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1 Introduction

In 1991 and 1993 respectively, Mather published two papers [1] and [2], which formed the

framework of Mather theory. Associated to the Lagrangian L− ηc, where ηc is a closed 1-form

such that [ηc] = c ∈ H1(M, R), he mainly considered the following sets:

Mather set M̃c: the union of the supports of invariant minimal measure Mc,

Aubry set Ãc: the union of the global c-static orbits,

Mañé set Ñc: the union of the global c-semi-static orbits.

We use Mc, Ac, and Nc to denote the standard projection of M̃c, Ãc, and Ñc from TM ×T

to M × T, respectively. Mather proved the following:

(1) M̃c ⊂ Ãc ⊂ Ñc.

(2) Aubry set has the Lipschitz graph property. The mapping π : Ãc → M ×T is injective.

Its inverse is Lipschitz, i.e., there exists a constant C, such that for each x, y ∈ Ãc, we have

dist(π−1(x), π−1(y)) ≤ Cdist(x, y).

(3) The mapping c 7→ Ñc is upper semi-continuous.

Generally speaking, the action variables of the orbits in the different Mañé set are different.

Then we may find the orbits whose action variables change sufficiently large by finding the

orbits which connect different Mañé sets associated to different c. In general case, we do not

know whether the connecting orbit exists, while Mather thought that if there is a c-equivalent

curve which connects cohomology classes c1 and c2, then there exists an orbit which connects

Ñc1
and Ñc2

(see [2]).

Manuscript received March 12, 2008. Published online February 18, 2009.
∗School of Mathematical Sciences, Fudan University, Shanghai 200433, China.
E-mail: xinxiang.lee@gmail.com yanjun@fudan.edu.cn

∗∗Project supported by the National Natural Science Foundation of China (No. 10601013), the National Basic
Research Program of China and the 973 Project of the Ministry of Science and Technology of China (No.
2007CB814804).



146 X. X. Li and J. Yan

It is quite important to find c-equivalent property in the proof of the existence of the

connecting orbits. In addition, the c-equivalent property is determined by the topological

structure of Mañé set. The continuity of barrier function with respect to c plays a very important

role in studying the topological property of Mañé sets. In this paper, we present a sufficient

condition which guarantees the continuity of the barrier function with respect to c. On the

other hand, we also give an example whose barrier function is discontinuous with respect to c

when it does not satisfy the given condition.

2 The Settings and Preliminary Results

Let M be a C∞ compact manifold and TM denote the tangent bundle of M . L : TM×R →

R is 1-period Cr (r ≥ 2) Lagrangian and satisfies the following hypotheses:

(1) Positive Definiteness For each m ∈ M , θ ∈ T, the restriction of L to TMm × θ is

strictly convex in the sense that its Hessian matrix is everywhere positive definite.

(2) Superlinear Growth Let ‖ · ‖ denote the norm associated to a Riemannian metric

on M . Then
L(v, θ)

‖v‖
→ +∞, as ‖v‖ → +∞,

where v ranges over TM and θ ∈ T. This equals that, for every C1, there exists C2, such that

L(v, θ) ≥ C1‖v‖ − C2.

In other words, for every C1 > 0, there exists C2 > 0, such that ‖v‖ ≥ C2 implies L(v, θ) ≥

C1‖v‖.

Since M is compact, this condition is independent of the choice of the Riemannian metric.

(3) Completeness of the Euler-Lagrange Flow Every maximal trajectory of Euler-

Lagrange vector field EL corresponding to L is defined for all time R. For every EL-invariant

probability measure µ on TM × T, the average action is defined by

A(µ) =

∫
Ldµ,

and the rotation vector ρ(µ) ∈ H1(M, R) is defined by the following equation:

〈c, ρ(µ)〉 =

∫
λcdµ, ∀ c ∈ H1(M, R), [λc] = c,

where the bracket side is the canonical pairing of H1(M, R) and H1(M, R).

Define

Ac(µ) = A(µ) − 〈c, ρ(µ)〉,

hc(m, m′) = min

∫ 1

0

(L − ηc)(dγ(t), t)dt − α(c),

where γ ranges over the set of absolutely continuous curves γ : [0, 1] → M , such that

γ(0) = m, γ(1) = m′,

and ηc is a smooth closed 1-form whose de Rham cohomology is c ∈ H1(M, R).
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Let

−α(c) = min{Ac(µ) | µ ∈ M, M is the collection of φL-invariant probability measures},

hn
c (ξ, η) = min

{ n−1∑

i=0

hc(mi, mi+1) : m0 = ξ, mn = η, and mi ∈ M for 0 ≤ i ≤ n
}

,

h∞
c (ξ, η) = lim inf

n→∞
hn

c (ξ, η), ∀ ξ, η ∈ M.

