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1 Introduction

Extended affine Lie algebras (EALAs) are generalizations of affine Kac-Moody Lie algebras

introduced in [1]. They were constructed and studied in many papers, for more details we refer

the reader to, for example, [2–7]. The structure theory of the EALAs of type Ad−1 is tied up

with Lie algebra gld(C) ⊗ Cq, where Cq is the quantum torus. Quantum torus defined in [8]

are noncommutative analogue of Laurent polynomial algebras. The universal central extension

of the derivation Lie algebra of rank 2 quantum torus is known as the q-analog Virasoro-like

algebra (see [9]), which is studied in many papers (see [15–18]). Representations for Lie algebras

coordinated by certain quantum tori have been studied by many people (see [10, 14]).

In this paper, we first construct a Lie algebra L from rank 3 quantum torus, which is

isomorphic to the core of EALAs of type Ad−1 with coordinates in quantum torus Cqd , and then

give the necessary and sufficient conditions for the highest weight modules to be quasifinite.

Finally, the irreducible Z-graded quasifinite modules of L with nonzero central charges are

classified. The results generalize those in [23] from d = 2 to arbitrary d ≥ 2.

This paper is organized as follows. In Section 2, we first recall some concepts and results

about quantum torus in [2, 20, 23], then introduce the Z2-extragraded Lie algebras L̃ and give

the necessary and sufficient conditions for the highest weight modules to be quasifinite. And the

necessary and sufficient conditions for the Z-graded highest weight L-modules to be quasifinite
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are obtained in Theorem 2.3. In Section 3, we give the classification of irreducible Z-graded

quasifinite L-modules with nonzero central charges in Theorem 3.2.

2 Highest Weight Quasifinite Modules over L(q, wd)

Through this paper, we use C, Z, Z+ and N to denote the sets of complex numbers, integers,

nonnegative integers and positive integers respectively. For any additive group G, we denote

G∗ := G \ {0}. For any Lie algebra L, denote its center by Z(L), and L′ := [L,L]. For any set

S, we define the Kronecker delta

δx,S =

{
1, if x ∈ S,

0, otherwise.
(2.1)

For any m,n ∈ N, denote the maximal common factor of m, n by 〈m,n〉.

2.1 Basics

Let Q = (qi,j)
n
i,j=1 be an n× n matrix over C satisfying

qi,i = 1, qi,j = q−1
j,i , (2.2)

where n is a positive integer. The Q-quantum torus CQ is the unital associative algebra over

C generated by t±1
1 , · · · , t±1

n and subject to the defining relations

tit
−1
i = t−1

i ti = 1, titj = qi,jtjti. (2.3)

For any m ∈ Zn, we always write

m = (m1, · · · ,mn), ta = tm1
1 · · · tmn

n . (2.4)

For any m,n ∈ Zn, we define the functions σQ(m,n) and fQ(m,n) by

tmtn = σQ(m,n)tm+n, tmtn = fQ(m,n)tntm. (2.5)

Then

σQ(m,n) =
∏

1≤i<j≤n

q
mjni

j,i , fQ(m,n) =

n∏

i,j=1

q
mjni

j,i , (2.6)

and fQ(m,n) = σQ(m,n)σQ(n,m)−1. We define

radfQ = {m ∈ Z
n | fQ(m,Zn) = 1}. (2.7)

For the properties of CQ, fQ and σQ, please refer to [2].

In the case Q =
(

1 q−1

q 1

)
, we will simply denote CQ, fQ and σQ by Cq, fq and σq respectively.

Let wd be a d-th primitive root of unity with d ≥ 2, q a fixed generic complex number, and

Qd :=




1 q−1 1
q 1 w−1

d

1 wd 1


 . (2.8)
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Then Z(CQd
) = C[td3, t

−d
3 ]. Let J be the idea of the associative algebra CQd

generated by td3−1.

Denote Zd = Z/dZ. Define

CQd
= CQd

/J = spanC{t
i
1t

j
2t

k
3 | i, j ∈ Z, k ∈ Zd} (2.9)

to be the quotient of CQd
and identify tk3 with its image in CQd

.

The derived Lie subalgebra of CQd
is

C
′

Qd
= spanC{t

i
1t

j
2t

k
3 | (i, j, k) ∈ (Z2 × Zd)

∗}. (2.10)

Let Md(Cqd) be the set of d× d matrices over Cqd , and Eij be the d× d matrix whose entry

is 1 for the (i, j)-entry and 0 elsewhere.

