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Dynamics of a Rational Difference Equation

Elmetwally M. ELABBASY* Elsayed M. ELSAYED*

Abstract The authors investigate the global behavior of the solutions of the difference

equation
ATn—1Tn—k

bTr—p + CTn—q’
where the initial conditions x_,,x—,41,x—r12, -+ ,Zo are arbitrary positive real numbers,
r = max{l, k, p,q} is a nonnegative integer and a, b, ¢ are positive constants. Some special
cases of this equation are also studied in this paper.

Tp41 = n=0,1,---,
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1 Introduction

In this paper, we deal with some properties of the solutions of the recursive sequence

xn+1:%, n=0,1,---, (1.1)
where the initial conditions z_,,x_,41,2_,42,--- , 2 are arbitrary positive real numbers, r =
max{l, k,p,q} is a nonnegative integer and a,b, ¢ are positive constants. Also, we study some
special cases of equation (1.1).

Here, we recall some notations and results which will be useful in our investigation.

Let I be some interval of real numbers and
f:I kLT

be a continuously differentiable function. Then for every set of initial conditions z_j, x_f41,-- -,
xg € I, the difference equation

Tn+1 :f(CCn,Infl,"' axnfk); n:O,l,--- (12)

has a unique solution {z,}2° _, (see [15]).

A point T € I is called an equilibrium point of equation (1.2) if
T = f(fafv 55)

That is, z, = T, for n > 0, is a solution of equation (1.2), or equivalently, Z is a fixed point of

f.
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Definition 1.1 (Stability) (i) The equilibrium point T of equation (1.2) is locally stable if
for every e > 0, there exists 6 > 0 such that for all x_p,x_jy1,-+ ,x_1,20 € I with

| —F| + |2op+1 — T+ -+ w0 — F| <0,

we have

|z, —Z| <€ foralln > —k.

(ii) The equilibrium point T of equation (1.2) is locally asymptotically stable if T is a locally
stable solution of equation (1.2) and there exists v > 0, such that for all ©_j,x_j11, - ,2_1,
xg € I with

|T—k =T+ k41 —F[+ -+ [0 — T <,
we have

lim z, = 7.
n—oo

(iii) The equilibrium point T of equation (1.2) is a global attractor if for all x_j, i1, -,
x_1,x0 € I, we have

lim z, = 7.
n—oo

(iv) The equilibrium point T of equation (1.2) is globally asymptotically stable if T is locally
stable, and T is also a global attractor of equation (1.2).

(v) The equilibrium point T of equation (1.2) is unstable if T is not locally stable.

The linearized equation of equation (1.2) about the equilibrium T is the linear difference

equation
Ynt1 =Y Mynf (1.3)
Theorem 1.1 (see [14]) Assume that p,q € R and k € {0,1,2,---}. Then
lpl+lql <1
s a sufficient condition for the asymptotic stability of the difference equation
Tn+1 +PTn + T =0, n=01,---.
Remark 1.1 Theorem 1.1 can be easily extended to a general linear equation of the form
Tntk +P1Tnyk—1+ -+ pexn =0, n=01,---, (1.4)

where py1,pa,---,pr € R and k € {1,2,---}. Then equation (1.4) is asymptotically stable
provided that

k
Z|pz| <L
i=1

Definition 1.2 (Fibonacci Sequence) The sequence {F,}20_ o =1{1,2,3,5,8,13,---}, i.e.,
Fo=F, 1+ F, 2, m>0,F =0, F_1 =1, is called Fibonacci Sequence.
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Solutions of difference equations, periodicity, stability and boundedness of solutions to ab-
stract difference equations have been discussed by many authors, e.g., Elabbasy et al. [9]
investigated the global stability, periodicity character and gave the solution of special case of

the following recursive sequence

bx,,
Tpyl = ALy — ———————.
CTy — dTp—1

Elabbasy et al. [10] investigated the global stability, boundedness, periodicity character and
gave the solution of some special cases of the difference equation

QALn—k

Tn+1 = 7]@
ﬁ + 0 H Ln—i
=0

In [8], E. M. Elabbasy et al. investigated the global stability character, boundedness and the
periodicity of solutions of the difference equation

ATy + ﬁxn—l + VLn—2
Az, + Bxyp_1 4+ Cxyso

Tn+1 =
Yang et al. [20] investigated the invariant intervals, the global attractivity of equilibrium points,
and the asymptotic behavior of the solutions of the recursive sequence

aTp—1 + brp_o

Tnt1 = .
c+drn_1Tp_2

Cinar [5-7] has got the solutions of the following difference equations

Tpy1 = —n7L
1+ TnTn—1
Tpy1 = ——n7t
-1+ LnTp—1
o aTp—1
Tnt1 = 14 brpTn_1

Alogeili [1] obtained the form of the solutions of the difference equation

Tp—1

Tpt] = ———.
4 — TpTp—1

For some related works see [1-20].

