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Abstract The authors prove that the crossed product of an infinite dimensional simple

separable unital C
∗-algebra with stable rank one by an action of a finite group with the

tracial Rokhlin property has again stable rank one. It is also proved that the crossed

product of an infinite dimensional simple separable unital C
∗-algebra with real rank zero

by an action of a finite group with the tracial Rokhlin property has again real rank zero.
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1 Introduction

The Rokhlin property in ergodic theory was adopted to the context of von Neumann algebras

by A. Connes in [1]. It was adopted by R. Hermann and A. Ocneanu for UHF-algebras in [5].

M. Rordam [16] and A. Kishimoto [7] introduced the Rokhlin property to a much more general

context of C∗-algebras. More recently, N. C. Phillips and H. Osaka studied finite group actions

which satisfy certain type of Rokhlin property on some C∗-algebras in [12–15]. In [15], N. C.

Phillips proved that the crossed product of an infinite dimensional simple separable unital C∗-

algebra with tracial rank zero by an action of a finite group with the tracial Rokhlin property

again has tracial rank zero. In [12], H. Osaka and N. C. Phillips proved that if A is a simple

unital C∗-algebras with real rank zero and stable rank one such that the order on projections of

A is determined by traces, and α ∈ Aut(A) has the tracial Rokhlin property, then the crossed

product algebra C∗(Z, A, α) has stable rank one and real rank zero. Recently in [13], H. Osaka

and N. C. Phillips proved that for a separable unital C∗-algebra A, a finite group G, and an

action α : G → Aut(A) with the Rokhlin property, if A has stable rank one then the crossed

product algebra C∗(G,A, α) has stable rank one, and if A has real rank zero then the the

crossed product algebra C∗(G,A, α) has real rank zero.

In this paper, using the method and technique of N. C. Phillips, we could get the same result

of [13] under the weaker assumption with the Rokhlin property replaced by the tracial Rokhlin

property, i.e., we prove that the crossed product of an infinite dimensional simple separable
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unital C∗-algebra with stable rank one by an action of a finite group with the tracial Rokhlin

property has again stable rank one, and that the crossed product of an infinite dimensional

simple separable unital C∗-algebra with real rank zero by an action of a finite group with the

tracial Rokhlin property has again real rank zero.

2 Preliminaries and Definitions

A unital C∗-algebra A is said to have stable rank one, and written as tsr(A) = 1, if GL(A)

is dense in A, i.e., the set of invertible elements is dense in A.

A unital C∗-algebra A is said to have real rank zero, and written as RR(A) = 0, if the set

of invertible self-adjoint elements is dense in Asa.

We say that a C∗-algebra A has the property SP, if every nonzero hereditary C∗-subalgebra

of A contains a nonzero projection.

Let a and b be two positive elements in a C∗-algebra A. We write [a] ≤ [b], if there exists

a partial isometry v ∈ A∗∗, such that for every c ∈ Her(a), v∗c, cv∗ ∈ A, vv∗ = P[a], where P[a]

is the range projection in A∗∗, and v∗cv ∈ Her(b). We write [a] = [b], if v∗Her(a)v = Her(b).

Let n be a positive integer. We write n[a] ≤ [b], if there are n mutually orthogonal positive

elements b1, b2, · · · , bn ∈ Her(b) such that [a] ≤ [bi], i = 1, 2, · · · , n.

Let 0 < σ1 < σ2 ≤ 1 be two positive numbers. Define

fσ2

σ1
(t) =















1, if t ≥ σ2,
t− σ1

σ2 − σ1
, if σ1 ≤ t ≤ σ2,

0, if 0 < t ≤ σ1.

Definition 2.1 (see [2, Definition 1.1]) A unital C∗-algebra A is said to have tracial stable

rank one if for any ε > 0, any finite subset F ⊆ A containing a nonzero element b ≥ 0, any

0 < σ3 < σ4 < σ1 < σ2 < 1 and any integer n > 0, there exist a nonzero projection p ∈ A and

a C∗-algebra B of A with 1B = p and tsr(B) = 1, such that

(1) ‖xp− px‖ < ε for all x ∈ F,

(2) pxp ∈ε B for all x ∈ F,

(3) n[1 − p] ≤ [p], and n[fσ2

σ1
((1 − p)b(1 − p))] ≤ [fσ4

σ3
(pbp)].

If A has tracial stable rank one, we will write Tsr(A) = 1.

Definition 2.2 (see [17, Definition 1.4]) A unital C∗-algebra A is said to have tracial real

rank zero, if for any ε > 0, any finite subset F ⊆ A containing a nonzero element b ≥ 0, any

0 < σ3 < σ4 < σ1 < σ2 < 1 and any integer n > 0, there exist a nonzero projection p ∈ A and

a C∗-algebra B of A with 1B = p and RR(B) = 0, such that

(1) ‖xp− px‖ < ε for all x ∈ F,

(2) pxp ∈ε B for all x ∈ F,

(3) n[1 − p] ≤ [p], and n[fσ2

σ1
((1 − p)b(1 − p))] ≤ [fσ4

σ3
(pbp)].

If A has tracial real rank zero, we will write TRR(A) = 0.

Definition 2.3 (see [15, Definition 1.2]) Let A be an infinite dimensional simple separable

unital C∗-algebra, and α : G → Aut(A) be an action of a finite group G on A. We say that α

has the tracial Rokhlin property, if for any finite set F ⊆ A, any ε > 0 and any positive element

x ∈ A with ‖x‖ = 1, there are mutually orthogonal projections eg ∈ A for g ∈ G such that
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(1) ‖αg(eh) − egh‖ < ε for all g, h ∈ G,

(2) ‖ega− aeg‖ < ε for all g ∈ G and a ∈ F,

(3) With e =
∑

g∈G

eg, the projection 1− e is Murray-von Neumann equivalent to a projection

in the hereditary subalgebra of A generated by x,

(4) With e as in (3), we have ‖exe‖ > 1 − ε.

Definition 2.4 (see [15, Definition 1.1]) Let A be an infinite dimensional simple separable

unital C∗-algebra, and α : G → Aut(A) be an action of a finite group G on A. We say that

α has the strict Rokhlin property (also called the Rokhlin property in [13]), if for any finite set

F ⊆ A and any ε > 0, there are mutually orthogonal projections eg ∈ A for g ∈ G such that

(1) ‖αg(eh) − egh‖ < ε for all g, h ∈ G,

(2) ‖ega− aeg‖ < ε for all g ∈ G and a ∈ F,

(3)
∑

g∈G

eg = 1.

Generally speaking, the tracial Rokhlin property does not imply the strict Rokhlin property

even in a simple case (see [15]).

Theorem 2.1 (see [15, Corollary 1.6 and Lemma 1.13]) Let A be an infinite dimensional

simple unital C∗-algebra, and α : G→ Aut(A) be an action of a finite group G on A which has

the tracial Rokhlin property. Then

(1) C∗(G,A, α) is simple,

(2) A has the property SP or α has the strict Rokhlin property.

Theorem 2.2 (see [13, Proposition 3.11]) Let A be an infinite dimensional separable unital

C∗-algebra, and let α : G→ Aut(A) be an action of a finite group G on A which has the strict

Rokhlin property. Then

(1) If A has stable rank one, then so does C∗(G,A, α),

(2) If A has real rank zero, then so does C∗(G,A, α).

3 The Main Results

Lemma 3.1 (see [15, Proposition 1.12]) Let A be an infinite dimensional simple separable

unital C∗-algebra with the property SP, and α : G→ Aut(A) be an action of a finite group G on

A, such that C∗(G,A, α) is also simple. Let B ⊆ C∗(G,A, α) be a nonzero hereditary subalgebra.

Then there exists a nonzero projection p ∈ A which is Murray-von Neumann equivalent in

C∗(G,A, α) to a projection in B.

Lemma 3.2 (see [15, Lemma 1.17]) Let A be an infinite dimensional finite simple separable

unital C∗-algebra, and α : G → Aut(A) be an action of a finite group G on A which has the

tracial Rokhlin property. Let F ⊆ A be finite, ε > 0, and let x ∈ A be a positive element with

‖x‖ = 1. Then there are mutually orthogonal projections eg ∈ A for g ∈ G such that

(1) ‖αg(eh) − egh‖ < ε for all g, h ∈ G,

(2) ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F,

(3) The projection e =
∑

g∈G

eg is α invariant, i.e., αg(e) = e for all g ∈ G,



182 Q. Z. Fan and X. C. Fang

(4) With e as in (3), the projection 1−e is Murray-von Neumann equivalent to a projection

in the hereditary subalgebra of A generated by x,

(5) With e as in (3), we have ‖exe‖ > 1 − ε.

