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Abstract The concept of locally strong compactness on domains is generalized to general
topological spaces. It is proved that for each distributive hypercontinuous lattice L, the
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1 Introduction

The representation of lattices by topologies, especially by the hull-kernel topologies, goes

back to Stone’s famous work on the topological representation of Boolean algebras and dis-

tributive lattices (see [6, 8]). In [4], Hofmann and Lawson proved that for every distributive

continuous lattice L, the space SpecL of nonunit prime elements endowed with the hull-kernel

topology is always a locally compact sober space and conversely that the lattice of open sets of

a locally compact sober space is a continuous lattice. Furthermore, the correspondence between

distributive continuous lattices and locally compact sober spaces is functorial and thus a dual

equivalence between them is established.

In this paper, the concept of locally strongly compactness, which was posed by Heckmann

in [3] for the purpose of defining multi-continuous domains, is generalized to general topological

spaces. It is proved that for a distributive hypercontinuous lattice L, the space SpecL with

the hull-kernel topology is locally strongly compact, and conversely that the lattice of open

sets of a locally strongly compact space is hypercontinuous. Also in the paper, the concept of

strongly locally compact sober spaces is introduced, which is proved to be a correspondence

to distributive hyperalgebraic lattices. A result analogous to the well-known Hofmann-Mislove
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Theorem is obtained, that is, there is an order reversing isomorphism between the set of upper-

open filters of the lattice O(X) of open subsets of X and the set of strongly compact saturated

subsets of X .

In this paper, spaces are assumed to be T0. For a set X , let X(<ω) = {F ⊆ X : F is finite}.
A domain D is a partially ordered set such that every directed set E of D has a least upper

bound ∨E in D. Let ↑ x = {y ∈ D : x ≤ y} and ↑ A =
⋃

a∈A

↑ a; ↓ x and ↓ A are defined dually.

The topology generated by the collection of sets D\ ↓ x (as a subbase) is called the upper

topology and denoted by υ(D); the lower topology ω(D) on D is defined dually. The topology

θ(D) = υ(D) ∨ ω(D) is called the interval topology on D. A subset U of a domain D is called

Scott open, provided that U =↑ U and E ∩ U 6= ∅ for all directed set E ⊆ D with ∨E ∈ U .

The topology formed by all the Scott open sets of D is called the Scott topology on D, written

as σ(D). The topology λ(D) = σ(D) ∨ ω(D) is called the Lawson topology on D. For a poset

(X,≤) and a topology τ on X , define τ↑ = {U ∈ τ : U =↑ U} and τ↓ = {U ∈ τ : U =↓ U}. It

is easy to check that θ(L)↑ = υ(L) and θ(L)↓ = ω(L) for a complete lattice L.

For a domain D, we define a binary relation on D, called the way below relation, by x ≪ y

if and only if for each directed set E ⊆ D with y ≤ ∨E, there exists e ∈ E such that x ≤ e. A

domain D is called a continuous domain, if the set {a ∈ D : a ≪ x} is directed and its supremum

is x for all x ∈ D. A complete lattice L is called a continuous lattice if it is a continuous domain.

A complete lattice L is called an algebraic lattice if x = ∨{b ∈ L : b ≪ b ≤ x} for all x ∈ L.

An element p of a lattice L is called prime if a ∧ b ≤ p always implies a ≤ p or b ≤ p. The

set of all nonunit prime elements of L is denoted by SpecL. Let △L (a) = SpecL\ ↑ a. For a

complete lattice L, it is easy to check that the family of all sets △L forms a topology on SpecL,

called the hull-kernel topology on SpecL. In this paper, SpecL is always endowed with this

topology, i.e., O(SpecL) = {△L (a) : a ∈ L}.

Definition 1.1 (see [1]) For a complete lattice L, define a relation ≺ on L by x ≺ y ⇔
y ∈ intυ(L) ↑ x. Let i(x) = {u ∈ L : u ≺ x}. L is called hypercontinuous if x = ∨i(x) for all

x ∈ L.

It is easy to get the following

Proposition 1.1 For a complete lattice L, the following conditions are equivalent:

(1) L is hypercontinuous,

(2) L satisfies the following two conditions:

( i ) ≺ satisfies (INT), i.e., x ≺ y ⇒ ∃ z ∈ L, x ≺ z ≺ y,

(ii) x 6= y ⇒ i(x) 6= i(y).

Theorem 1.1 (see [1]) Let L be a complete lattice. Then the following conditions are

equivalent:

(1) L is hypercontinuous,

(2) L is continuous and ≪=≺,

(3) L is continuous and σ(L) = υ(L),

(4) L is continuous and λ(L) = θ(L),

(5) L is continuous and (L, θ(L)) is Hausdorff.

For a poset P , let D(P ) = {E : E ⊆ P and E is direct}, UpP = {A ⊆ P : A =↑ A} and

FinP = {↑ A : A ∈ P (<ω)}. Define a mapping min : FinP → 2P by min(F ) = {x ∈ F :

x is a minimal element of F}. For a family of sets M, the poset (M,⊇) always means that

the order on M is the inverse inclusion order of sets. M is called down-directed if ∀A, B ∈ M,

∃C ∈ M such that C ⊆ A ∩ B, i.e., (M,⊇) is directed. When FinP is regarded as a poset,
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we always mean the poset (FinP,⊇).

