of the size of the interval where solutions are defined. As for

the existence, we proceed in two steps, first considering more regular solutions, corresponding

to m ≥ 4, and then (in Section 6) resorting to an approximation argument to deal with the

remaining cases 0 ≤ m ≤ 3.

As we mentioned in Remark 2.1, the availability of a time-independent bound on

Ns+m0(u(t)) for a particular value m = m0 implies that of time-independent bounds on

Ns+m(u(t)) for all m ≥ m0. In other words, global existence in Xs+m0(T ) implies global

existence in Xs+m(T ). We take then m0 = 4, and claim:

Theorem 2.4 Let assumptions (A1), (A2), (2.14) and (2.15) hold, for m = 4. There exists

a number R0 ≥ 2, depending only on T and the data u0, u1 and f , through the quantities

F4, D41, D42 and D43 of Subsection 2.2.3, and a corresponding ε4 ∈ ]0, 1], such that for all

ε ∈ ]0, ε4], and all t ∈ [0, Tε[ ,

Ns+4(u(t)) ≤ (R0D41)
2. (2.34)

Consequently, if ε ≤ ε4, u can be extended to a solution of (1.1) in Xs+4(T ).

We prove Theorem 2.4 in Section 5.

3 A Priori Estimates

The proof of Theorem 2.4 is based on an energy estimate on strong solutions to the hyper-

bolic equation (1.1), and on a Schauder estimate on classical solutions to the parabolic equation

(1.4).
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3.1 The hyperbolic estimate

Theorem 3.1 Let m ≥ 0, and set

α(r) := max
0≤k≤s+m

αk(r), β(r) := α(r)(1 + rs−1). (3.1)

Assume that problem (1.1)–(1.2) has a solution u ∈ Ys+m(τ), for some τ ∈ ]0, T ]. Then, for all

t ∈ [0, τ ],

d

dt
Ns+m(u) +

1

2
(ε‖ut‖2

s+m +Qs+m(∇u))

≤ 〈f, 2εut + u〉s+m + β(|∇u|∞)|∂2
xu|∞‖∇u‖s+m(ε‖ut‖s+m + ‖u‖s+m)

+ εβ(|∇u|∞)|∇ut|∞‖∇u‖2
s+m. (3.2)

This result is proven in [9]. Formally, (3.2) is obtained by multiplying (1.1) by 2εut + u in

Hs+m, and resorting to the so-called “calculus inequalities” (see [12]) to estimate the resulting

terms ∂β(aij(∇u))∂i∂j∂
α−βu, 1 ≤ |β| ≤ |α| ≤ s+m.

Recalling (2.23), by the (weighted) Cauchy-Schwartz inequality we obtain from (3.2)

d

dt
Ns+m(u) +

1

4
‖∇u‖2

s+m

≤ 5‖f‖2
s+m +

1

2
‖u‖2

s+m + (β(|∇u|∞)|∂2
xu|∞)2(ε‖∇u‖2

s+m + ‖u‖2
s+m)

+ εβ(|∇u|∞)|∇ut|∞‖∇u‖2
s+m; (3.3)

we will use this estimate, with m = 4, in Subsection 5.1.2 below.

3.2 The parabolic estimate

Theorem 3.2 Let the coefficients aij satisfy (A1) and (A2), for some m ≥ 0. Assume that

g ∈ C1
b(Q), that u0 ∈ C(2,α)(RN ) for some α ∈ ]0, 1[ , and that (1.4) admits a corresponding

solution u ∈ C [2,α](Q). Let τ ∈ ]0, T ], and set Qτ := ]0, τ [×R
N . There exist CD > 0 and

γ ∈ ]0, α], depending on the norms of g in C1
b(Qτ ) and u0 in C2

b(RN ), but independent of u,

such that

|u|C[2,γ](Qτ ) ≤ CD(|g|C[0,α](Qτ ) + |u0|C(2,α)(RN )). (3.4)

Estimates like (3.4) are generally considered as well-known; however, we have not been able

to find in the literature an explicit proof of (3.4) for quasilinear equations in the whole space

R
N . Thus, for the reader’s convenience, we give a proof of Theorem 3.2 in Section 4, putting

together various results of O. A. Ladyzenskaya et al [5] and N. V. Krylov [4]. Note that (3.4)

reads almost exactly as the estimate reported in Krylov’s Theorem 8.9.2, which is established

for a linear Cauchy problem with coefficients in C [0,α](Q), whose norm determines the constant

CD (called N there). In the present situation, of course, since we are assuming that (1.4) has

a solution u ∈ C [2,α](Q), we can consider (1.4) as a linear equation, with known coefficients

ãij(t, x) = aij(∇u(t, x)); however, the constant CD would then depend on the Hölder norm

of ∇u, which can generally be estimated only in terms of the Hölder norm of ∇g and the

coefficients ãij again. Since we intend to apply (3.4) to equation (1.6), where g = f − εutt,
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our only concern in Theorem 3.2 is to confirm that the modulus of continuity of ∇u can be

estimated “only” in terms of the norms of g in C1
b(Qτ ) and of u0 in C2

b(RN ). In particular, CD

depends on τ only through |g|C1
b(Qτ ).