It is easy to see that

hc(ξ, η) ≤ hc(ξ, m) + hc(m, η).

Bc(ξ) , h∞
c (ξ, ξ) is called the barrier function of the Lagrange system. It has the following

properties:

Barrier function Bc(m) is a non-negative Lipschitz function on M and vanishes identically

on π(M̃c) ∩ (M × 0), where M̃c = suppMc (see [2–5]).

3 Main Results and Their Proofs

Theorem 3.1 If the minimal probability measures Mc0
is uniquely ergodic, then for each

m ∈ M , m′ ∈ M , the functions h∞
c (m, m′) and Bc(m) are continuous at c0 with respect to the

parameter c.

To prove this theorem, we need some lemmas.

Lemma 3.1 Let (· · · , mi, · · · ), mi ∈ M be a c-minimal configuration, and ω1, ω2 be two

ω-limit points of the configuration. Then

dc(ω1, ω2) , h∞
c (ω1, ω2) + h∞

c (ω2, ω1) = 0.

For details of the proof of the lemma, please refer to [2].

Corollary 3.1 For any two points x, y in Mather set Mc, we have dc(x, y) = 0, when

c-minimal probability measure set Mc is uniquely ergodic.

This is a direct consequence of Lemma 3.1.

Lemma 3.2 (A priori Compactness) (see [4, 5]) Consider a compact set Q ⊂ H1(M, R).

For any given c ∈ Q and every c-minimal curve γ : [a, b] → M of L+ ηc, there exists a constant

K such that, if b ≥ a + 1, then ‖dγ(t)‖ ≤ K, ∀ t ∈ [a, b].

Lemma 3.3 If Q is a compact subset of H1(M, R), then for any c ∈ Q, hc(m, ξ) is a

Lipschitz continuous function with a uniform Lipschitz constant.

For details of the proof of the lemma, please refer to [5].

Similarly, it is easy to show that hn
c (ξ, η) and h∞

c (ξ, η) are both Lipschitz continuous, and

they have the same Lipschitz constant as hc(ξ, η) (see [2]).

Proof of Theorem 3.1 Choose ηc, which is a smooth 1-form on TM , such that [ηc] = c ∈

H1(M, R) and it is continuous with respect to c. Let cn → c0, ηcn
→ ηc0

, and γn : [0,∞) → M

be a cn-minimal curve, such that γn(0) = m ∈ M . ω(γn) stands for the ω-limit set of γn. Then

dH(ω(γn),Mc0
) = inf{dist(x, y) : x ∈ ω(γn), y ∈ Mc0

} → 0, as n → ∞,
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where dist(x, y) denotes the distance between x and y induced by Riemann metric. Otherwise,

there exists a subsequence nk → ∞ and a constant δ > 0, such that

dH(ω(γnk
),Mc0

) > δ, ∀n.

Suppose that µnk
is the limit measure of γnk

(t). Then suppµnk
⊂ ω(γnk

). Let µ0 be an

accumulate point of µnk
, and further suppose that lim

k→∞
µnk

= µ0, in the sense of the vague

topology. It follows that µ0 is a c0-minimal measure and

dH(suppµ0,Mc0
) ≥ δ > 0.

We then obtain a contradiction with the assumption that Mc0
is uniquely ergodic. Hence,

dH(ωγn
,Mc0

) → 0, as n → ∞.

By Lemma 3.2, it follows that γ̇n(0) is contained in a compact set. Suppose that υ is a point

of accumulation of γ̇n(0). Obviously, the solution curve γυ(t) which has the initial velocity of υ

is a unidirectional c0-minimal curve. Hence, we can choose a subsequence {cnk
}∞k=1 (cnk

→ c0

as k → ∞) of {cn}∞n=1 and a unidirectional cnk
-minimal curve γnk

(t) such that γ̇nk
(0) → υ.

Let ξ, ξnk
be points of accumulation of γυ(t) and γnk

(t), respectively, that is to say,

∀ δ > 0, ∃T > 0, s.t. dist(γυ(T ), ξ) < δ.

