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Abstract The author first constructs a Lie algebra £ := £(q, wq) from rank 3 quantum
torus, which is isomorphic to the core of EALASs of type A4—1 with coordinates in quantum
torus Cya, and then gives the necessary and sufficient conditions for the highest weight
modules to be quasifinite. Finally the irreducible Z-graded quasifinite £-modules with
nonzero central charges are classified.
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1 Introduction

Extended affine Lie algebras (EALAs) are generalizations of affine Kac-Moody Lie algebras
introduced in [1]. They were constructed and studied in many papers, for more details we refer
the reader to, for example, [2-7]. The structure theory of the EALAs of type Ay_; is tied up
with Lie algebra gl;(C) ® C,, where Cy is the quantum torus. Quantum torus defined in [§]
are noncommutative analogue of Laurent polynomial algebras. The universal central extension
of the derivation Lie algebra of rank 2 quantum torus is known as the g-analog Virasoro-like
algebra (see [9]), which is studied in many papers (see [15-18]). Representations for Lie algebras
coordinated by certain quantum tori have been studied by many people (see [10, 14]).

In this paper, we first construct a Lie algebra £ from rank 3 quantum torus, which is
isomorphic to the core of EALAs of type A1 with coordinates in quantum torus Cjq, and then
give the necessary and sufficient conditions for the highest weight modules to be quasifinite.
Finally, the irreducible Z-graded quasifinite modules of £ with nonzero central charges are
classified. The results generalize those in [23] from d = 2 to arbitrary d > 2.

This paper is organized as follows. In Section 2, we first recall some concepts and results
about quantum torus in [2, 20, 23], then introduce the Z2-extragraded Lie algebras L and give
the necessary and sufficient conditions for the highest weight modules to be quasifinite. And the
necessary and sufficient conditions for the Z-graded highest weight £-modules to be quasifinite
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are obtained in Theorem 2.3. In Section 3, we give the classification of irreducible Z-graded
quasifinite £-modules with nonzero central charges in Theorem 3.2.

2 Highest Weight Quasifinite Modules over £(q, wg)

Through this paper, we use C, Z, Z, and N to denote the sets of complex numbers, integers,
nonnegative integers and positive integers respectively. For any additive group G, we denote
G* := G\ {0}. For any Lie algebra L, denote its center by Z (L), and L’ := [L, L]. For any set
S, we define the Kronecker delta

1, if S
bu.s = {O: ;tlxlefwi;e. (21)
For any m,n € N, denote the maximal common factor of m, n by (m,n).
2.1 Basics
Let Q = (gi ;)i j—1 be an n x n matrix over C satisfying
Gi=1 q;=4q., (2.2)
where n is a positive integer. The Q-quantum torus Cg is the unital associative algebra over
C generated by tlﬂ, -, t*! and subject to the defining relations
tit; =t =1, ity = g jtits (2.3)

For any m € Z", we always write
m:(mlu"'amn)ﬂ ta:t;nl'”tzln' (24‘)

For any m,n € Z", we define the functions og(m,n) and fo(m,n) by

™" = og(m,n)t™ ™ ™" = fo(m, n)t" ™. (2.5)
Then
n
commn)= J[ 7", fo(mn)= A (2.6)
1<i<j<n ij=1

and fo(m,n) = og(m,n)og(n, m)~. We define
radfo = {m € Z" | fo(m,Z") = 1}. (2.7)

For the properties of Cg, fo and og, please refer to [2].

In the case Q = ((11 q;l ), we will simply denote Cg, fo and og by Cy, f, and o, respectively.

Let wg be a d-th primitive root of unity with d > 2, ¢ a fixed generic complex number, and

1 ¢! 1
Qui=1|q 1 wi']|. (2.8)
1 Wq 1
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Then Z(Co,) = C[t¢,t3%]. Let J be the idea of the associative algebra Cg, generated by t§ —1.
Denote Zg = Z/dZ. Define

Co, = Co,/J = spanc{titith | i,j € T,k € Z4} (2.9)

to be the quotient of Cg, and identify #§ with its image in C'g,.
The derived Lie subalgebra of Cg, is

Co, = spanc{tithth | (i,j,k) € (Z* x Zg)"}. (2.10)

Let M4(Cya) be the set of d x d matrices over Cya, and E;; be the d x d matrix whose entry
is 1 for the (4, j)-entry and 0 elsewhere.