3.3 Time-independent estimates

We will obtain time-independent estimates on Ns+4(u(t)) in two steps. At first, we use the

smallness of ε to absorb the two terms with ε‖∇u‖s+4 at the right side of (3.3) into the term
1
4‖∇u‖2

s+4 at its left; then, we resort to the parabolic estimate of Theorem 3.2, to obtain an

estimate of the coefficient of the term with ‖u‖s+4 at the right side of (3.3). This estimate

will be in terms of g = f − εutt, and we use again the smallness of ε to estimate the term

εutt and its first order derivatives. This allows us to deduce from (3.3) a time-independent

estimate on Ns+4(u(t)), via Gronwall’s inequality. In conclusion, to prove Theorem 2.4 (and,

in fact, Theorem 2.3 as well), it would be sufficient to establish a time-independent estimate

on |∇u(t, · )|∞ and |∂2
xu(t, · )|∞. This is of course well-known (see e.g. [14, Chapter 5]).

4 Proof of Theorem 3.2

We follow O. A. Ladyzenskaya et al [5, Chapter VI] and N. V. Krylov [4, Chapter 8].

4.1 Our first step is to estimate |u| and |∇u| in Qτ by the maximum principle. As we have

stated at the end of Section 3.2, we can consider the equation of (1.4) as linear, with known

coefficients ãij(t, x) = aij(∇u(t, x)) which are bounded, because we are assuming that (1.4) has

a solution u ∈ C [2,α](Q). Hence, we can apply [4, Corollary 8.1.5], which yields the explicit

estimate

sup
Qτ

|u| ≤ τ sup
Qτ

|g| + sup
RN

|u0| ≤ T |g|C0
b(Qτ ) + |u0|C0

b(RN ) =: C0. (4.1)

Next, we differentiate the equation of (1.4): setting ∂0 := ∂
∂t

, we see that, for 0 ≤ k ≤ N , each

function vk := ∂ku satisfies the linear equation

vk
t − aij(∇u)∂i∂jv

k − a′ij(∇u) · ∇vk∂i∂ju = ∂kg. (4.2)

The coefficients of this equation are also bounded (including those of the lower order terms

v 7→ a′ij(∇u) · (∇v)∂i∂ju); hence, by the same corollary, as in (4.1),

sup
Qτ

|∇u| ≤ τ sup
Qτ

|∇g| + sup
RN

|∇u0| ≤ T |g|C1
b(Qτ ) + |u0|C1

b(RN ) =: C1, (4.3)

and, since ut satisfies the initial condition

ut(0) = u1 := g(0, · ) + aij(∇u0)∂i∂ju0, (4.4)

recalling (2.12), we have

sup
Qτ

|ut| ≤ τ sup
Qτ

|gt| + sup
RN

|u1| ≤ (T + 1)|g|C1
b(Qτ ) + α0(|u0|C1

b(RN ))|u0|C2
b(RN ) =: C2. (4.5)

4.2 Our second step is to estimate H̃α(∇u). To this end, we resort to Lemma 3.1 of

Ladyzenskaya-Solonnikov-Ural’tseva [5, Chapter II, §3], which states that ∇u will satisfy a
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Hölder condition in t, uniformly in x, if it satisfies a Hölder condition in x, uniformly in t, and

u satisfies a Hölder condition in t, uniformly in x. The latter is clearly implied by (4.5); to show

the former, we consider t ∈ [0, τ ] as fixed, and u(t, · ) as a solution of the quasilinear elliptic

equation

−aij(∇u)∂i∂ju = g − ut =: g̃, (4.6)

and invoke a classical result on the Hölder continuity of the gradient of the solutions to such

equations. More precisely, for fixed t ∈ [0, τ ] and arbitrary x, y ∈ R
N , with x 6= y, we wish to

estimate the ratio

hβ(∇u(t);x, y) :=
|∇u(t, x) −∇u(t, y)|

|x− y|β , (4.7)

for suitable β ∈ ]0, α]. If |x− y| ≥ 1, (4.3) yields

hβ(∇u(t);x, y) ≤ |∇u(t, x) −∇u(t, y)| ≤ 2C1 (4.8)

for all β ∈ ]0, 1[ . If instead 0 < |x − y| < 1, we consider concentric balls Bk with center x and

radii respectively equal to k = 1, k = 2 and k = 3, and choose a cut-off function ζ ∈ C∞
0 (RN ),

such that 0 ≤ ζ(y) ≤ 1 for all y ∈ R
N , ζ(y) ≡ 1 on B1, ζ(y) ≥ 1

2 in B2, and ζ(y) ≡ 0 off B3. In

B2, the function v := ζu satisfies the quasilinear elliptic equation

−aij(y, v,∇v)∂i∂jv = ζ g̃ + (aij(∇u)∂i∂jζ)u + aij(∇u)∂iζ∂ju =: b, (4.9)