Lemma 3.3 (see [15, Lemma 2.1]) Let n ∈ N, and (ei,j)1≤j,k≤n be a system of matrix

units for Mn. For every ε > 0, there is δ > 0 such that, whenever B is a unital C∗-algebra,

and wj,k, for 1 ≤ j, k ≤ n, are elements of B,

(1) ‖w∗
j,k − wk,j‖ < δ for 1 ≤ j, k ≤ n,

(2) ‖wj1,k1
wj2,k2

− δj2,k1
wj1,k2

‖ < δ for 1 ≤ j1, j2, k1, k2 ≤ n,

(3) wj,j are orthogonal projections with
n
∑

j=1

wj,j = 1.

Then there exists a unital homomorphism ϕ : Mn → B, such that ϕ(ej,j) = wj,j for 1 ≤ j ≤

n and ‖ϕ(ej,k) − wj,k‖ < ε for 1 ≤ j, k ≤ n.

Lemma 3.4 (see [4, Theorem 3.4]) Let A be a simple unital C∗-algebra. Then the following

are equivalent:

(1) For any ε > 0 and any finite subset F ⊆ A containing a nonzero positive element b ≥ 0,

there exist a nonzero projection p ∈ A and a C∗-algebra B of A with 1B = p and tsr(B) = 1,

such that ‖xp− px‖ < ε for all x ∈ F , pxp ∈ε B, for all x ∈ F , and [1 − p] ≤ [b],

(2) tsr(A) = 1,

(3) Tsr(A) = 1.

Lemma 3.5 (see [17, Theorem 3.3]) Let A be a simple unital C∗-algebra. Then the fol-

lowing are equivalent:

(1) For any ε > 0 and any finite subset F ⊆ A containing a nonzero positive element b ≥ 0,

there exist a nonzero projection p ∈ A and a C∗-algebra B of A with 1B = p and RR(B) = 0,

such that ‖xp− px‖ < ε for all x ∈ F , pxp ∈ε B, for all x ∈ F , and [1 − p] ≤ [b],

(2) RR(A) = 0,

(3) TRR(A) = 0.

Theorem 3.1 Let A be an infinite dimensional simple separable unital C∗-algebra with

stable rank one. Let α : G → Aut(A) be an action of a finite group G on A which has the

tracial Rokhlin property. Then the crossed product algebra C∗(G,A, α) has stable rank one.

Proof By Theorem 2.1(2), A has the property SP or α has the strict Rokhlin property. We

prove this theorem by two steps. Firstly, we suppose that A has the property SP. By Theorem

2.1(1), C∗(G,A, α) is a simple C∗-algebra.

Suppose G = {g1, g2, · · · , gm}, where g1 is the unit of G. By Lemma 3.4, we need to show

that for any finite subset S of the form S = F ∪ {ugi
: 1 ≤ i ≤ m}, where F is a finite

subset of the unit ball of A and ugi
∈ C∗(G,A, α) is the canonical unitary implementing the

automorphism αgi
, any ε > 0 and any nonzero positive element b ∈ C∗(G,A, α), there exist a

C∗-subalgebra D ⊆ C∗(G,A, α) and a projection p ∈ C∗(G,A, α) with 1D = p and tsr(D) = 1,

such that

(1) ‖pa− ap‖ < ε for any a ∈ S,

(2) pxp ∈ε D for any a ∈ S,

(3) [1A − p] ≤ [b].
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Since C∗-algebra A has the property SP, by Lemma 3.1 there exists a nonzero projection

r ∈ A which is Murray-von Neumann equivalent to a projection in bC∗(G,A, α)b, i.e., [r] ≤ [b].

By [9, Lemma 3.5.7], there are orthogonal nonzero projections r1, r2 ∈ A such that r1, r2 ≤ r.

Then we have [r1] + [r2] = [r1 + r2] ≤ [r].

Set δ = ε
16m

. Choose η > 0 according to Lemma 3.3 for m given above and δ in place of

ε. Moreover we may require η < ε
8m(m+1) . Applying Lemma 3.2 to α with F given above, η in

place with ε, and r1 in place of x, we have projections egi
∈ A for 1 ≤ i ≤ m, such that

(1)′ ‖αgi
(egj

) − egigj
‖ < η for any 1 ≤ i, j ≤ m,

(2)′ ‖egi
a− aegi

‖ < η for any 1 ≤ i ≤ m and any a ∈ F,

(3)′ ugi
eu∗gi

= αgi
(e) = e for every 1 ≤ i ≤ m, where e =

m
∑

i=1

egi
,

(4)′ 1A − e � r1.

By (1)′ and (2)′, we have ‖ea − ae‖ ≤
m
∑

i=1

‖egi
a − aegi

‖ < mη. Define wgi,gj
= ugig

−1

j
egj

for every 1 ≤ i, j ≤ m. We claim that the wgi,gj
∈ eC∗(G,A, α)e (1 ≤ i, j ≤ m) satisfy the

conditions in Lemma 3.3. We prove it as follows:

‖w∗
gi,gj

− wgj ,gi
‖ = ‖egj

(ugig
−1

j
)∗ − ugig

−1

j
egi

‖

≤ ‖ugig
−1

j
egj

(ugig
−1

j
)∗ − egi

‖

= ‖αgig
−1

j
(egj

) − egi
‖ < η.

Moreover, using egi
egj

= δgi,gj
egj

, we have

‖wgi,gj
wgk,gl

− δgk,gj
wgi,gl

‖ = ‖ugig
−1

j
egj
ugkg

−1

l
egl

− δgk,gj
ugig

−1

l
egl

‖

= ‖ugig
−1

j
egj
ugkg

−1

l
egl

− ugig
−1

j
gkg

−1

l
eglg

−1

k
gj
egl

‖

= ‖ugig
−1

j
gkg

−1

l
((ugkg

−1

l
)∗egj

ugkg
−1

l
− egkg

−1

l
gj

)egl
‖ < η.

Finally, we have
m
∑

i=1

wgi,gi
= e. This proves the claim.

Let (fij) (1 ≤ i, j ≤ m) be a system of matrix units for Mm. By Lemma 3.3, there

exists a unital homomorphism ψ0 : Mm → eC∗(G,A, α)e such that ‖ψ0(fij) − wgi,gj
‖ < δ

for all 1 ≤ i, j ≤ m, and ψ0(fii) = egi
for all 1 ≤ i ≤ m. Now we define a unital injective

homomorphism ψ : Mm ⊗ eg1
Aeg1

→ eC∗(G,A, α)e by

ψ(fij ⊗ a) = ψ0(fi1)aψ0(fi1)

for all 1 ≤ i, j ≤ m and a ∈ eg1
Aeg1

. Then

ψ(fij ⊗ eg1
) = ψ0(fi1)eg1

ψ0(f1j) = ψ0(fij) = egi
ψ0(fij)egj

,

and so ψ(1Mm
⊗ eg1

) = e. Let ki,j be the integer such that gki,j
= gigj . For 1 ≤ i ≤ m, we have

∥

∥

∥
eugi

e− ψ
(

m
∑

j=1

f(ki,j)j ⊗ eg1

)∥

∥

∥
=

∥

∥

∥
eugi

e−

m
∑

j=1

ψ0(f(ki,j)j)
∥

∥

∥
≤

m
∑

j=1

‖ugi
egj

− ψ0(f(ki,j)j)‖

=

m
∑

j=1

‖wgigj ,gj
− ψ0(f(ki,j)j)‖ < mδ ≤

ε

4
.
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Now let a ∈ F . Set

c =

m
∑

i=1

fii ⊗ eg1
α−1

gi
(a)eg1

∈Mm ⊗ eg1
Aeg1

.

Using ‖egi
aegj

‖ ≤ ‖egi
a− aegi

‖ + ‖aegi
egj

‖, we have

∥

∥

∥
eae−

m
∑

i=1

egi
aegi

∥

∥

∥
≤

∑

i6=j

‖egi
aegj

‖ < m(m− 1)η.