We have the following proposition from a manuscript of K. M. Zhao.

Proposition 2.1 (a) Cg, is a simple associative algebra, and U/Qd is a simple Lie algebra.
(b) Co, = My(C,a) as associative algebras.

Proof (a) Suppose that H is a nonzero associative ideal of C'g,. We want to show that
H = Cg,. Take a nonzero element

K
i=1
where x; € C* and (a;, b;, ¢;) € Z? X Z4 are pairwise distinct for i = 1,--- 7.
We may assume that r is minimal. If r = 1, clearly H = Cg,. Now assume that r > 1.

Without loss of generality, we may also assume that (a,,b,,c.) = (0,0,0). Then there exists
(a,b,¢) € Z? x Z4 such that 0 # [t4t5t5, 1515 ¢5'] € Cg,. Now

r—1
0 £ [t5thts, ) = 3 aultsthts, e 15 € B,
i=1
This is in contradiction with the choice of z. Thus Cg, is simple.
Now by using Herstein’s theorem in [19] and U/Qd N Z(Cg,) = {0}, we see that Ulgd is a
simple Lie algebra.
(b) Define an associative algebra embedding ¢1 : Co, — My4(Cy) by

o1 (Eit515) = (Lt FY P, (2.11)

d—1 _
Eiit1 € Mg(C). Then ¢1(Cg,) is spanned by
=1

3

d
where E= Y w,'E;;, F = FEq1 +
=1

B (t7td" 7, 1 <4, j <dk,meZ. (2.12)
Now, we define the associative algebra isomorphism
21 91(Co,) = Ma(CE, 157) € Ma(Cy), By (#7557 o g™ By 5 (£715F).

All the verifications are straightforward.
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Now we construct our Lie algebra as a central extension of U/Qd’ which will be denoted by
£:=L(q,wq) = U/Qd + spang{c1, c2}, with the following Lie bracket

[, 78] = (0 g™ = R G 06, g0 g (e Fmacs), (2.13)

where m,n € Z2, i, j € Zy.

From Proposition 2.1(b), we may easily deduce that £ is isomorphic to the core of the
EALAs of type Ay—1 with coordinates in Cya.

Next, we will recall some concepts about the Z-graded £-modules in [23].

Fix a Z-basis

mp = (mll,mlg), ms = (mgl,mgg) S Z2. (214)

If we define the degree of the nonzero elements in spang{t™ Tim2¢k ¢ ¢ | i j € Z k € Zy}
to be ¢ and the degree of the nonzero elements in Ce¢q + Cey to be zero, then £ can be regarded

as a Z-graded Lie algebra
£ = Spanc{tim1+jm2t§ cg | je Z, ke Zd} + 5@0(@01 + (CCQ). (215)

Set
g =P ¢ =P
i>0 i<0
Then £ = @ £; and £ has the following triangular decomposition

S/

L=C @ aL,.

Definition 2.1 For any £-module V, if V.= @ V, with £,V = Vipii, Vi,m € Z, then
meZ
V is called a Z-graded £-module (w.r.t (my,mso)) and V,, is called a homogeneous subspace of

V' with degree m. The £-module V is called

(i) a quasi-finite Z-graded module, if dimV,, < oo, Vm € Z,

(ii) a uniformly bounded module, if there exists some N € N, such that dimV,, < N,
Ym € Z,

(iii) @ highest (resp. lowest) weight module, if there exists a nonzero homogeneous vector
v € Vi, such that V is generated by v and £4v =0 (resp. £_v =0),

(iv) a generalized highest weight module with highest degree m, if there exist a Z-basis
B = {b1,ba} of Z* and a nonzero vector v € V,,, such that V is generated by v and t™t4v = 0,
Vm e Ziby +7Zybs,i € Zg,

(v) an irreducible Z-graded module, if V does not have any nontrivial Z-graded submodule.

We denote the set of quasi-finite irreducible Z-graded £-modules by 07 (m;, ms).

From the definition, one sees that the generalized highest weight modules contain the highest
weight modules and the lowest weight modules as their special cases. As the central elements
c1, co of £ act on irreducible graded modules V' as scalars, we shall use the same symbols to

denote these scalars.



Quasifinite Modules for EALAs of Type A 133

2.2 Finite dimensional irreducible modules over £

Now we study the finite dimensional irreducible modules over £y. Note that by the theory
of Verma modules, the irreducible Z-graded highest (or lowest) weight £-modules are classified
by the irreducible modules of £g.