We have the following proposition from a manuscript of K. M. Zhao.

Proposition 2.1 (a) CQd
is a simple associative algebra, and C

′

Qd
is a simple Lie algebra.

(b) CQd
∼= Md(Cqd) as associative algebras.

Proof (a) Suppose that H is a nonzero associative ideal of CQd
. We want to show that

H = CQd
. Take a nonzero element

x =

r∑

i=1

xit
ai

1 t
bi

2 t
ci

3 ∈ H,

where xi ∈ C∗ and (ai, bi, ci) ∈ Z2 × Zd are pairwise distinct for i = 1, · · · , r.

We may assume that r is minimal. If r = 1, clearly H = CQd
. Now assume that r > 1.

Without loss of generality, we may also assume that (ar, br, cr) = (0, 0, 0). Then there exists

(a, b, c) ∈ Z2 × Zd such that 0 6= [ta1t
b
2t

c
3, t

a1
1 t

b1
2 t

c1
3 ] ∈ CQd

. Now

0 6= [ta1t
b
2t

c
3, x] =

r−1∑

i=1

xi[t
a
1t

b
2t

c
3, t

ai

1 t
bi

2 t
ci

3 ] ∈ H.

This is in contradiction with the choice of x. Thus CQd
is simple.

Now by using Herstein’s theorem in [19] and C
′

Qd
∩ Z(CQd

) = {0}, we see that C
′

Qd
is a

simple Lie algebra.

(b) Define an associative algebra embedding ϕ1 : CQd
→Md(Cq) by

ϕ1(t
i
1t

j
2t

k
3) = ti1t

j
2F

jEk, (2.11)

where E =
d∑

i=1

w−i
d Ei,i, F = Ed,1 +

d−1∑
i=1

Ei,i+1 ∈Md(C). Then ϕ1(CQd
) is spanned by

Ei,j(t
m
1 t

dk+j−i
2 ), 1 ≤ i, j ≤ d, k,m ∈ Z. (2.12)

Now, we define the associative algebra isomorphism

ϕ2 : ϕ1(CQd
) →Md(C[t±1

1 , t±d
2 ]) ⊂Md(Cq), Ei,j(t

m
1 t

dk+j−i
2 ) 7→ qimEi,j(t

m
1 t

dk
2 ).

All the verifications are straightforward.
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Now we construct our Lie algebra as a central extension of C
′

Qd
, which will be denoted by

L := L(q, wd) = C
′

Qd
+ spanC{c1, c2}, with the following Lie bracket

[tmti3, t
ntj3] = (wn2i

d qm2n1−wm2j
d qm1n2)tm+nti+j

3 +δm+n,0δi+j,0w
n2i
d qm2n1(m1c1+m2c2), (2.13)

where m,n ∈ Z2, i, j ∈ Zd.

From Proposition 2.1(b), we may easily deduce that L is isomorphic to the core of the

EALAs of type Ad−1 with coordinates in Cqd .

Next, we will recall some concepts about the Z-graded L-modules in [23].

Fix a Z-basis

m1 = (m11,m12), m2 = (m21,m22) ∈ Z
2. (2.14)

If we define the degree of the nonzero elements in spanC{t
im1+jm2 tk3 ∈ L | i, j ∈ Z, k ∈ Zd}

to be i and the degree of the nonzero elements in Cc1 + Cc2 to be zero, then L can be regarded

as a Z-graded Lie algebra

Li = spanC{t
im1+jm2 tk3 ∈ L | j ∈ Z, k ∈ Zd} + δi,0(Cc1 + Cc2). (2.15)

Set

L+ =
⊕

i>0

Li, L− =
⊕

i<0

Li.

Then L =
⊕
i∈Z

Li and L has the following triangular decomposition

L = L− ⊕ L0 ⊕ L+.