in which, for y ∈ B2, p ∈ R and q ∈ R
N , the coefficients

aij(y, p, q) := aij((ζ(y))
−1q − p(ζ(y))−2∇ζ(y)) (4.10)

are of class C1 in B2 × R × R
N . Furthermore, the function y 7→ b(t, y) is in C0(B2), and its

norm in this space can be estimated in terms of C0 and C1, because of (4.1) and (4.3). Thus, we

can apply Theorem 13.6 of Gilbarg-Trudinger [2, Chapter 13, §4], with Ω = B2 and Ω′ = B1,

to deduce the estimate

hβ(∇v(t); y, y′) ≤ C3d
−β , y, y′ ∈ B1, y 6= y′, (4.11)

where d = dist(B1, ∂B2) = 1, and both β ∈ ]0, 1[ and C3 depend on the fixed constants N , ν,

diam(B2) and, more essentially, on K(t) := |v(t, · )|C1(B2)
. We can of course choose β ≤ α.

Again by (4.1) and (4.3), K(t) can be estimated in terms of C0 and C1, uniformly in t ∈ [0, τ ].

Since v = u in B1, (4.11) implies that, for all y ∈ B1 \ {x},

hβ(∇u(t);x, y) ≤ C3, (4.12)

which yields the desired estimate of (4.7) when 0 < |x − y| < 1. In conclusion, from (4.8) and

(4.12) it follows that for all x, y ∈ R
N , with x 6= y,

hβ(∇u(t);x, y) ≤ max{2C1, C3} =: C4, (4.13)

where β is determined in (4.11); as we have observed, C4 can be estimated in terms of C0

and C1. Estimate (4.13) provides the Hölder condition in x, uniformly in t, for ∇u, which is

required in [5, Lemma 3.1], to obtain the estimate

|∇u(t, x) −∇u(s, x)|
|t− s| γ

2

≤ C5 (4.14)
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for suitable γ ≤ β ≤ α. In (4.14), C5 is independent of x ∈ R
N , and can be estimated in terms

of C0, C1, C2 and C4. From (4.13) and (4.14), we deduce that, for (t, x), (s, y) ∈ Qτ , with

(t, x) 6= (s, y),

|∇u(t, x) −∇u(s, y)|
(|t− s| + |x− y|2) γ

2

≤ |∇u(t, x) −∇u(t, y)|
|x− y|γ +

|∇u(t, y) −∇u(s, y)|
|t− s| γ

2

≤ C4 +C5 =: C6, (4.15)

from which we conclude that

H̃γ(∇u) ≤ C6. (4.16)

4.3 Clearly, (4.1), (4.3), (4.16) and (2.12) imply that the coefficients ãij = aij(∇u) satisfy

the estimate

|ãij |C[0,γ](Qτ ) ≤ α0(C1) + C6 =: C7. (4.17)

We are then in a position to apply [4, Theorem 8.9.2] (with K = C7 of (4.17)), and deduce the

estimate

|u|C[2,γ](Qτ ) ≤ CK |g − u|C[0,γ](Qτ ); (4.18)

note that CK can indeed be estimated in terms of the norm of g in C1
b(Qτ ) and of u0 in C2

b(RN ),

as claimed. By the interpolation inequality

H̃γ(u) ≤ η(H̃γ(ut) + H̃γ(∂2
xu)) + Cη−

γ

2 sup
Qτ

|u|, η > 0, (4.19)

(see [4, Chapter 8, §8]), we obtain

|u|C[0,γ](Qτ ) ≤ sup
Qτ

|u| + H̃γ(u)

≤ η(H̃γ(ut) + H̃γ(∂2
xu)) + Cη sup

Qτ

|u|

≤ η|u|C[2,γ](Qτ ) + CηC0, (4.20)

having recalled (4.1). Taking η sufficiently small, and recalling that γ ≤ α, we deduce from

(4.18), (4.20) and (4.1) that

|u|C[2,γ](Qτ ) ≤ CK(|g|C[0,γ](Qτ ) + C0) ≤ CK(|g|C[0,α](Qτ ) + |u0|(0,α)), (4.21)

from which (3.4) follows. This concludes the proof of Theorem 3.2.

5 Proof of Theorem 2.4

We proceed by contradiction; thus, we assume that for all ε4 ∈ ]0, 1], there exists ε ∈ ]0, ε4]

such that Tε < T and

lim sup
t→T

−
ε

Ns+4(u(t)) = +∞. (5.1)

It follows that for all R0 ≥ 2, there is tε ∈ ]0, Tε[ such that

Ns+4(u(tε)) > (R0D41)
2. (5.2)

Certainly, tε ∈ ]2τ0, Tε[ , since on [0, 2τ0] the local estimate (2.31) implies that for all t ∈ [0, 2τ0],

Ns+4(u(t)) ≤ 4D2
41 ≤ (R0D41)

2. (5.3)
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In fact, since Ns+4(u(0)) ≤ D2
41, by (5.1) there is a largest interval [0, τε], tε ≤ τε < Tε, with

the property that for all t ∈ [0, τε],

Ns+4(u(t)) ≤ ((R0 + 1)D41)
2 = Ns+4(u(τε)). (5.4)

That is: any specific choice of R0 and ε4 determines an ε ∈ ]0, ε4], and a corresponding τε ∈
]0, Tε[ , such that (5.4) holds. Thus, τε depends on R0 and ε: we write τε = ρ(R0, ε).