Recall £ = spanc{t/™2tk ¢, co | (j, k) € (Z x Zq)*}.

Clearly
, d
o = Spanc{tkmztg,mﬂcl +mazes | (k1) ¢ 7o (2 % Zd)}. (2.16)
Denote d
Hy — spanc{tkmztg, c1, ‘ (k, i) € (Z x Zd)}. (2.17)
(d, maz)
Clearly Hj is an ideal of £y, and we have
£o = Hoy + £. (2.18)

Suppose that A is an arbitrary finite dimensional irreducible module over £9. Then ¢y, ¢o act
as scalars on A, and considering the action of the three dimensional Heisenberg Lie subalgebra
spang{t™2,t7™2 maicq +maacae }, we have (maicy +magca)A = 0. Hence, we can regard A as a
module over £y /(C(ma1c1 +maace)). Noting that Hy/(C(maic1 +maace)) = Z(Lo/(C(marcr +
ma2c2)), we see that elements in Hy act as scalars on A and A is an irreducible £(/(C(maic1 +
Maac2)) module.

Define

oa:Hy— C (2.19)

by ¢(x)v = zv for all x € Hy and v € A.
Make A to be an £y + £4-module by defining £; A = 0. Then we have the highest Verma
£-module
M*(A;my, my) = Indg, | o, A. (2.20)

M+ (4;m, ms) has a unique maximal Z-graded £ proper submodule M+ (A;my, ms), and the
unique irreducible Z-graded quotient module

M*(A;my, ms) := Mt (A;my, my)/M* (A;my, my). (2.21)

Similarly, we have the lowest Verma module M- (A;my, my) and the irreducible Z-graded
quotient module M~ (A; m;, my).
Let us recall the properties of finite dimensional irreducible modules in [20].

Theorem 2.1 (see [20]) (a) Let F(X)=(X—x1) - (X —2,), G(X)= (X —y1) - (X —
ys) € C* + XC[X], and

I'(F,G) := spanc {t"F(t7"), t"G(t3") | n € Z* \ (mZ*)} C C,,,, (2.22)

where wy, is an m-th primitive root of unity with m > 1. Then the quotient Lie algebra
Co, JT'(F,G) = @1, (C) if and only if (F,F') = (G,G") = 1.

(b) Let A be an irreducible finite dimensional module over the Lie algebra C.y,, with dim A >
1. Then there exist nonzero polynomials F'(X),G(X) € C*+ XC[X| with (F,F') = (G,G") =1
such that I'(F,G) C Ann A, and
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(1) A is an irreducible module over Cy, /I'(F,G),

(2) elements in Z(Cly,, ) act as scalars on A.
Proof (a) and (b) are Lemma 2.5 and Theorem 3.2 in [20] respectively.

Corollary 2.1 Suppose that {d,ma2) # d, and A is an irreducible finite dimensional module
over £9 with dim A > 1. Then there exists a nonconstant polynomial F(X) € C* + XC[X] with
(F,F') =1 such that

(1) (maicr + maac2)A =0,

(2) A is an irreducible module over the semisimple finite dimensional algebra £/(I'(F') +
C(marc1 + maaca)) (which is isomorphic to some direct sums of Slﬁfm)(c))’ where

I'(F) = span(c{F((tm2)<dezz>)tkm2té (ki) ¢ (Z x zd)}, (2.23)

d
(d, ma2)

(3) elements in Hy act on A as scalars.

2.3 Highest weight modules over Z?-extragraded Lie algebra L

Let us recall a Z2-extragraded Lie algebra in [22] for some special case.

Denote
1 qm12m21_m11m22 w;mu
Q/ — (q;]) = q*m12m21+m11m22 1 w;mﬂ ,
’ w;n12 w;’in22 1
where my, my are defined in (2.14) and ¢ is generic.
We have an associative algebra isomorphism
p: CQ/ - CQd (2.24)
with p(t3) = t3 and p(t;) = t™ for i = 1, 2. Further, we have
. mygmigi(i—1)+moimooi(i—1) | .. . .
p(tﬁt%tlg) —q 11m12 Emaymz2il +1]m12m21t1m1+]m2t73€' (225)

Define the Lie algebra L:= ZQ/ with L = Co as vector space and the relations

[t2,t°] = 12" — t°1* + 64, 15,008+ b rad fo, Q171"

=0g/(a,b)(1 = for(b,a) + 6, +b,,00a+bradfo, @)t TP, Va,b e Z2, (2.26)
Now we need to recall some notations in [21].