The paper proceeds as follows. In Section 2 we show that when 3a < (b + ¢), the equilib-
rium point of equation (1.1) is locally asymptotically stable. In Section 3 we prove that the
equilibrium point of equation (1.1) is a global attractor. In Section 4 we give the solutions of
some special cases of equation (1.1) and give numerical examples of each case. The solutions
obtained are plotted in (n,z,)-plane by using Matlab 6.5.

2 Local Stability of Equation (1.1)

In this section, we investigate the local stability character of the solutions of equation (1.1).
equation (1.1) has a unique positive equilibrium point and is given by
az>
bT + T

T =
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If a # b + ¢, then the unique equilibrium point is 7 = 0.
Let f:(0,00)* — (0,00) be a function defined by

auv

flu,v,w, z) = ot os (2.1)
Therefore it follows that
av
fu(u,v,w, 2) = m,
au
folu,v,w,2) = m,
—bauv
fw(u,v,w, 2) = m,
—cauv
fa(u,v,w, 2) = m
We see that
o a
fu(Z,T,7,T) = ek
a
fo(@, 7,7, T) = bro)
—ab
fw (@, T, Z,T) = CFEk
—ac
1(Z, T, Z,T) = FE
The linearized equation of equation (1.1) about T is
a a ab ac
Yn+1 + mynfl + mynfk - mynfp - myn*q =0. (2.2)

Theorem 2.1 Assume that
3a < (b+c).

Then the equilibrium point of equation (1.1) is locally asymptotically stable.

Proof It follows by Theorem 1.1 that equation (2.2) is asymptotically stable if

wial +aral o el <1
b+l "I ( R

b+c) b+c)? (b+c
or
2a n a <1
(b+c¢) (b+c) ’
and so

This completes the proof.
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3 Global Attractor of the Equilibrium Point of Equation (1.1)

In this section, we investigate the global attractivity character of solutions of equation (1.1).
We give the following theorem which is a minor modification of [15, Theorem A.0.2].

Theorem 3.1 Let [a,b] be an interval of real numbers and assume that
f:la, b — [a, b]

18 a continuous function satisfying the following properties:

(i) f(x1,22, - ,xK41) s non-decreasing in any two components (for example x,, x,) for
each x, (r #t,y) in [a,b] and non-increasing in the remaining components for each x;, x, in
0.,

(ii) m = M once (m, M) € [a,b] X [a,b] is a solution of the system

m:f(M7M7 aMamaMa"' 7M7m7M7"' aMaM)v

M:f(m7m7"' 7m7M7m7"' 7m7M7m7"' 7m7m)'

Then equation (1.2) has a unique equilibrium T € [a,b] and every solution of equation (1.2)
converges to T.

Proof Set
mo = a, MQ = b,
and for each i =1,2,---, set
M; = f(mi—y,mi—1, - mu_1, Mi_y,miq, -+ ymi—1, Mi_1,mi_1,- ,mi—1,mi—1),

mi = f(Mi—1, M1, M—1,mij—1, M1, -, My_1,mi_1,M;_q,-- , M1, M;_1).

Now observe that for each 7 > 0,

a=mg<m; <---<my < <M< <My < Mg = b,

and

m; <ax, <M; forp>(k+1)i+1.
Set

m= lim m; and M = lim M;.
Then

M > limsup x; > liminf z; > m,
17— 00 10

and by the continuity of f,

m:f(M7M7 7M7m7M7"' 7M7m7M7"' 7M7M)7

M:f(mvmv"' amaMama"' 7m7M7m7"' 7m7m)'

In view of (ii),

from which the result follows.
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Theorem 3.2 The equilibrium point T of equation (1.1) is a global attractor.

Proof Let r, s be nonnegative real numbers and assume that f : [r,s]* — [r, s] is a function
defined by equation (2.1). Then we can easily see that the function f(u,v,w,z) increases in
u,v and decreases in w, z.

Suppose that (m, M) is a solution of the system
m= f(m,m,M,M) and M = f(M,M,m,m).
Then from equation (1.1), we see that
am? alM?
- M=—
T OM oM’ bm +cm’
(b+c)mM = am?, (b+c)Mm = aM?,
S0
M =m.

It follows from Theorem 3.1 that T is a global attractor of equation (1.1) and then the proof is
completed.