Our argument will run as follows. We first establish estimates on Ns+4(u(t)), which hold

for arbitrary R0, small ε, and t ∈ [0, τε] = [0, ρ(R0, ε)]. These estimates involve eight quantities

ψj of the type described in Subsection 2.2.3; that is, the ψj ’s can all be determined, explicitly

and a priori, in terms of the data f , u0 and u1 (and, of course, universal constants). It is

crucial to note that, while the ψj ’s depend also on R0, they are independent of τε. We make

then a specific choice of R0 (in (5.49)), depending only on T and the data f , u0, u1, via

the quantities D41, · · · , F4 of Subsection 2.2.3. This choice of R0 completely determines the

quantities ψ1, · · · , ψ8; in turn, these determine the choice of ε4, by means of four restrictions:

the first is in (5.19) below; the second is 2ε4 < τ0 (recall that τ0 can be determined independently

of ε ∈ ]0, 1]); the third is in (5.33), and the last in (5.44). With such R0 and ε4, we consider

the corresponding ε ∈ ]0, ε4], and τε = ρ(R0, ε), such that (5.4) holds, and show that, for these

choices of R0, ε and τε, the corresponding solution of (1.1) satisfies estimate (5.3) in [0, τε]. For

t = τε, this yields a contradiction to (5.4).

5.1 Higher order energy estimates

5.1.1 We will use the following estimates on [0, τε], derived from (5.4) by means of Schwartz’

inequality:

‖u(t)‖2
s+4 ≤ 4Ns+4(u(t)) ≤ 4((R0 + 1)D41)

2, (5.5)

‖∇u(t)‖2
s+4 ≤ 1

ε
Ns+4(u(t)) ≤

1

ε
((R0 + 1)D41)

2, (5.6)

‖ut(t)‖2
s+4 ≤ 2

ε2
Ns+4(u(t)) ≤

2

ε2
((R0 + 1)D41)

2. (5.7)

Also, by Proposition 2.1 and (5.5), for 1 ≤ m ≤ s+ 3, omitting the variable t, we have

|aij(∇u)|∞ + ‖∇(aij(∇u))‖m−1 ≤ α(|∇u|∞)(1 + |∇u|m−1
∞ )‖∇u‖m

≤ α(‖u‖s)(1 + ‖u‖m−1
s )‖u‖m+1

≤ β(2(R0 + 1)D41)2(R0 + 1)D41 =: ψ1. (5.8)

A crucial remark is that (5.5) also allows us to give estimates of lower order norms of ut which

are, in terms of boundedness as ε → 0, better than (5.7). Indeed, multiplying (1.1) by 2ut in

Hs+2 yields

ε
d

dt
‖ut‖2

s+2 + ‖ut‖2
s+2 ≤ ‖f + aij(∇u)∂i∂ju‖2

s+2. (5.9)

Since Hs+1 is an algebra under pointwise multiplication, by (5.8) and (5.5) we deduce from

(5.9) the exponential inequality

ε
d

dt
‖ut‖2

s+2 + ‖ut‖2
s+2 ≤ 2‖f‖2

s+2 + 2(|aij(∇u)|∞ + ‖∇(aij(∇u))‖s+1)
2‖u‖2

s+4

≤ 2‖f‖2
s+3 + 2ψ2

14((R0 + 1)D41)
2 =: ψ2

2 . (5.10)
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We can assume without loss of generality that ψ2 ≥ ‖u1‖s+2; then, (5.10) implies that, for all

t ∈ [0, τε],

‖ut(t)‖s+2 ≤ ψ2. (5.11)

In the same way, but using (5.6) instead of (5.5), we also deduce that

‖ut(t)‖s+3 ≤ 1√
ε
ψ2. (5.12)

5.1.2 We now go back to estimate (3.3), with m = 4 and t ∈ [0, τε]. Since Hs−1 →֒ L∞,

we obtain from (5.5) and (5.11)

|∇u(t)|∞ + |∂2
xu(t)|∞ ≤ 2CS‖u(t)‖s+1 ≤ C(R0 + 1)D41, (5.13)

|∇ut|∞ ≤ CS‖ut‖s ≤ CSψ2. (5.14)

Consequently, setting

ψ3 := β(CD41(R0 + 1))CD41(R0 + 1), (5.15)

ψ4 := ψ2
3 + β(CD41(R0 + 1))CSψ2, (5.16)