In [7], Rudin got the following well-known result.

Lemma 1.1 (Rudin’s Lemma) Let P be a poset and E ∈ Up P . Suppose that G ⊆ FinP

is down-directed (i.e., G ∈ D(FinP )), ∅ 6∈ G and ∩G ⊆ E. Then ∃K ⊆ ∪{min(G) : G ∈ G}
such that

( i ) ∀G ∈ G, K ∩ min(G) 6= ∅,
( ii ) K ∈ D(P ),

(iii) ∩{↑ k : k ∈ K} ⊆ E,

(iv) ∀G, H ∈ G, G ⊆ H ⇒ K ∩ min(G) ⊆↑ (K ∩ min(H)).

Rudin’s lemma has many important applications (see [1–3]). The following result is one of

them.

Corollary 1.1 (see [3]) Let D be a domain. Suppose that G ⊆ FinD is down-directed (i.e.,

G ∈ D(FinP )) and U ∈ σ(D). If ∩G ⊆ U , then ∃ ↑ G ∈ G such that ↑ G ⊆ U .

2 Topological Representations for Distributive

Hypercontinuous Lattices

In this section, we give an intrinsic characterization of hypercontinuous lattice and investi-

gate the topological representations for distributive hypercontinuous lattices.

For a topological space (X, τ), we define a binary relation ≤τ as follows: x ≤τ y ⇔ x ∈
clτ{y}. Then ≤τ is a partial order on X since (X, τ) is T0. Let ↑τ x = {y ∈ X : y ≤τ x}
and ↑τ A =

⋃

a∈A

↑τ a; ↓τ x and ↓τ A are defined dually. For the sake of no confusion, we let

↑ {U} = {V ∈ τ : U ⊆ V } and ↓ {U} = {W ∈ τ : W ⊆ U} for U ∈ τ .

For a poset (P,≤) and a topology τ on P , the triple (P,≤, τ) is called a pospace if the

relation ≤ is closed in the product space (P, τ) × (P, τ).

Let L be a hypercontinuous lattice and x, y ∈ L with x 6≤ y. Then there exists u ∈ L such

that u ≺ x and u 6≤ y, which implies (x, y) ∈ intυ(L) ↑ u × (L\ ↑ u) ⊆ X × X\ ≤. Thus

(L,≤, θ(L)) is a pospace.

Theorem 2.1 For a complete lattice L, the following conditions are equivalent:

(1) L is hypercontinuous,

(2) For each U ∈ υ(L), x ∈ U , there exists y ∈ U such that x ∈ intυ(L) ↑ y ⊆↑ y ⊆ U ,

(3) If x, y ∈ L with x 6≤ y, then there exist F ∈ L(<ω) and u ∈ L satisfying the following

conditions:

( i ) x 6∈↓ F , u 6∈↑ y,

(ii) For each z ∈ L, either z ∈↓ F or z ∈↑ u.

Proof (1) ⇒ (2) Let U ∈ υ(L) and x ∈ U . Since {y ∈ L : y ≺ x} is directed and

∨{y ∈ L : y ≺ x} = x ∈ U , there exists y ≺ x such that y ∈ U . Then x ∈ intυ(L) ↑ y ⊆↑ y ⊆ U .

(2) ⇒ (3) Let x, y ∈ L with x 6≤ y. Then x ∈ L\ ↓ y ∈ υ(L). By (2), there exists u ∈ L\ ↓ y

such that x ∈ intυ(L) ↑ u ⊆↑ u ⊆ L\ ↓ y. Choose F ∈ L(<ω) such that x ∈ L\ ↓ F ⊆ intυ(L) ↑
u ⊆↑ u. Then F and u satisfy the conditions ( i ) and (ii).

(3) ⇒ (1) For each x ∈ L, let y = {a ∈ L : a ≺ x}. Then y ≤ x. If x 6≤ y, then there

exist F ∈ L(<ω) and u ∈ L satisfying the conditions ( i ) and (ii) in (3). Then u ≺ x and u 6≤ y,

which is a contradiction. Therefore x = y = {a ∈ L : a ≺ x}.

The condition (3) in the above theorem is called the intrinsic characterization of hypercon-

tinuous lattices, which is first obtained in [9] (see also [10]).
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Definition 2.1 (see [3]) Let (X, τ) be a topological space and S ⊆ X. S is called strongly

compact provided for all U ∈ τ with S ⊆ U , there is F ∈ X(<ω) such that S ⊆↑τ F ⊆ U .

Definition 2.2 A topological space (X, τ) is called locally strongly compact if for each U ∈ τ ,

x ∈ U , there exists F ∈ X(<ω) such that x ∈ intτ ↑τ F ⊆↑τ F ⊆ U .

Remark 2.1 The concept of locally strong compactness was first posed on domains by

Heckmann for the purpose of defining multi-continuous domains. A domain D is called multi-

continuous if the topological space (D, σ(D)) is locally strongly compact (see [3]), i.e., for every

U ∈ σ(D), x ∈ U , there exists F ∈ D(<ω) such that x ∈ intσ(D) ↑ F ⊆↑ F ⊆ U . It can

be checked that multi-continuous domains are exactly quasicontinuous domains defined in [2].

Here we carry the concept of locally strong compactness to general topological spaces.

Lemma 2.1 Let (X, τ) be a topological space and U, V ