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Abstract In this paper, the Kähler conditions of the Chern-Finsler connection in complex

Finsler geometry are studied, and it is proved that Kähler Finsler metrics are actually

strongly Kähler.
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1 Introduction

Complex Finsler manifolds are complex manifolds with complex Finsler metrics, which are

more general than Hermitian metrics. In recent years, the complex Finsler geometry has at-

tracted a renewed interest as examples of such metrics appear in a natural way in the geometric

theory of several complex variables and mathematical physics (see [1, 3, 4, 6]).

As is well known, in the usual Hermitian geometry, the vanishing of the torsion of the

Hermitian connection is equivalent to the metric being Kähler. In the complex Finsler geometry,

there is a Chern-Finsler connection associated to a strongly pseudoconvex Finsler metric F on

a complex manifold M . The torsions and curvatures of the Chern-Finsler connection enjoy

a number of nice properties (see [4]). Since the torsion of the Chern-Finsler connection has

a horizontal part and a mixed part, the situation for a strongly pseudoconvex Finsler metric

to be Kähler is a bit subtler. In many works, there are three kinds of metric notions called

respectively the strongly Kähler, Kähler and weakly Kähler according to the vanishing of some

parts of the torsion of the Chern-Finsler connection (see [1]).

The three Kähler conditions have their deep impact on complex Finsler geometry. In [1], a

Kobayashi rigidity result is proved for certain weakly Kähler Finsler metrics. Some great results

for Kähler Finsler metrics are then obtained in [2, 3]. Under the strongly Kähler hypothesis, a

Hodge decomposition theorem is verified in [6], and a version of Kodaira vanishing theorem is

recently shown in [5]. Therefore, it is important to understand the relations among the three

Kähler conditions. The main purpose of this note is to prove the following

Theorem 1.1 The Kähler Finsler metrics are actually strongly Kähler.

Hence, there are only two kinds of Kähler Finsler metrics with respect to the Chern-Finsler

connection in the complex Finsler geometry.
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On the other hand, the curvature of the Chern-Finsler connection has four parts, and we

define a complex analogue of the Landsberg curvature in real Finsler geometry, called the weak

hv-curvature. We shall prove the following

Theorem 1.2 If the weak hv-curvature of the Chern-Finsler connection of a complex

Finsler metric F vanishes identically, then F is weakly Kähler if and only if it is Kähler.

Hence, if F has vanishing hv-curvature, then all the three Kähler conditions are equivalent.

2 Chern-Finsler Connection

Let M be a complex manifold of complex dimension n. Denote the holomorphic tangent

bundle of M by π : T 1,0M → M . For a local complex coordinate system z = (z1, · · · , zn) on

M , a holomorphic tangent vector v of M is written as

v = vi∂i, ∂i :=
∂

∂zi
,

and we may take (z, v) = (z1, · · · , zn, v1, · · · , vn) as a local coordinate system for T 1,0M .

Throughout this paper, we shall use the following convention of the index range unless otherwise

stated:

1 ≤ i, j, k, · · · ≤ n.

Let M̃ = T 1,0M \ {0} denote T 1,0M without the zero section. {∂i, ∂̇j = ∂
∂vj } gives a local

holomorphic frame field of the holomorphic tangent bundle T 1,0M̃ of M̃ .

Definition 2.1 A complex Finsler metric on M is an upper continuous function F :

T 1,0M → [0, +∞) which satisfies the following conditions:

(1) G = F 2(z, v) ∈ C∞(M̃), that is, G is smooth in M̃ ;

(2) G(z, v) ≥ 0, where the equality holds if and only if v = 0;

(3) G(z, λv) = |λ|2G(z, v) for all (z, v) ∈ T 1,0M and λ ∈ C∗ = C \ {0}.

The pair (M, G) is called a complex Finsler manifold. A complex Finsler metric F is said

to be strongly pseudoconvex if the complex v-Hessian

(Gij) := (∂̇i∂̇jG), (2.1)

where ∂̇i = ∂
∂vi , ∂̇j = ∂

∂vj of G is positively definite on M̃ . In particular, if G(z, v) = hij(z)vivj

is a Hermitian metric on M , then G(z, v) defines a strongly pseudoconvex Finsler metric. Here

and from now on, the lower indices of G always mean to take derivatives, i.e., Gijk := ∂̇i∂̇j ∂̇kG.

And the indices after “;” are the derivatives with respect to z, i.e., Gi;j := ∂̇i∂jG.