γ∞(∂u) := 4(β(|∇u|∞)|∂2
xu|∞)2, (5.17)

we deduce from (3.3) that, for t ∈ [0, τε],

d

dt
Ns+4(u) +

1

4
‖∇u‖2

s+4 ≤ 5‖f‖2
s+4 + εψ4‖∇u‖2

s+4 +
1

4
γ∞(∂u)‖u‖2

s+4. (5.18)

Thus, if we choose ε4 ∈ ]0, 1] so small that

4ε4ψ4 ≤ 1, (5.19)

recalling the first inequality of (5.5) we obtain from (5.18) that, for the corresponding ε ≤ ε4

and τε = ρ(R0, ε),
d

dt
Ns+4(u) ≤ 5‖f‖2

s+4 + γ∞(∂u)Ns+4(u). (5.20)

By Gronwall’s inequality and the local estimate (2.31), we conclude then that for t ∈ [τ0, τε],

Ns+4(u(t)) ≤
(
Ns+4(u(τ0)) + 5

∫ T

0

‖f‖2
s+4dt

)
exp

( ∫ t

τ0

γ∞(∂u)dθ
)

≤ 5D2
41 exp

(∫ t

τ0

γ∞(∂u)dθ
)
. (5.21)

5.2 L
∞ estimates

5.2.1 To estimate γ∞(∂u) in [τ0, τε], we resort to the parabolic estimates of Theorem 3.2,

considering u as solution of equation (1.6), with initial value at t = τ0. Let Q0 := ]τ0, τε[×R
N .

By (3.4),

|∇u|L∞(Q0) + |∂2u|L∞(Q0) ≤ |u|C[2,γ](Q0) ≤ CD(|f − εutt|C[0,α](Q0) + |u(τ0)|C(2,α)(RN )), (5.22)
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where the constant CD depends on the norms of f − εutt in C1
b(Q0) and of u(τ0) in C2

b(RN ),

but not explicitly on τε. Our goal is to show that, if ε is sufficiently small, the right side of

(5.22), including CD, can be estimated independently of τε.

At first, by the imbedding (2.10) and the local estimate (2.31),

|u(τ0)|(2,α) ≤ CS‖u(τ0)‖s+1 ≤ C
√
Ns+1(u(τ0)) ≤ 4CD41, (5.23)

a constant independent of τε. Next,

|f−εutt|C[0,α](Q0) ≤ |f−εutt|C1
b(Q0) ≤ ‖f−εutt‖C([τ0,τε];Hs) +‖ft−εuttt‖C([τ0,τε];Hs−1). (5.24)

We estimate the terms with f by means of the trace inequality (2.30): recalling (2.29),

‖f‖2
C([τ0,τε];Hs) + ‖ft‖2

C([τ0,τε];Hs−1) ≤ CS

∫ τ

ε

(‖f‖2
s+1 + ‖ft‖2

s + ‖ftt‖2
s−1)dt ≤ CF 2

1 . (5.25)

5.2.2 We estimate the term with εutt at the right side of (5.24) in the higher norm of Hs+1,

which we need for later purposes. We differentiate (1.1) with respect to t, and multiply the

resulting identity

εuttt + utt = ft + aij(∇u)∂i∂jut︸ ︷︷ ︸
=:h1

+ a′ij(∇u) · ∇ut∂i∂ju︸ ︷︷ ︸
=:h2

(5.26)

in Hs+1 by 2utt, to obtain

ε
d

dt
‖utt‖2

s+1 + ‖utt‖2
s+1 ≤ 3(‖ft‖2

s+1 + ‖h1‖2
s+1 + ‖h2‖2

s+1). (5.27)

By Proposition 2.1, as in (5.8)

‖h1‖s+1 ≤ (|aij(∇u)|∞ + ‖∇(aij(∇u))‖s)‖∂i∂jut‖s+1 ≤ β(|∇u|∞)‖∇u‖s+1‖ut‖s+3; (5.28)

thus, by (5.5), (5.12) and (5.15), for t ∈ [0, τε],

‖h1(t)‖s+1 ≤ ψ3
1√
ε
ψ2 =:

1√
ε
ψ5. (5.29)

Likewise, using (5.11), we have

‖h2‖s+1 ≤ ‖a′ij(∇u)‖s+1‖∇ut‖s+1‖∂i∂ju‖s+1 ≤ ψ5; (5.30)

thus, from (5.27) and (5.25) we deduce

ε
d

dt
‖utt‖2

s+1 + ‖utt‖2
s+1 ≤ 3

ε
(CF 2

1 + 2ψ2
5). (5.31)

Integrating this exponential inequality over [0, τε], multiplying by εe−
t
ε , and recalling that

utt(0) = u2, by (2.27) we obtain

‖εutt‖2
s+1 ≤ D2

22e
− t

ε + 3ε(CF 2
1 + 2ψ2

5). (5.32)