Definition 2.2 (a) The algebra of exp-polynomial functions in v’ variables my,ma, -+ My
is the algebra of functions f(my, -+ ,m.) : Zr — C generated as an algebra by functions m;
and o™i for various constants a € C* = C\ {0}, j =1,---,r'.

(b) Let G= @ Gia be any Z" ' -graded Lie algebra, K = {K; | i € Z} be a family

(i,@)ezm+1
of finite sets and

B={g")(a) | ki € K;, (i,a) € 2"} (2.27)

be any homogenous spanning set of G with g(ki)(a) € Gia. Then G is said to be a Z"-

%

extragraded Lie algebra with respect to K and B, if there exists a family of exp-polynomial
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functions { ff;fijklﬂ

such that

(a,b)} in the 2n wariables a;, by, | = 1,2,--- ,n, where k; € K;, Vi € Z,

ki k]‘ ki,kj,ki j ki 3
o @O = 3 fTHT @bl @+ b, (2.28)
Kitj €Kit
(c) Let G be a Z"-extragraded Lie algebra w.r.t B and K as defined in (b), and Go =

P Goa. A finite dimensional nonzero module A over Gy is called an exp-polynomial Go-
aczm
module, if there exists a basis {v;}ics, and there exists a family of n-variable exp-polynomial

functions h’;)j(a) for k € Ko, j,s € J, such that

g6 @)y = D_ I ;(2)vs.
JjeJ
mg .
Lemma 2.1 (see [22]) Suppose that ¢ : Z™ — C is a function, hi(t) = > x;jt! =
j=0
li
[T¢—yi;)%, i=1,---,n, are polynomials in C[t], where s, j,m; € N, and z; ;,y;; € C with

j=1
Zi,0Tim; 7 0. Fork=1,2,---,n, let

Fr = {fk,O(T)yfk,l(T); e 7fk,mk*1(’r>}

={Yh Yk T R Yk T s Yk T T T R )
be a set of functions inr € Z. Then
> wijt(atjzm) =0, VacZ', i=12--,n, (2.29)
j=0
if and only if there exist ‘1:[1 m; complex numbers z(y, ... p,), 0 < by <m;—1,1=1,--- ,n, such
that
mi—1 my—1 n
P(a) = Z Z Z(by e bn) Hfiybi(ai), VaeZ". (2.30)
b1=0 br=0 i=1
Lemma 2.2 (see [22]) Lo is a Z2-extragraded Lie algebra with respect to K and B, where
K={K;|icz}, B={¢")(a)|k €K, (i,a) € Z%}, (2.31)
Ko={1,2} and K; = {1}, Vi#0, (2.32)
g(()l)(a) — 5a, - d >Z2(1 _ q(m11m22*m12m21)alw;n12112 + 5a1,05a2,d2)t(07a)7 (233)
»M22
967 (a) = (1= 0y _a_5)t, (2.34)
7 (d,ma2)
M @) =102 vi£o. (2.35)

L has a natural Z-gradation with L; = spanc{tit3t5 | (j,k) € Z2}. Similarly, we have the
notations of Z-graded modules and quasi-finite modules over L. And for any irreducible module
A over Ly, make A to be an Ly + L-module by defining LA = 0. Then we have the Verma
module

MZQ/ (A) = IndZO+Z+A (236)
and the unique irreducible Z-graded quotient module Mg (A). Similarly, we have M 7 (A).

Qf Q'
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Theorem 2.2 Let A be any finite dimensional irreducible Lo module. Then M%': (A) is
Ql

quasifinite, if and only if there exists some 2-variable exp-polynomial function ¢ : Z2 — C, such
that

(t (4d,nd122>it4(d,"d122>j)v — () v (2.37)
2 3 - (my1mog—migmor)di 129 '
1—¢q (d,m22) w;d'm”) +0i,00__J

(d,ma3)’

for all (i,7) € Z* and v € A.

Proof If dimA = 1, then the theorem follows from [22, Theorem 2.11]. So we may
assume that dim A > 1. Suppose that Mzi (4) is quasifinite. Fix 0 # v € A. Let H =
Q/

4+ d +__d . ~ ~
Cltt, t, 22 ¢, (0722 ] C Lor. Then U(H)v is a quasifinite Z-graded H module. And from
[22, Theorem 2.11], we get (2.37).