4 Special Cases of Equation (1.1)

Case 1 In this case, we study the following special case of equation (1.1)
by = TnTnmt

Tn + Tn—1

where the initial conditions z_1, zo are arbitrary positive real numbers.

Theorem 4.1 Let {z,}52 _, be a solution of equation (4.1). Then for n =10,1,---,

hk

= anlk + F’anh7

where x_1 =k, xg = h.
Proof For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds

for n — 1, n — 2. That is,

hk hk
_— Ty = .
Fuosk+ Fooah’ """ Fuosk+ Fush
Now, it follows from equation (4.1) that

Tp—2 =

Tp—1Tn—2

Tp = ———7
Tp—1+ Tp—2

hk hk
( Fn73k+Fn74h)( Fn72k+Fn73h)

( hk 4 hk )
F,_3k+Fn_4h F, _2k+F,_3h

hk 1
(Fn73k+Fn74h)( Fn72k+Fn73h)

(F7173k':|l‘Fn74h + Fn,gk-}—Fn,gh)
B hk
~ (Fp_ok + Fy_3h+ F,_ 3k + F,,_4h)
B hk
-~ (Fpoh + F,_1k)
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Hence, the proof is completed.

Lemma 4.1 Every positive solution of equation (4.1) is bounded and lim x, = 0.

Proof It follows from equation (4.1) that
LnTn—1 < LnTn—1

Tn+1 — >~ = Tn,
Tp + Tn—1 Tn—1

or

LTn+1 < Ty

Then the sequence {x,,}22  is decreasing and so is bounded from above by M = max{z_1,z}.
For z_1 =5, g = 9, the solution of equation (4.1) will take the form {3.214286,2.368421,
1.363636, 0.8653846,0.5294118, - - - }, this solution is stable and lim x, = 0 (see Figure 1).

n—oo

plot of z(n+1)=z(n)*x(n—1)/(z(n)+z(n—1))

0 5 10 1.5 2.0 2.5 30
Figure 1 plot of (n+ 1) =xz(n) xxz(n —1)/(x(n) + z(n — 1))

Case 2 In this case, we study the following special case of equation (1.1)

Tn—1Tn—2

Tpy1] = ————, 4.2
" Tp—1+ Tn—2 ( )

where the initial conditions z_o, x_1, z¢ are arbitrary positive real numbers.
Theorem 4.2 Let {x,}52 _5 be a solution of equation (4.2). Then x1 = kr_fr’ forn =

1,2

s 2y,

hkr
n—ahk + d,_s3kr + dn_ghT‘7
where x_g =1, x_1 =k, xog = h, {dn}>_, ={1,2,2,3,4,5,7,9, -}, d.e., dpm = dm—2 + dm—3,
mZO, d_3:0, d_2:1, d_1:1.

Tn+1 = d

Proof For n =1,2,3 the result holds; then suppose that our assumption holds for n — 1,
n — 2, n — 3 where n > 3. That is,

hkr - B hkr
dp—7hk + dy—_ckr + dp_shr’ neb dp—ehk + dy_skr + dp_ahr’

Tp—2 =
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Now, it follows from equation (4.2) that

x o Tpn—-1Tn—2
n+1 —
Tpn—1+ Tn-2
( hkr )( hkr )
dn_7hk+dn_ckr+dn_shr’/\dn_ehk+dn_skr+dn_shr
- ( hkr + hkr )
dn—7hk+dn_ckr+dn_shr dn—chk+dn_skr+dn_ahr

( hkr )( 1 )
_ VNdp—rhk+dn_gkr+dn_shr/\dn_ehk+dn_skr+dn_shr

( . + . )
dy_7hk+d, _¢kr+d, _shr dyn _ehk+d, _skr+d, _shr

hkr
- (dn_7h]€ + dp—ekr + dp—shr + d,—ehk + dp—s5kr + dn_4h7°)
B hkr
~ (dn—7 + dn—o)hk + (dpn—6 + dp_5)kr + (dy—5 + dp_a) hr

hkr
- dp—ahk + d—3kr + dn_ghT"

Hence, the proof is completed.

Lemma 4.2 Every positive solution of equation (4.2) is bounded and lim x, = 0.

n—oo

Proof It follows from equation (4.2) that

o Tn—1Tn—2 < Tpn—-1Tn—2 o
Tnt+1 = >~ = Tp—-1
Tpn—1+ Tn-2 Tn—2
or

Tn+1 S Tp—1-

Then the subsequences {xa,—1}52 o, {22, }52 are decreasing and so are bounded from above
by M = max{z_2,2_1,20}.