By the uniquely ergodic property of Mc, we have

∀ η > 0, ∃K, s.t. dist(ξnk
, ξ) < δ, ∀ k > K.

By the continuous dependence of solution on initial value, when k > K, we have

dist(γnk
(t), γυ(t)) < η, ∀ t ∈ [0, T ],

dist(γ̇nk
(t), γ̇υ(t)) < η, ∀ t ∈ [0, T ].

Since α is continuous, when k > K, we also get

|α(cnk
) − α(c0)| < η.

As 1-form ηc is chosen to be continuous with respect to c, it follows that

|ηcn
k
− ηc0

| < η.

From Lemma 3.3, we obtain

|h∞
cn

k

(m, ξ) − h∞
cn

k

(m, ξnk
)| ≤ L‖ξ − ξnk

‖ ≤ L · δ. (3.1)

In addition,

h∞
cn

k

(m, ξnk
) = hT

cn
k

(m, γnk
(T )) + h∞

cn
k

(γnk
(T ), ξnk

).

As ξnk
and ξ are ω-limit points of γnk

(t) and γυ(t) respectively, by Lemma 3.1, we have

h∞
cn

k

(ξnk
, ξnk

) =
1

2
dcn

k
(ξnk

, ξnk
) = 0
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and

h∞
c0

(ξ, ξ) =
1

2
dc0

(ξ, ξ) = 0.

Thus, we obtain

|h∞
cn

k

(γnk
(T ), ξnk

)| = |h∞
cn

k

(γnk
(T ), ξnk

) − h∞
cn

k

(ξnk
, ξnk

)| ≤ L · ‖γnk
(T ) − ξnk

‖ ≤ L · δ, (3.2)

|h∞
c0

(γυ(T ), ξ)| = |h∞
c0

(γυ(T ), ξ) − h∞
c0

(ξ, ξ)| ≤ L · ‖γυ(T ) − ξ‖ ≤ L · δ. (3.3)

On the other side, we get

|hT
cn

k

(x, γnk
(T )) − hT

c0
(x, γυ(T ))|

=
∣∣∣
∫ T

0

(L − ηcn
k

+ α(cnk
))(dγcn

k
(t))dt −

∫ T

0

(L − ηc0
+ α(c))(dγυ(t), t)dt

∣∣∣

≤

∫ T

0

|L(dγυ(t), t) − L(dγnk
(t), t)|dt +

∫ T

0

|ηc0
(dγυ(t), t) − ηcn

k
(dγnk

(t), t)|dt

+ |α(c0) − α(cnk
)| · T

≤

∫ T

0

|L(dγυ(t), t) − L(dγnk
(t), t)|dt +

∫ T

0

|ηc0
(dγυ(t), t) − ηc0

(dγnk
(t), t)|dt

+

∫ T

0

|ηcn
k
(dγnk

(t), t) − ηc0
(dγnk

(t), t)|dt + |α(cnk
) − α(c0)| · T

≤ATη, (3.4)

where A = {sup(L̇(x, v)) + sup(η̇c)(x, υ) : x ∈ M, ‖υ‖ < K ′}+ 2, and K ′ is some real constant.

The last inequality above is ensured by Lemma 3.2, and η → 0 as k → ∞.

For each ǫ > 0, let δ and η be small enough, such that ATδ < ǫ
4 and L(δ + η) < ǫ

4 .

Combining (3.1)–(3.4) together, we have

|h∞
cn

k

(m, ξ) − h∞
c0

(m, ξ)| = |h∞
cn

k

(m, ξnk
) − h∞

c0
(m, ξ) + h∞

cn
k

(m, ξ) − h∞
cn

k

(m, ξnk
)|

≤ |h∞
cn

k

(m, ξnk
) − h∞

c0
(m, ξ)| + |h∞

cn
k

(m, ξ) − h∞
cn

k

(m, ξnk
)|

≤ |hT
cn

k

(m, γnk
(T )) − hT

c0
(m, γυ(T ))| + |h∞

cn
k

(γnk
(T ), ξnk

)|

+ |h∞
c0

(γυ(T ), ξ)| +
ǫ

4

≤
ǫ

4
+

ǫ

4
+

ǫ

4
+

ǫ

4
= ǫ.

Then we conclude that

|h∞
cn

(m, ξ) − h∞
c0

(m, ξ)| → 0, as cn → c0.

This completes the proof of the theorem.