Using the inequity above and the inequalities

‖ψ0(fi1)eg1
− ugi

eg1
‖ < δ,

‖eg1
α−1

gi
(a)eg1

− α−1
gi

(egi
aegi

)‖ < 2η,

we have

‖eae− ψ(c)‖ =
∥

∥

∥
eae−

m
∑

i=1

ψ0(fi1)eg1
α−1

gi
(a)eg1

ψ0(f1i)
∥

∥

∥

< 2mδ +
∥

∥

∥
eae−

m
∑

i=1

ugi
eg1
α−1

gi
(a)eg1

u∗gi

∥

∥

∥

< 2mδ + 2mη +
∥

∥

∥
eae−

m
∑

i=1

ugi
α−1

gi
(egi

aegi
)u∗gi

∥

∥

∥

< 2mδ + 2mη +m(m− 1)η ≤
ε

4
.

So there is a finite set T ⊆ Mm ⊗ eg1
Aeg1

such that for every a ∈ S = F ∪ {ugi
: 1 ≤ i ≤ m},

there is a c ∈ T , such that ‖ψ(c) − eae‖ < ε
4 . Furthermore, ψ has the property that if

a ∈ eg1
Aeg1

, then ψ(f11⊗a) = a. By [9, Lemma 3.5.6], there are equivalent nonzero projections

s1, s2 ∈ A such that s1 ≤ eg1
and s2 ≤ r2. Since Mm ⊗ eg1

Aeg1
is a simple C∗-algebra and

tsr(Mm ⊗ eg1
Aeg1

) = 1, by Lemma 3.4 there exist a projection q ∈Mm ⊗ eg1
Aeg1

and a unital

subalgebra D0 ⊆ q(Mm ⊗ eg1
Aeg1

)q with tsr(D0) = 1, such that

(1) ‖qc− cq‖ < ε
4 for all c ∈ T,

(2) For every c ∈ T , there exists a d ∈ D0 with ‖qcq − d‖ < ε
4 ,

(3) 1Mm
⊗ eg1

− q � f11 ⊗ s1 in Mm ⊗ eg1
Aeg1

.

Take p = ψ(q), and set D = ψ(D0), which is a unital subalgebra of pC∗(G,A, α)p. Then

e− p = ψ(1Mm
⊗ eg1

− q) � ψ(f11 ⊗ s1) = s1 ∼ s2. Since ψ is injective, we have tsr(D) = 1.

Let a ∈ S. Choose c ∈ T , such that ‖ψ(c) − eae‖ < ε
4 . Then, by using pe = ψ(q)ψ(1Mm

⊗

eg1
) = ep = p, we have

‖pa− ap‖ ≤ 2‖ea− ae‖ + ‖peae− eaep‖

≤ 2‖ea− ae‖ + 2‖eae− ψ(c)‖ + ‖qb− bq‖

< 2mδ + 2
ε

4
+
ε

4
≤ ε.

Furthermore, choosing d ∈ D0 such that ‖qcq − d‖ < ε
4 , we see that the element ψ(d) ∈ D

satisfies

‖pap− ψ(d)‖ ≤ ‖eae− ψ(c)‖ + ‖qcq − d‖ <
ε

4
+
ε

4
≤ ε.
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Finally, in C∗(G,A, α), we have

[1A − p] = [(1A − e)] + [(e− p)] ≤ [r1] + [s1] = [r1] + [s2] ≤ [r1] + [r2] ≤ [r] ≤ [b].

So we have [1A − p] ≤ [b].

Secondly, we suppose that α has the strict Rokhlin property. By Theorem 2.2, we have

tsr(C∗(G,A, α)) = 1.

Theorem 3.2 Let A be an infinite dimensional simple separable unital C∗-algebra with real

rank zero. Let α : G → Aut(A) be an action of a finite group G on A which has the tracial

Rokhlin property. Then the crossed product algebra C∗(G,A, α) has real rank zero.

Proof By Theorem 2.1(1), C∗(G,A, α) is a simple C∗-algebra.

Suppose that G = {g1, g2, · · · , gm}, where g1 is the unit of G. By Lemma 3.5, we need to

show that for any finite subset S of the form S = F ∪ {ugi
: 1 ≤ i ≤ m}, where F is a finite

subset of the unit ball of A and ugi
∈ C∗(G,A, α) is the canonical unitary implementing the

automorphism αgi
, any ε > 0 and any nonzero positive element b ∈ C∗(G,A, α), there exist a

C∗-subalgebra D ⊆ C∗(G,A, α) and a projection p ∈ C∗(G,A, α) with 1D = p and RR(D) = 0,

such that

(1) ‖pa− ap‖ < ε for any a ∈ S,

(2) pxp ∈ε D for any a ∈ S,

(3) [1A − p] ≤ [b].