Thus, if we choose ε4 so small that, in addition to (5.19),

3ε4(CF
2
1 + 2ψ2

5) ≤ D2
22, (5.33)
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for the corresponding ε < ε4 and τε = ρ(R0, ε) we deduce from (5.32) that for all t ∈ [0, τε],

‖εutt(t)‖s+1 ≤ 2D22. (5.34)

5.2.3 We proceed to estimate the term with εuttt at the right side of (5.24). Differentiating

(5.26) yields

εutttt + uttt = ftt + aij(∇u)∂i∂jutt + 2a′ij(∇u) · ∇ut∂i∂jut + a′ij(∇u) · ∇utt∂i∂ju

+a′′ij(∇u)(∇ut,∇ut)∂i∂ju

=: ftt +
6∑

k=3

hk, (5.35)

from which, multiplying in Hs−1 by 2uttt, we get

ε
d

dt
‖uttt‖2

s−1 + ‖uttt‖2
s−1 ≤ 5

(
‖ftt‖2

s−1 +

6∑

k=3

‖hk‖2
s−1

)
. (5.36)

Acting as in (5.28), we have

‖h3‖s−1 ≤ 2(|aij(∇u)|∞ + ‖∇(aij(∇u))‖s−2)‖∂i∂jut‖s−1 ≤ β(|∇u|∞)‖u‖s‖utt‖s+1; (5.37)

from (5.32), we also deduce that

‖utt(t)‖2
s+1 ≤ 1

ε2
D2

22e
− t

ε +
3

ε
(CF 2

1 + 2ψ2
5); (5.38)

thus, from (5.37) we conclude that

‖h3‖s−1 ≤ ψ6

(1

ε
e−

t
2ε +

1√
ε

)
(5.39)

for a suitable function ψ6. It is not difficult to see that h5 can be estimated in the same way,

and that h4 and h6 satisfy a simpler estimate, of the form

‖h4‖s−1 + ‖h6‖s−1 ≤ 2ψ7; (5.40)

thus, from (5.35)–(5.40), it follows that

ε
d

dt
‖uttt‖2

s−1 + ‖uttt‖2
s−1 ≤ ψ2

8

(1

ε
+

1

ε2
e−

t
ε

)
(5.41)

for a suitable function ψ8. Integrating this exponential inequality over [0, t], 0 < t ≤ τε,

multiplying by ε, and recalling that uttt(0) = u3, we obtain that for all t ∈ [0, τε],

‖εuttt(t)‖2
s−1 ≤ ‖εu3‖2

s−1e
− t

ε + εψ2
8 +

1

ε
ψ2

8te
− t

ε ; (5.42)

consequently, by (2.28), if τ0 ≤ t ≤ τε,

‖εuttt(t)‖2
s−1 ≤ 1

ε2
D2

13e
−

τ0
ε + εψ2

8 +
1

ε
ψ2

8T e−
τ0
ε . (5.43)
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The function ε 7→ 1
ε2 e−

τ0
ε is increasing on ]0, 1

2τ0[ ; hence, if we choose ε4 <
1
2τ0 (recall that τ0

can be determined independently of ε) such that, in addition to (5.19) and (5.33),

1

ε24
D2

13e
−

τ0
ε4 + ε4ψ

2
8 +

1

ε4
ψ2

8T e−
τ0
ε4 ≤ D2

22, (5.44)

then, for the corresponding ε ≤ ε4 and τε = ρ(R0, ε), we deduce from (5.43) that

‖εuttt(t)‖s−1 ≤ D22. (5.45)

5.2.4 From (5.34) and (5.45), we conclude that if ε4 <
1
2τ0, and satisfies the three restric-

tions (5.19), (5.33) and (5.44), for the corresponding ε ≤ ε4 and τε = ρ(R0, ε),

‖εutt‖C([τ0,τε];Hs+1) + ‖εuttt‖C([τ0,τε];Hs−1) ≤ 3D22, (5.46)

a constant independent of τε and R0. Putting (5.46), together with (5.25), into (5.24), and

recalling (5.23), we see that all terms at the right side of (5.22), including CD, can be estimated

independently of τε; that is, there is M > 0, independent of τε and R0, such that

|∇u|L∞(Q0) + |∂2u|L∞(Q0) ≤M. (5.47)

In fact, M depends only on T , F1, D41 and D22. Recalling then (5.17), we deduce from (5.21)

that, with a slight abuse of notation,

Ns+4(u(t)) ≤ 5D2
41 exp(γ∞(M)T ) (5.48)

for all t ∈ [τ0, τε]. At this point, keeping in mind that R0 is arbitrary and M is independent of

R0, we choose

R0 :=
√

5eγ∞(M) T
2 (≥ 2), (5.49)

and deduce from (5.48), for t = τε, that

Ns+4(u(τε)) ≤ R2
0D

2
41. (5.50)

Since (5.50) contradicts (5.4), this completes the proof of Theorem 2.4. Consequently, Theorem

2.3 is proven for m ≥ 4, with εm = ε4.