Definition 2.1 For any L-module V , if V =
⊕

m∈Z

Vx with LiVm = Vm+i, ∀ i,m ∈ Z, then

V is called a Z-graded L-module (w.r.t (m1,m2)) and Vm is called a homogeneous subspace of

V with degree m. The L-module V is called

( i ) a quasi-finite Z-graded module, if dimVm <∞, ∀m ∈ Z,

( ii ) a uniformly bounded module, if there exists some N ∈ N, such that dimVm < N ,

∀m ∈ Z,

(iii) a highest (resp. lowest) weight module, if there exists a nonzero homogeneous vector

v ∈ Vm, such that V is generated by v and L+v = 0 (resp. L−v = 0),

(iv) a generalized highest weight module with highest degree m, if there exist a Z-basis

B = {b1,b2} of Z
2 and a nonzero vector v ∈ Vm, such that V is generated by v and tmti3v = 0,

∀m ∈ Z+b1 + Z+b2, i ∈ Zd,

( v ) an irreducible Z-graded module, if V does not have any nontrivial Z-graded submodule.

We denote the set of quasi-finite irreducible Z-graded L-modules by OZ(m1,m2).

From the definition, one sees that the generalized highest weight modules contain the highest

weight modules and the lowest weight modules as their special cases. As the central elements

c1, c2 of L act on irreducible graded modules V as scalars, we shall use the same symbols to

denote these scalars.
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2.2 Finite dimensional irreducible modules over L0

Now we study the finite dimensional irreducible modules over L0. Note that by the theory

of Verma modules, the irreducible Z-graded highest (or lowest) weight L-modules are classified

by the irreducible modules of L0.

Recall L0 = spanC{t
jm2 tk3 , c1, c2 | (j, k) ∈ (Z × Zd)

∗}.

Clearly

L
′
0 = spanC

{
tkm2ti3,m21c1 +m22c2

∣∣∣ (k, i) /∈ d

〈d,m22〉
(Z × Zd)

}
. (2.16)

Denote

H0 = spanC

{
tkm2 ti3, c1, c2

∣∣∣ (k, i) ∈
d

〈d,m22〉
(Z × Zd)

}
. (2.17)

Clearly H0 is an ideal of L0, and we have

L0 = H0 + L
′
0. (2.18)

Suppose that A is an arbitrary finite dimensional irreducible module over L0. Then c1, c2 act

as scalars on A, and considering the action of the three dimensional Heisenberg Lie subalgebra

spanC{t
m2 , t−m2 ,m21c1 +m22c2}, we have (m21c1 +m22c2)A = 0. Hence, we can regard A as a

module over L0/(C(m21c1 +m22c2)). Noting that H0/(C(m21c1 +m22c2)) = Z(L0/(C(m21c1 +

m22c2)), we see that elements in H0 act as scalars on A and A is an irreducible L
′
0/(C(m21c1 +

m22c2)) module.

Define

φA : H0 → C (2.19)

by φ(x)v = xv for all x ∈ H0 and v ∈ A.

Make A to be an L0 + L+-module by defining L+A = 0. Then we have the highest Verma

L-module

M̃+(A;m1,m2) = IndL

L0+L+
A. (2.20)

M̃+(A;m1,m2) has a unique maximal Z-graded L proper submodule M̃+′

(A;m1,m2), and the

unique irreducible Z-graded quotient module

M+(A;m1,m2) := M̃+(A;m1,m2)/M̃
+′

(A;m1,m2). (2.21)

Similarly, we have the lowest Verma module M̃−(A;m1,m2) and the irreducible Z-graded

quotient module M−(A;m1,m2).

Let us recall the properties of finite dimensional irreducible modules in [20].

Theorem 2.1 (see [20]) (a) Let F (X) = (X −x1) · · · (X −xr), G(X) = (X− y1) · · · (X−

ys) ∈ C∗ +XC[X ], and

I ′(F,G) := spanC{t
nF (tm1 ), tnG(tm2 ) | n ∈ Z

2 \ (mZ
2)} ⊂ Cwm

, (2.22)

where wm is an m-th primitive root of unity with m > 1. Then the quotient Lie algebra

C′
wm
/I ′(F,G) ∼= ⊕rsslm(C) if and only if (F, F ′) = (G,G′) = 1.

(b) Let A be an irreducible finite dimensional module over the Lie algebra Cwm
with dimA >

1. Then there exist nonzero polynomials F (X), G(X) ∈ C∗ +XC[X ] with (F, F ′) = (G,G′) = 1

such that I ′(F,G) ⊂ AnnA, and
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(1) A is an irreducible module over C′
wm
/I ′(F,G),

(2) elements in Z(Cwm
) act as scalars on A.

Proof (a) and (b) are Lemma 2.5 and Theorem 3.2 in [20] respectively.

Corollary 2.1 Suppose that 〈d,m22〉 6= d, and A is an irreducible finite dimensional module

over L0 with dimA > 1. Then there exists a nonconstant polynomial F (X) ∈ C
∗ +XC[X ] with

(F, F ′) = 1 such that

(1) (m21c1 +m22c2)A = 0,

(2) A is an irreducible module over the semisimple finite dimensional algebra L
′
0/(I

′(F ) +

C(m21c1 +m22c2)) (which is isomorphic to some direct sums of sl d
〈d,m22〉

(C)), where

I ′(F ) := spanC

{
F ((tm2)

d
〈d,m22〉 )tkm2 ti3

∣∣∣ (k, i) /∈
d

〈d,m22〉
(Z × Zd)

}
, (2.23)

(3) elements in H0 act on A as scalars.

2.3 Highest weight modules over Z2-extragraded Lie algebra L̃

Let us recall a Z2-extragraded Lie algebra in [22] for some special case.

Denote

Q′ = (q′i,j) :=




1 qm12m21−m11m22 w−m12

d

q−m12m21+m11m22 1 w−m22

d

wm12

d wm22

d 1


 ,

where m1,m2 are defined in (2.14) and q is generic.

We have an associative algebra isomorphism

ρ : CQ′ → CQd
(2.24)

with ρ(t3) = t3 and ρ(ti) = tmi for i = 1, 2. Further, we have

ρ(ti1t
j
2t

k
3) = q

m11m12i(i−1)+m21m22j(j−1)
2 +ijm12m21tim1+jm2 tk3 . (2.25)

Define the Lie algebra L̃ := L̃Q′ with L̃ = CQ′ as vector space and the relations

[ta, tb] = tatb − tbta + δa1+b1,0δa+b,radfQ′a1t
atb

= σQ′(a,b)(1 − fQ′(b,a) + δa1+b1,0δa+b,radfQ′a1)t
a+b, ∀a,b ∈ Z

3. (2.26)

Now we need to recall some notations in [21].

Definition 2.2 (a) The algebra of exp-polynomial functions in r′ variables m1,m2, · · · ,mr′

is the algebra of functions f(m1, · · · ,mr′) : Zr′

→ C generated as an algebra by functions mj

and amj for various constants a ∈ C∗ = C \ {0}, j = 1, · · · , r′.

(b) Let G =
⊕

(i,a)∈Zn+1

Gi,a be any Zn+1-graded Lie algebra, K = {Ki | i ∈ Z} be a family

of finite sets and

B = {g
(ki)
i (a) | ki ∈ Ki, (i,a) ∈ Z

n+1} (2.27)

be any homogenous spanning set of G with g
(ki)
i (a) ∈ Gi,a. Then G is said to be a Zn-

extragraded Lie algebra with respect to K and B, if there exists a family of exp-polynomial
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functions {f
ki,kj ,ki+j

i,j,i+j (a,b)} in the 2n variables al, bl, l = 1, 2, · · · , n, where ki ∈ Ki, ∀ i ∈ Z,

such that

[g
(ki)
i (a), g

(kj)
j (b)] =

∑

ki+j∈Ki+j

f
ki,kj ,ki+j

i,j,i+j (a,b)g
(ki+j)
i+j (a + b). (2.28)

(c) Let G be a Zn-extragraded Lie algebra w.r.t B and K as defined in (b), and G0 :=⊕
a∈Zn

G0,a. A finite dimensional nonzero module A over G0 is called an exp-polynomial G0-

module, if there exists a basis {vi}i∈J , and there exists a family of n-variable exp-polynomial

functions hk
s,j(a) for k ∈ K0, j, s ∈ J , such that

gk
0 (a)vj =

∑

j∈J

hk
s,j(a)vs.

Lemma 2.1 (see [22]) Suppose that ψ : Zn → C is a function, hi(t) =
mi∑
j=0

xi,jt
j =

li∏
j=1

(t− yi,j)
si,j , i = 1, · · · , n, are polynomials in C[t], where si,j ,mi ∈ N, and xi,j , yi,j ∈ C with

xi,0xi,mi
6= 0. For k = 1, 2, · · · , n, let

Fk = {fk,0(r), fk,1(r), · · · , fk,mk−1(r)}

:= {yr
k,1, ry

r
k,1, · · · , r

sk,1−1yr
k,1; y

r
k,2, · · · , r

sk,2−1yr
k,2; · · · ; yr

k,lk
, ryr

k,lk
, · · · , rsk,lk

−1yr
k,lk

}

be a set of functions in r ∈ Z. Then

mi∑

j=0

xi,jψ(a + jεi) = 0, ∀a ∈ Z
n, i = 1, 2, · · · , n, (2.29)

if and only if there exist
n∏

i=1

mi complex numbers z(b1,··· ,bn), 0 ≤ bi ≤ mi − 1, i = 1, · · · , n, such

that

ψ(a) =

m1−1∑

b1=0

· · ·

mn−1∑

bn=0

z(b1,··· ,bn)

n∏

i=1

fi,bi
(ai), ∀a ∈ Z

n. (2.30)