Let 2o = 5, _1 = 9, 2o = 12. Then the solution will be {3.214286,5.142857, 2.535211,
1.978022,1.698113,1.111111,0.9137055,0.6716418,0.5013927, - - - } (see Figure 2).

plot of z(n+1)=z(n—1)*z(n—2)/(z(n—1)+x(n—2))
12 r T r r

10F

L L n " "
0 5 10 15 20 25 30
n

Figure 2 plot of z(n+ 1) =xz(n— 1) xz(n —2)/(x(n — 1) + z(n — 2))



Dynamics of a Rational Difference Equation 195
The following cases can be treated similarly.

Case 3 Let x_o =71, x_1 =k, xg = h. Then the solution of the sequence

Tp—1Ln—2
] = ——tnms 4.3
Tn+1 Tn + Trg (4.3)
is given by
n—1 n—1
h H (Fi—1h + Fyr) kr H (Foih + Faiqqr)
Ton = n'L_Zlo ) x2n+l = T:ZO 9
11 (Faih + Faiyar) [ (Fai—1h + Fyr)
i=0 i=0
where n =0, 1,---, which is bounded and lim =, = 0.

plotof z(n+1)=z(n—1)*z(n—2)/(z(n)+z(n—2))

0 é 1.0 1.5 20 25 30
Figure 3 plot of z(n+ 1) =2z(n — 1) xz(n — 2)/(x(n) + z(n — 2))
Figure 3 shows the solution when x_o =8, x_1 =2, g = 7.

plot of z(n+1)=z(n)*x(n—1)/(z(n)+z(n—2))
12 T r r

10F

0

L L L
0 5 10 15 20 25 30
n

Figure 4 plot of z(n+ 1) = z(n) xxz(n — 1)/(x(n) + z(n — 2))
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Case 4 Let x_9 =7, x_1 =k, z9g = h. Then the solution of the sequence

Tn—1Tn

] = ————" 4.4
Tn+1 Tn + Trg (4.4)
is given by
kh" thrl
Toan—1 = ¢ PO —

[T({(2i=1)h+7r) I1(2ih +7)

i=1 i=1
where n =0, 1,---, which is bounded and lim =, = 0.

n—oo

Figure 4 shows the solution when z_o =11, x_1 =7, o = 12.

Case 5 Let x_9 =7, x_1 =k, z9p = h. Then the solution of the sequence

Tn—1Tn

pt] = ————% 4.5
ot Tn—1+ Tp—2 ( )
is given by
h(hk)" hk)ntt
Ton = o1 ( ) ,  T2nt1 — n ( )n—l ;
[TWGE+Dk+7)((i +1)h+k)) [TWGE+Dk+r) T[T+ DR+ k)
i=0 i=0 i=0
n=0,1,---, which is bounded and lim x, = 0.

n—oo

Figure 5 shows the solution when x_o =5, x_1 = 8, zg = 3.
plot of z(n+1)=z(n)*x(n—1)/(z(n—1)+x(n—2))

8

L L L L
0 5 10 15 20 25 30
n

Figure 5 plot of (n+ 1) =a(n) xxz(n—1)/(x(n — 1) + x(n — 2))

Case 6 Let x_o =17, x_1 =k, o = h. Then the solution of the sequence

Tn—2Tn
x = —" 4.6
e Tn + Tn—2 ( )

is given by .
,
= =0.1.---
I o+ by, ahk b, ik

where {t,,}>°_, = {1,1,2,3,4,6,9,---}, ie., ty = tin—1 +tm-3, m > 0, t_3 =0, t_o2 = 0,
t_1 =1, which is bounded and lim =z, = 0.

n—oo
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plot of z(n+1)=z(n)*x(n—2)/(z(n)+z(n—2))

8

0 é 1.0 1.5 2.0 2.5 30
Figure 6 plot of z(n+ 1) = z(n) xxz(n — 2)/(x(n) + z(n — 2))
Figure 6 shows the solution when x_o =6, xr_1 =9, zog = 17.

Case 7 Let x_o =7, x_1 =k, o = h. Then the solution of the sequence

Lp—2T
Topr = — =2 (4.7)
Tp—1+ Tn-—2

is given by

hkr hkr
b X n = 9’
(Fuzk + Fyo1r)(Fy—aoh + Fu_1k)’ 2" (Fyoik + For) (Fu—sh + Fu_1k)

XT2n =

n=0,1,---, which is bounded and lim z, = 0.

n—oo

Figure 7 shows the solution when z_o =13, x_1 =7, o = 12.

plot of z(n+1)=z(n)*x(n—2)/(z(n—1)+x(n—2))

)

L L L L L
0 5 10 15 20 25 30

Figure 7 plot of z(n+ 1) = z(n) * z(n — 2)/(x(n — 1) + z(n — 2))
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