Remark 5.1 As we immediately realize, the proof of Theorem 2.4 carries over to the case

ε = 0 (except, of course, for Subsections 5.2.2 and 5.2.3, instead of which we use Theorem 3.2

directly). By the results of Section 6 below, the same holds for the minimal regularity case

m = 0. This yields a global existence result for the parabolic initial value problem (1.4)–(1.5),

with

u ∈ L2(0, T ;Hs+1), ut ∈ L2(0, T ;Hs−1), s ≥
⌊N

2

⌋
+ 2, (5.51)

if u0 ∈ Hs+1 and f ∈ Zs(T ), as per (2.15) and (2.14). In fact, we can easily prove that, in

addition to (5.51),

u ∈ L2(0, T ;Hs+2), ut ∈ L2(0, T ;Hs), (5.52)

or, in alternative, that (5.51) holds under the weaker conditions u0 ∈ Hs and f ∈ Zs−1(T ).

Actually, with the methods of [11], one can prove that the solution of the parabolic equation
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enjoys the same regularity of that of the hyperbolic equation for t away from 0; namely, that

for all τ ∈ ]0, T [ ,

u ∈
s+1⋂

j=0

C([τ, T ];Hs+1−j). (5.53)

6 Minimal Regularity

In this section we prove Theorem 2.3 for the minimal regularity case m = 0, by means of an

approximation argument based on Theorem 2.4. As we have already remarked, the regularity

Theorem 2.2 implies then the validity of Theorem 2.3 for the intermediate cases m = 1, 2, 3 as

well.

6.1 We construct u as the limit, in Ys(T ), of a recursive sequence (uj)j≥0 ⊂ Ys+4(T ) of

more regular solutions to problem (1.1)–(1.2), corresponding to suitably chosen approximating

data (dj)j≥0 ⊂ Ds+4. The local existence Theorem 2.1 yields a local solution uj ∈ Xs+4(τj),

for some τj ∈ ]0, T ] independent of ε ∈ ]0, 1]; by the global existence Theorem 3.1, with m = 4,

each uj can be extended to all of [0, T ], with uj ∈ Xs+4(T ) if ε does not exceed some value

εj ∈ ]0, 1]. In general, the sequence (εj)j≥0 is infinitesimal; thus, we propose to show that we

can choose the data (dj)j≥0 so that the corresponding local solution uj can be extended to

[0, T ], with

(P1) uj ∈ Xs+4(T ), at least if εj < ε ≤ ε0;

(P2) the sequence (uj)j≥0 is bounded in Ys(T ).

To this end, we need, in addition to the regularity result of Theorem 2.2, the following

stability result, which can be proven as in [8]:

Theorem 6.1 Let ε ∈ ]0, 1], 0 < τ ≤ τ̃ ≤ T , and u ∈ Xs(τ), ũ ∈ Xs+1(τ̃ ) be solutions of

(1.1)–(1.2), corresponding respectively to data d ∈ Ds and d̃ ∈ Ds+1. Then, the difference u− ũ

satisfies an estimate of the form

9u− ũ9Ys(τ) ≤ ‖d− d̃‖Ds
Φ(9u9Ys(τ),9ũ9Ys+1(τ)), (6.1)

where Φ : R>0 × R>0 → R≥1 is continuous and nondecreasing with respect to its arguments.

6.2 Given the “original” data d = {u0, u1, f} ∈ Ds, we fix arbitrary η ∈ ]0, 1[ and choose

data d0 = {u0
0, u

0
1, f

0} ∈ Ds+4 such that

‖d− d0‖Ds
≤ η. (6.2)

By Theorem 2.4, there is ε0 ∈ ]0, 1] such that for all ε ∈ ]0, ε0], problem (1.1)–(1.2), with data

d0, has a global solution u0 ∈ Xs+4(T ). Correspondingly, we set

M0 := max{‖d0‖Ds
, 9u09Ys+4(T ), 1}, (6.3)

and proceed to construct a sequence (uj)j≥0 of global solutions uj to (1.1)–(1.2), such that for

all j ≥ 0 and ε ∈ ]0, ε0],

uj ∈ Xs+4(T ) and 9 uj9Ys(T ) ≤ 2M0. (6.4)
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Note that once each such solution uj is constructed satisfying (6.4), then, by Theorem 2.2,

9uj9Ys+1(T ) ≤ ‖dj‖Ds+1ϕ(9uj9Ys(T )) ≤ ‖dj‖Ds+1ϕ(2M0) =: ωj; (6.5)

in general, ωj → +∞ as j → +∞. Fix now γ ∈ ]0, 1[ such that

γ

1 − γ
≤ η < 1 ≤M0. (6.6)

Proceeding recursively, at each step j ≥ 1 we choose data dj , depending on the previous choices

d0, · · · , dj−1, such that

‖dj − dj−1‖Ds
≤ γj(Φ(4M0, ωj−1))

−1, (6.7)

where Φ and ωj−1 are as in (6.1) and (6.5). We claim that for all ε ∈ ]0, ε0], the corresponding

local solution uj can be extended to all of [0, T ] so as to satisfy (6.4).