The Chern-Finsler connection associated to a strongly pseudoconvex Finsler metric G = F 2

is defined as follows (see [1]). By setting

N i
k := GijGj;k (2.2)

with (Gij) the inverse of (Gkl), the horizontal vectors and vertical covectors can be defined by

δ

δzk
:=

∂

∂zk
− N i

k

∂

∂vi
, δvk := dvk + Nk

i dzi. (2.3)
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Then we have the following horizontal and vertical decomposition

TCM̃ = H⊕H⊕ V ⊕ V , T ∗

CM̃ = H∗ ⊕H∗ ⊕ V∗ ⊕ V∗, (2.4)

where H = span{ δ
δzi }, V = span{ ∂

∂vi } and H∗ = span{dzi}, V∗ = span{δvi}. A direct

computation will give δG
δzi = 0. The complex Finsler F can induce a Hermitian metric on the

holomorphic subbundle V . Namely, for any X = X i∂̇i, Y = Y i∂̇i ∈ V(z,v), their inner product

is defined as

〈X, Y 〉(z,v) := (∂∂G)(X, Y ) = Gik(z, v)X iY
k
.

Then the vertical bundle (V , M̃ , 〈 · , · 〉) becomes a Hermitian bundle. The Chern-Finsler con-

nection ∇ associated to F is just the Hermitian connection of (V , M̃). In other words, for any

X ∈ T 1,0M̃ and Y, Z ∈ Γ(V), we have

X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉. (2.5)

In a local coordinate system, the connection 1-forms are then given by

ωi
j := Gil∂Gjl = Γi

j;kdzk + Ci
jkδvk, (2.6)

where the connection coefficients can be expressed as

Γi
j;k := Gil

δGjl

δzk
, Ci

jk := Gil
∂Gjl

∂vk
. (2.7)

Using the isomorphism Φ : H → V with δ
δzi 7→ ∂

∂vi , one can naturally introduce a metric

and a connection on H by

〈X, Y 〉 := 〈Φ(X), Φ(Y )〉, ∇ZX := Φ−1(∇ZΦ(X)),

where X, Y ∈ Γ(H) and Z ∈ T 1,0M̃ . Then we will get a connection, also called the Chern-

Finsler connection, on the Whitney sum H ⊕ V which is just the holomorphic tangent bundle

of M̃ .

3 Strongly Kähler Versus Kähler

The Kähler conditions in the Finsler geometry share the same spirit with the Hermitian

geometry, that is, the vanishing of some torsion. The (2, 0)-torsion of the Chern-Finsler con-

nection is defined by

θ(X, Y ) := ∇XY −∇Y X − [X, Y ], X, Y ∈ H⊕ V . (3.1)

Definition 3.1 (see [1, §2.3.5]) Let F be a complex Finsler metric, and χ = viδ
δzi ∈ Γ(H)

be the radial horizontal field. We say that F is

(1) strongly Kähler, if θ(X, Y ) = 0 for any X, Y ∈ H;

(2) Kähler, if θ(X, χ) = 0 for any X ∈ H;

(3) weakly Kähler, if 〈θ(X, χ), χ〉 = 0 for any X ∈ H.
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In a local coordinate system, the torsion θ has the form

θ = (Γi
j;kdzj ∧ dzk + Ci

jkδvj ∧ dzk) ⊗
δ

δzi
. (3.2)

Hence F is strongly Kähler (resp. Kähler or weakly Kähler) if and only if

Γi
j;k = Γi

k;j (resp. Γi
j;kvk = Γi

k;jv
k or GiΓ

i
j;kvk = GiΓ

i
k;jv

k). (3.3)

Strongly Kähler Finsler metrics have nice properties, such as the existence of normal coordi-

nates, etc. Next, we will show that saying strongly Kähler is indeed equivalent to saying Kähler.

The following lemma is well-known.

Lemma 3.1 Γi
j;k = ∂̇jN

i
k and Γi

j;kvj = N i
k.

Proof According to (2.7), (2.3) and (2.2), one can obtain

Γi
j;k = GilδkGjl

= GilGjl;k − GilN
p
kGjlp

= ∂̇j(G
ilGl;k) − ∂̇j(G

il)Gl;k − GilN
p
k Gjlp

= ∂̇j(N
i
k) + GiqGplGpqjGl;k − GilN

p
kGjlp

= ∂̇j(N
i
k) + GiqGpqjN

p
k − GilN

p
kGjlp

= ∂̇j(N
i
k).

Notice N i
k(z, λv) = λN i

k(z, v) for any complex number λ. Then the Euler’s theorem will give

vjΓi
j;k = vj ∂̇jN

i
k = N i

k.

Theorem 3.1 A Kähler Finsler metric must be strongly Kähler.

Proof By the above lemma, we see

∂̇k(N i
jv

j) = ∂̇k(N i
j)v

j + N i
k = Γi

k;jv
j + N i

k.

If F is Kähler, then

∂̇k(N i
jv

j) = Γi
j;kvj + N i

k = 2N i
k.

Applying Lemma 3.1 again, we have

Γi
j;k = ∂̇j(N

i
k) =

1

2
∂̇j ∂̇k(N i

l v
l), (3.4)

which means that F is strongly Kähler.

This is really an unexpected result, and the Kähler conditions are now reduced to two types.

4 Kähler Versus Weakly Kähler

In this section, we will study the relation between Kähler and weakly Kähler. Being aware

of the decomposition (2.4), the curvature of the Chern-Finsler connection can be divided into

four parts, namely hh-, vh-, hv- and vv-curvatures (see [1]). The curvature forms {Ωi
j = ∂ωi

j}

can then be written in the form

Ωi
j = Ri

j;kl
dzk ∧ dzl + Si

jk;l
δvk ∧ dzl + P i

jl;k
dzk ∧ δvl + Qi

jkl
δvk ∧ δvl, (4.1)
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where

hh-part : Ri

j;kl
= −δl(Γ

i
j;k) − Ci

jsδl(N
s
k),

vh-part : Si

jk;l
= −δl(C

i
jk),

hv-part : P i

jl;k
= −∂̇l(Γ

i
j;k) − Ci

js∂̇l(N
s
k ),

vv-part : Qi

jkl
= −∂̇l(C

i
jk).

The hh-curvature is the Finslerian analogue of the curvature in Hermitian geometry. The

other three curvatures never appear for Hermitian metrics. One can verify that F is Hermitian

if and only if the vv-curvature vanishes. Here we will show a result for the hv-curvature. Let

us first give the following

Definition 4.1 Setting P i

jl
:= P i

jl;k
vk, we call {P i

jl
} the weak hv-curvature.

Comparing with the real Finsler geometry, one can see that the weak hv-curvature is an

analogue of the Landsberg curvature in the complex realm. It will be an interesting non-

Hermitian quantity. With this notion, we can state our result.

Theorem 4.1 If the weak hv-curvature of the Chern-Finsler connection of a complex

Finsler metric F vanishes identically, then F is Kähler if and only if it is weakly Kähler.

Proof Assume that F is weakly Kähler, i.e.,

Gi(Γ
i
j;k − Γi

k;j)v
k = 0.

Then the ∂̇l derivative will tell us

Gil(Γ
i
j;k − Γi

k;j)v
k = −Gi(∂̇lΓ

i
j;k − ∂̇lΓ

i
k;j)v

k

= −Gi(∂̇lΓ
i
j;k)vk + Gi∂̇l(Γ

i
k;jv

k)

= −Gi(∂̇lΓ
i
j;k)vk + Gi∂̇l(N

i
j)

= −Gi(∂̇lΓ
i
j;k)vk + ∂̇l(GiN

i
j) − GilN

i
j

= −Gi(∂̇lΓ
i
j;k)vk + ∂̇l(GiG

ipGp;j) − Gl;j

= −Gi(∂̇lΓ
i
j;k)vk. (4.2)

On the other hand, since

P i

jl
= −∂̇l(Γ

i
j;k)vk − Ci

js∂̇l(N
s
k)vk = 0, (4.3)

we have

0 = P i

jl
vj = −∂̇l(v

jΓi
j;k)vk − vjCi

js∂̇l(N
s
k)vk = −∂̇l(N

i
k)vk. (4.4)

Substituting (4.4) back into (4.3), we see that the right-hand side of (4.2) is in fact zero. This

leads to

Gil(Γ
i
j;k − Γi

k;j)v
k = 0,

which means that F is Kähler and hence strongly Kähler.

Corollary 4.1 If F has vanishing hv-curvature, then all the three Kähler conditions are

equivalent.
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Applying the maximum principle, the vanishing of hv-curvature will imply the linearity of

the connection {N i
k}. We should also remark here that the Kobayashi metrics, equivalently the

Carathéodory metrics, on all strongly convex domains are weakly Kähler (see [1]). It is still

open whether they are Kähler or not.
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