Since the C∗-algebra A has the property SP, by Lemma 3.1 there exists a nonzero projection

r ∈ A which is Murray-von Neumann equivalent to a projection in bC∗(G,A, α)b, i.e., [r] ≤ [b].

By [9, Lemma 3.5.7], there are orthogonal nonzero projections r1, r2 ∈ A, such that r1, r2 ≤ r.

Then we have [r1] + [r2] ≤ [r].

Set δ = ε
16m

. Choose η > 0 according to Lemma 3.3 for m given above and δ in place of

ε. Moreover we may require η < ε
8m(m+1) . Applying Lemma 3.2 to α with F given above, η in

place of ε, and r1 in place of x, we have projections egi
∈ A for 1 ≤ i ≤ m, such that

(1)′ ‖αgi
(egj

) − egigj
‖ < η for any 1 ≤ i, j ≤ m,

(2)′ ‖egi
a− aegi

‖ < η for any 1 ≤ i ≤ m and any a ∈ F,

(3)′ ugi
eu∗gi

= αgi
(e) = e for every 1 ≤ i ≤ m, where e =

m
∑

i=1

egi
,

(4)′ 1A − e � r1.

By (1)′ and (2)′, we have ‖ea− ae‖ ≤
m
∑

i=1

‖egi
a− aegi

‖ < mη. Define wgi,gj
= ugig

−1

j
egj

for

every 1 ≤ i, j ≤ m. Using the same estimates as in the proof of Theorem 3.1, we find a unital

injective homomorphism ψ : Mm⊗eg1
Aeg1

→ eC∗(G,A, α)e and a finite set T ⊆Mm⊗eg1
Aeg1

,

such that for any a ∈ S, there is a c ∈ T , such that ‖ψ(c) − eae‖ < ε
4 . Furthermore, ψ has

the property that if a ∈ eg1
Aeg1

, then ϕ(f11 ⊗ a) = a, where f11 ∈Mn denotes the usual (1, 1)

matrix unit. By [9, Lemma 3.5.6], there are equivalent nonzero projections s1, s2 ∈ A such that

s1 ≤ eg1
and s2 ≤ r2. Then we have [s1] = [s2] ≤ [r2]. Since RR(Mm⊗eg1

Aeg1
) = 0, by Lemma

3.5 there are projection q ∈Mm ⊗ eg1
Aeg1

and a unital subalgebra D0 ⊆ qMm ⊗ eg1
Aeg1

q with

1D0
= q and RR(D0) = 0, such that

(1) ‖qc− cq‖ < ε
4 for all c ∈ T,

(2) For every c ∈ T , there exists a d ∈ D0 with ‖qcq − d‖ < ε
4 ,

(3) 1Mm
⊗ eg1

− q � f11 ⊗ s1 in Mm ⊗ eg1
Aeg1

.
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Take p = ψ(q), and set D = ψ(D0), which is a unital subalgebra of pC∗(G,A, α)p. Then

e− p = ψ(1Mm
⊗ eg1

− q) � ψ(f11 ⊗ s1) = s1 ∼ s2. Since ψ is injective, we have RR(D) = 0.

Let a ∈ S. Choose c ∈ T such that ‖ψ(c) − eae‖ < ε
4 . Then, by using pe = ψ(q)ψ(1Mm

⊗

eg1
) = ep = p, we have

‖pa− ap‖ ≤ 2‖ea− ae‖ + ‖peae− eaep‖

≤ 2‖ea− ae‖ + 2‖eae− ψ(c)‖ + ‖qb− bq‖

< 2mδ + 2
ε

4
+
ε

4
≤ ε.

Furthermore, chosen d ∈ D0 such that ‖qcq − d‖ < ε
4 , the element ψ(d) ∈ D satisfies

‖pap− ψ(d)‖ ≤ ‖eae− ψ(c)‖ + ‖qcq − d‖ <
ε

4
+
ε

4
≤ ε.

Finally, in C∗(G,A, α), we have

[1A − p] = [(1A − e)] + [(e− p)] ≤ [r1] + [s1] = [r1] + [s2] ≤ [r1] + [r2] ≤ [r] ≤ [b].

So we have [1A − p] ≤ [b].
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