Corollary 3.2 If the c-minimal probability measure set Mc0
is uniquely ergodic, then the

barrier function Bc(m) is continuous at c0 with respect to c.

This is a direct consequence of Theorem 3.1.
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Theorem 3.2 For any given two points m1, m2 ∈ Mc0
, it involves that dc0

(m1, m2) =

0. Then the barrier function Bc(m) is continuous at point c0 with respect to c, without the

assumption that Mc is uniquely ergodic.

The proof of this theorem is just the same as the proof of Theorem 3.1.

4 A Counterexample when Minimal Measures are not

Uniquely Ergodic

In this section, we present an example whose barrier function is discontinuous with respect

to c.

Consider the Lagrange system on T × R:

L(q1, q2; q̇1, q̇2, t) =
1

2
(q̇2

1 + q̇2
2) − ǫλ(q1)

(
q̇2 − 1 −

ǫ

2

)
− cos(2q1),

where λ( · ) is a smooth function satisfying the following condition:

λ|O1
= 1, λ|O2

= 0,

in which O1 and O2 are two open neighborhoods of 0 and π, respectively, and O1 ∩ O2 = ∅. If

ǫ = 0, the system

L0 =
1

2
(q̇2

1 + q̇2
2) − cos(2q1)

is an integrable system. For every c = (0, c2) ∈ H1(M, R), where 1
2 ≤ c2 ≤ 2, the support sets

of the c-minimal invariant probability measures Mc are included in the following two invariant

hyperbolic cylinders:

Γ1 : {(q1, q2; q̇1, q̇2, t) | q1 = 0 (mod 2π), q̇1 = 0, q̇2 = c2},

Γ2 : {(q1, q2; q̇1, q̇2, t) | q1 = π (mod 2π), q̇1 = 0, q̇2 = c2}.

By the structural stability of hyperbolic invariant manifold, there exists a δ1 > 0 such that if

|ǫ| < δ1, then the Lagrange system L has two invariant cylinders

Γ1
ǫ : {(q1, q2; q̇1, q̇2, t) | q1 = 0 (mod 2π), q̇1 = 0, q̇2 = c2 + ǫ},

Γ2
ǫ : {(q1, q2; q̇1, q̇2, t) | q1 = π (mod 2π), q̇1 = 0, q̇2 = c2}.

Lemma 4.1 There exists a δ > 0 such that, when |ε| < δ, we have

M̃c ⊂ Γ1
ε ∪ Γ2

ε

for every c = (0, c2) ∈ H1(M, R), where 1
2 ≤ c2 ≤ 2.

Proof Since Γ1 and Γ2 are two hyperbolic invariant cylinders, there exist two neighborhoods

Ω1 and Ω2 of Γ1 and Γ2, respectively. The flow φt
L0

does not have invariant sets on Ω1 \ Γ1

and Ω2 \ Γ2. For the same reason, the flow φt
L does not have any invariant sets on Ω1 \ Γ1

ε and

Ω2 \ Γ2
ε, when δ is small enough.

Let Ω1 = πΩ1 and Ω2 = πΩ2, where π : TT
2 × R → T

2 is the projection map. Since L0 is

an integrable system for any x ∈ T
2 \ (Ω1 ∪ Ω2) and c = (0, c2) ∈ H1(M, R) (1

2 ≤ c2 ≤ 2), we

then deduce that

lim
δ→0

Bc
L(x) → Bc

L0
(x) > 0.
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Consequently, we have Ac ∩ (T2 \ (Ω1 ∪Ω2)) = ∅. Since Mc ⊂ Ac, we also get Mc ∩ (T2 \ (Ω1 ∪

Ω2)) = ∅ and M̃c ⊂ (Ω1 ∪Ω2). Moreover, there are no other invariant sets except Γ1
ε and Γ2

ε in

Ω1 ∪ Ω2. So M̃c ⊂ (Γ1
ε ∪ Γ2

ε), namely, the support sets of the c-minimal invariant measure Mc

of the Lagrange system L are included in the invariant cylinder Γ1
ε ∪Γ2

ε. Thus we complete the

proof.

Suppose that the subsystems are L1 and L2 respectively, when the Lagrange system L is

restricted on the invariant subsets Γ1
ε and Γ2

ε. Let

−α1(c2) = inf
{ ∫

(L1 − ηc)dµ, µ ∈ M, suppµ ⊂ Γ1
ε, [ηc] = (0, c2)

}
,

−α2(c2) = inf
{ ∫

(L1 − ηc)dµ, µ ∈ M, suppµ ⊂ Γ2
ε, [ηc] = (0, c2)

}
.