Lemma 2.2 (see [22]) L̃Q′ is a Z2-extragraded Lie algebra with respect to K and B, where

K = {Ki | i ∈ Z}, B = {g
(ki)
i (a) | ki ∈ Ki, (i,a) ∈ Z

3}, (2.31)

K0 = {1, 2} and Ki = {1}, ∀ i 6= 0, (2.32)

g
(1)
0 (a) = δ

a, d
〈d,m22〉 Z2(1 − q(m11m22−m12m21)a1wm12a2

d + δa1,0δa2,dZ)t(0,a), (2.33)

g
(2)
0 (a) = (1 − δ

a, d
〈d,m22〉

Z2)t(0,a), (2.34)

g
(1)
i (a) = t(i,a), ∀ i 6= 0. (2.35)

L̃ has a natural Z-gradation with L̃i = spanC{t
i
1t

j
2t

k
3 | (j, k) ∈ Z2}. Similarly, we have the

notations of Z-graded modules and quasi-finite modules over L̃. And for any irreducible module

A over L̃0, make A to be an L̃0 + L̃+-module by defining L̃+A = 0. Then we have the Verma

module

M̃+eLQ′
(A) = Ind

eLeL0+eL+
A (2.36)

and the unique irreducible Z-graded quotient module M+eLQ′
(A). Similarly, we have M−eLQ′

(A).
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Theorem 2.2 Let A be any finite dimensional irreducible L̃0 module. Then M±eLQ′
(A) is

quasifinite, if and only if there exists some 2-variable exp-polynomial function ψ : Z
2 → C, such

that

(t
d

〈d,m22〉 i

2 t
d

〈d,m22〉 j

3 )v =
ψ((i, j))

1 − q
(m11m22−m12m21)di

〈d,m22〉 w
m12dj

〈d,m22〉

d + δi,0δ j

〈d,m22〉
,Z

v (2.37)

for all (i, j) ∈ Z2 and v ∈ A.

Proof If dimA = 1, then the theorem follows from [22, Theorem 2.11]. So we may

assume that dimA > 1. Suppose that M±eLQ′
(A) is quasifinite. Fix 0 6= v ∈ A. Let H̃ :=

C[t±1
1 , t

± d
〈d,m22〉

2 , t
± d

〈d,m22〉

3 ] ⊂ L̃Q′ . Then U(H̃)v is a quasifinite Z-graded H̃ module. And from

[22, Theorem 2.11], we get (2.37).

On the other hand, suppose that (2.37) holds. Note that

L̃0
∼= Cw

m22
d

, L̃0 = L̃′
0 ⊕ Z(L̃0). (2.38)

From Theorem 2.1(a), we have a nonconstant polynomial F1(X), G1(X) ∈ C∗ +XC[X ], such

that {
ti2t

j
3F1(t

d
〈d,m22〉

2 ), ti2t
j
3G1(t

d
〈d,m22〉

3 )
∣∣∣ (i, j) /∈ d

〈d,m22〉
Z

2
}
⊂ AnnA. (2.39)

Now, by Lemma 2.1, it is direct to check that A is an exp-polynomial module (see Definition

2.2(c)). Hence the theorem follows from [21, Theorem 1.7].