6.3 We prove this claim by induction. For j = 0, the solution u0 satisfies (6.4) by construc-

tion, since

9u09Ys(T ) ≤ 9u09Ys+4(T ) ≤M0. (6.8)

Thus, assume that, for 0 ≤ j ≤ r, we have solutions uj, corresponding to data dj , satisfying

respectively (6.4) and (6.7). Choose data dr+1 satisfying (6.7) (j = r+ 1); then, by (6.7), (6.6)

and (6.3), since Φ ≥ 1,

‖dr+1‖Ds
≤

r∑

j=0

‖dj+1 − dj‖Ds
+ ‖d0‖Ds

≤
r∑

j=0

γj+1 + ‖d0‖Ds
≤ γ

1 − γ
+M0 ≤ 2M0. (6.9)

Let T r+1
ε denote the life-span of the solution ur+1, as defined in Subsection 2.3.2; by Theorem

2.4, T r+1
ε = T if ε does not exceed some value εr+1 ∈ ]0, 1]. We want to show that T r+1

ε = T

also for εr+1 < ε ≤ ε0; by the regularity Theorem 2.2, this would follow from the estimate

9ur+19Ys(t) ≤ 2M0, 0 ≤ t < T r+1
ε , (6.10)

which clearly implies (6.4) for j = r + 1 as well.

6.4 We prove (6.10) by contradiction; thus, we assume that either T r+1
ε < T , so that, as

in (5.1),

lim sup
t→T

r+1
ε

9ur+19Ys(t) = +∞, (6.11)

or T r+1
ε = T , but

9ur+19Ys(T ) > 2M0. (6.12)

In the first case, there would be θ ∈ ]0, T r+1
ε [ such that

9ur+19Ys(θ) = 4M0. (6.13)
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By Theorem 6.1, with ũ = uj , τ̃ = T , u = uj+1, τ = θ < T , 0 ≤ j ≤ r,

9ur+19Ys(θ) ≤
r∑

j=0

9uj+1 − uj 9Ys(θ) + 9 u0 9Ys(t)

≤
r∑

j=0

‖dj+1 − dj‖Ds
Φ(9uj+19Ys(θ),9u

j9Ys+1(T )) + 9u0 9Ys(T ) . (6.14)

By (6.13) and the induction assumption (6.4) (0 ≤ j ≤ r), and then by (6.5)–(6.7) and (6.3),

we proceed from (6.14) with

9ur+19Ys(θ) ≤
r∑

j=0

‖dj+1 − dj‖Ds
Φ(4M0, ωj) + 9u0 9Ys(T )

=
r∑

j=0

γj+1 + 9u0 9Ys(T )

≤ γ

1 − γ
+M0 ≤ 2M0, (6.15)

which contradicts (6.13). The other possibility is (6.12); but then, since by (6.9),

9ur+19Ys(0) ≤ ‖ur+1
0 ‖s+1 + ‖ur+1

1 ‖s ≤ ‖dr+1‖Ds
≤ 2M0, (6.16)

there still would be θ ∈ ]0, T [ such that

2M0 < 9ur+19Ys(θ) ≤ 4M0. (6.17)

But then, we can repeat exactly the same estimates, which show that, in fact,

9ur+19Ys(θ) ≤ 2M0, (6.18)

contradicting (6.17). In conclusion, (6.10) holds. It follows that (6.4) does hold, for all ε ∈ ]0, ε0]

and j ≥ 0.

6.5 Because of (6.4), the sequence (uj)j≥0 is in a bounded set of Ys(T ). Thus, there are

u ∈ Ys(T ) and a subsequence, still denoted by (uj)j≥0, such that

uj → u weakly in Ys(T ). (6.19)

It is then straightforward to show (see e.g. [9]) that (uj)j≥0 is a Cauchy sequence in Y0(T );

thus, by interpolation, (uj)j≥0 is also a Cauchy sequence in Yk(T ), 0 ≤ k ≤ s − 1. Since

s− 1 > N
2 , it follows that the convergence ∂k

t u
j → ∂k

t u, ∂
k
xu

j → ∂k
xu, k = 0, 1, 2, is uniform in

[0, T ]×R
N . This allows us to deduce that u is the desired solution of equation (1.1), provided

that f j → f in Zs(T ). To show this, as well as that u takes on the correct data, it is sufficient

to note that, by (6.9), (6.6) and (6.2),

‖dr+1 − d‖Ds
≤

r∑

j=0

‖dj+1 − dj‖Ds
+ ‖d0 − d‖Ds

≤ γ

1 − γ
+ ‖d0 − d‖Ds

≤ 2η; (6.20)
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since η is arbitrary, it follows that dj → d in Ds, as desired. This yields a proof of Theorem 2.3

in the cases 0 ≤ m ≤ 3, with εm = ε0, as determined above.
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