By Lemma 4.1, we have Mc ⊂ Γ1
ε ∪ Γ2

ε. Let M̃c = M̃1
c ∪ M̃2

c , where M̃1
c ⊂ Γ1

ε, M̃
2
c ⊂ Γ2

ε, and

M̃i
c (i = 1, 2) can be empty set. Then

α(c) = max{α1(c2), α
2(c2)}.

However, it is easy to see that

α1(c2) =
1

2
c2
2 + ε(c2 − 1) + 1,

α2(c2) =
1

2
c2
2 + 1.

Obviously, there hold

α1(c2)





< α2(c2),
1

2
≤ c2 < 1,

= α2(c2), c2 = 1,

> α2(c2), 1 < c2 ≤ 2.

The above relationships have three probabilities. For c = (0, 1), Mather set M̃c has two ergodic

components M̃1
c ⊂ Γ1

ε and M̃2
c ⊂ Γ2

ε. In this situation, the system is not uniquely ergodic.

For c = (0, c2), where 1
2 ≤ c2 < 1, we have M̃1

c = ∅. So Mather set M̃c has only one ergodic

component M̃2
c ⊂ Γ2

ε. Namely, it is uniquely ergodic.

For c = (0, c2), where 1 < c2 ≤ 2, we have M̃2
c = ∅. So Mather set M̃c has one ergodic

component M̃1
c ⊂ Γ1

ε, and it is uniquely ergodic, too.

We claim that, ∀x ∈ M1
c = πM̃1

c , the barrier function Bc(x) is discontinuous at the point

c = (0, 1) with respect to c.

We are going to show the claim in the following two parts.

Part 1 In this part, we verify that

d(0,1)(x, y) = h∞
(0,1)(x, y) + h∞

(0,1)(y, x) > 0, ∀x ∈ M1
c , y ∈ M2

c , c = (0, 1).

Let Ω1 and Ω2 be neighborhoods of πΓ1
ε ⊂ T

2 and πΓ2
ε ⊂ T

2, respectively, and d(Ω1, Ω2) =

a > 0. By Lemma 3.2, for every minimal curve γ(t) which connects points x and y, its velocity

γ̇(t) has a uniform upper bound K. Consequently, there exists at least time T = a
K

that makes

γ(t) stay in T
2 \ (Ω1 ∪ Ω2). In addition,

L|T2\(Ω1∪Ω2)×[−K,K]×R > −
(1

2
c2 + 1

)
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and T
2\(Ω1∪Ω2) is compact. Therefore, there exists a δ > 0, such that (L+α(c))|T2\(Ω1∪Ω2) > δ,

and

hn
c (x, y) =

∫ n

0

(L + α(c))(γ(t), γ̇(t), t)dt ≥ δ · T > 0, ∀n.

Consequently,

h∞
c (x, y) = lim inf

n→∞
hn

c (x, y) ≥ δ · T > 0.

For the same reason, we also have h∞
c (y, x) > 0. So we obtain

d(0,1)(x, y) = h∞
(0,1)(x, y) + h∞

(0,1)(y, x) > 2δ · T > 0.

Part 2 For each x ∈ M1
(0,1), we want to prove that Bc(x) → d(0,1)(x, y) as c → (0, 1−).

As M2
(0,1) is an ergodic component of Lagrange system L, we have d(0,1)(y1, y2) = 0 for

any y1, y2 ∈ M2
(0,1). Moreover, when 1

2 ≤ c2 < 1, the c-minimal invariant measure set Mc is

uniquely ergodic with Mc = M2
c ⊂ πΓ2

ε ⊂ Ω2.

When c → 1, for each c-minimal curve γ, its ω-limit set is close enough to M2
c . Using the

same method as the proof of Theorem 3.1, we see that

Bc(x) → d(0, 1)(x, y), c → (0, 1−).

On the other hand, one can get x ∈ M1
(0,1) ⊂ M(0,1). Consequently, B(0,1)(x) = 0.

To sum up, we have

0 < lim
c→(0,1−)

Bc(x) = d(0,1)(x, y) 6= B(0,1)(x) = 0.

Namely, we have proved that the barrier function Bc(x) is discontinuous at c0 = (0, 1) with

respect to c.
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