2.4 Irreducible quasifinite highest weight modules over L(q, wd)

Define a Lie algebra surjective homomorphism ̺ : L̃Q′ → L/C(m21c1 +m22c2) by

̺(ti1t
j
2t

k
3) =

{
q

m11m12i(i−1)+m21m22j(j−1)+2ijm12 m21
2 tim1+jm2tk3 , (i, j, k) /∈ (0, 0, dZ),

m11c1 +m12c2, (i, j, k) ∈ (0, 0, dZ).
(2.40)

Theorem 2.3 Let A be an irreducible finite dimensional L0 module. Then the highest weight

L-module M±(A;m1;m2) is quasifinite, if and only if there exist 1-variable exp-polynomial

functions ψ0, ψ2, · · · , ψ〈d,m22〉−1 : Z → C, such that

φA(m11c1 +m12c2) = ψ0(0), φA(m21c1 +m22c2) = 0, (2.41)

φA(t
idm2

〈d,m22〉 t
kd

〈d,m22〉

3 ) =
ψk(i)

(1 − q
(m11m22−m12m21)di

〈d,m22〉 w
m12dk

〈d,m22〉

d )q
m21m22id(id−〈d,m22〉)

2〈d,m22〉2

(2.42)

for all (i, k) /∈ (0, 〈d,m22〉Zd), k = 0, · · · , 〈d,m22〉 − 1, where φA is defined in (2.19).

Proof Note that we may regard L-module M±(A;m1;m2) as M±eLQ′
(A) via the surjective

homomorphism ̺ defined in (2.41). The theorem follows from Theorem 2.2 and Lemma 2.1.

3 Classification of Irreducible Quasifinite Z-graded Modules with
Nonzero Central Charges for L(q, wd)

In this section, we will give the classification of irreducible quasifinite Z-graded modules

with nonzero charges for L(q, wd).
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We will omit the details of the proof in this section, since they are almost the same as in

[23].

We need to point out that “t3” in this paper is corresponding to “t0” in [23].

Proposition 3.1 If V ∈ OZ(m1,m2), then V is a generalized highest weight module or a

uniformly bounded module.

Proof If V is not a generalized highest weight module, then one may deduce that dimVm ≤

d(dim V0 + dimV1) in the same way as in the proof of [23, Proposition 2.7].

Lemma 3.1 If V is a nontrivial irreducible generalized highest weight Z-graded L-module

corresponding to a Z-basis B = {b1,b2} of Z2, then

(a) For any 0 6= v ∈ V , there is some p ∈ N such that tm1b1+m2b2ti3 · v = 0 for all

m1,m2 ≥ p and i ∈ Zd.

(b) For any 0 6= v ∈ V and m1,m2 > 0, i ∈ Zd, we have t−m1b1−m2b2ti3 · v 6= 0.

Proof The proof is the same as [23, Lemma 4.1].

Lemma 3.2 If V ∈ OZ(m1,m2) is a generalized highest weight L(q, wd)-module, then V

must be a highest or lowest weight module.

Proof The proof is the same as [23, Lemma 4.2].

From the above lemma and the results in Section 2, we have the following theorem.

Theorem 3.1 If V is a quasifinite irreducible Z-graded L-module w.r.t (m1,m2), then V

is either M+(A;m1,m2), M
−(A;m1,m2) with φA satisfying (2.41) and (2.42), or a uniformly

bounded module.

Then we have the same result as [23, Theorem 4.4].

Theorem 3.2 If V ∈ OZ(m1,m2) is an irreducible L(q, wd)-module with nontrivial central

charges, then there exists some finite dimensional irreducible L0 module A with φA satisfying

(2.41) and (2.42), such that V ∼= M+(A;m1,m2) or V ∼= M−(A;m1,m2).

One can also construct a class of highest weight Z2-graded L(q, wd)-modules VZ2 = V ⊗

C[x±1] from the Z-graded module V w.r.t (m1,m2) as follows:

tim1+jm2tk3 · (v ⊗ xr) = (tim1+jm2 tk3 · v) ⊗ xr+j .

References

[1] Hoegh-Krohn, R. and Torresani, B., Classification and construction of quasi-simple Lie algebra, J. Funct.

Anal., 89, 1990, 106–136.

[2] Berman, S., Gao, Y. and Krylyuk, Y., Quantum tori and the structure of elliptic quasi-simple Lie algebras,
J. Funct. Anal., 135, 1996, 339–389.

[3] Gao, Y. and Zeng, Z., Hermitian representations of the extended affine Lie algebra ˜gl
2
(CQ), Adv. Math.,

207, 2006, 244–265.

[4] Moody, R. V., Rao, S. E. and Yokonuma, T., Toroidal Lie algebras and vertex representations, Geom.

Dedecata, 35, 1990, 283–307.

[5] Yamada, H., Extended affine Lie algebras and their vertex representations, Publ. Res. Inst. Math. Sci.,
25, 1989, 587–603.



138 R. C. Lü
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