On the other hand, suppose that (2.37) holds. Note that

EO =~ Ow;nzz, ZO = E/O D Z(Eo) (238)

From Theorem 2.1(a), we have a nonconstant polynomial F(X),G1(X) € C* + XC[X], such
that

. —d L __d
{t;tgFl (ts" 22 ), 153G (t3""2 ) | (4, ) ¢ ZQ} C AnnA. (2.39)

d
(d, mas)
Now, by Lemma 2.1, it is direct to check that A is an exp-polynomial module (see Definition
2.2(c)). Hence the theorem follows from [21, Theorem 1.7].

2.4 Irreducible quasifinite highest weight modules over £(q, wq)
Define a Lie algebra surjective homomorphism g : EQ/ — £/C(ma1c1 + magca) by

mii1myi(i—1)+moimagj(j—1)+2ijmizmay
2

i timatimagk (G5 k) ¢ (0,0, dZ),
Q(tlt%téf)—{q 50 (B3R € ) (2.40)

mi1€1 + M2, (i,7,k) € (0,0,dZ).

Theorem 2.3 Let A be an irreducible finite dimensional £y module. Then the highest weight
£-module M*(A;my;my) is quasifinite, if and only if there exist 1-variable exp-polynomial
Junctions Yo, %2, -, Vidmys)—1 : Z — C, such that

da(mirer +misca) = o(0),  da(maicr +maaca) =0, (2.41)
_idmy o kd Y (7)
- (dymo2) \ __
¢a (t malty ) o (mi11map—mygmoq)di <Z‘13dk> mzlmzzid(id*(;,mm)) (242)
(1 —q (d,m32) wy” 22 )q 2(d,ma2)

for all (i,k) ¢ (0, (d,m22)Zq), k =0, ,(d,ma2) — 1, where ¢4 is defined in (2.19).

Proof Note that we may regard £-module M*(A4;m;;ms) as Mzi (A) via the surjective
Q/

homomorphism p defined in (2.41). The theorem follows from Theorem 2.2 and Lemma 2.1.

3 Classification of Irreducible Quasifinite Z-graded Modules with
Nonzero Central Charges for £(q, wg)

In this section, we will give the classification of irreducible quasifinite Z-graded modules

with nonzero charges for £(q, wq).
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We will omit the details of the proof in this section, since they are almost the same as in
[23].
We need to point out that “t3” in this paper is corresponding to “ty” in [23].

Proposition 3.1 If V € Oyz(m1,my), then V is a generalized highest weight module or a

uniformly bounded module.

Proof If V is not a generalized highest weight module, then one may deduce that dim V,,, <
d(dim Vp + dim V7) in the same way as in the proof of [23, Proposition 2.7].

Lemma 3.1 If V is a nontrivial irreducible generalized highest weight Z-graded £-module
corresponding to a Z-basis B = {b1,ba} of Z?, then

(a) For any 0 # v € V, there is some p € N such that t™Pitmzbzgl .oy — (0 for all
mi,me > p and i € Zyg.

(b) For any 0#v €V and my,ma >0, i € Zg, we have t~mP1=m2b2¢l . o£ (),

Proof The proof is the same as [23, Lemma 4.1].

Lemma 3.2 If V € Oz(m;,ms) is a generalized highest weight £(q,wq)-module, then V

must be a highest or lowest weight module.
Proof The proof is the same as [23, Lemma 4.2].
From the above lemma and the results in Section 2, we have the following theorem.

Theorem 3.1 If V is a quasifinite irreducible Z-graded £-module w.r.t (m;, my), then V
is either M (A;my, my), M~ (A;my, my) with ¢4 satisfying (2.41) and (2.42), or a uniformly
bounded module.

Then we have the same result as [23, Theorem 4.4].

Theorem 3.2 IfV € Oz(m;,ms) is an irreducible £(q, wq)-module with nontrivial central
charges, then there exists some finite dimensional irreducible £y module A with ¢4 satisfying

(2.41) and (2.42), such that V= M*(A;my,my) or V= M~ (A;m;, my).

One can also construct a class of highest weight Z2?-graded £(q,wq)-modules Vz2 = V ®
Cla™!] from the Z-graded module V w.r.t (mj, my) as follows:

tim1+jm2t§ . (’U ® ,TT) _ (tim1+jm2t§ -’U) ® $T+j'
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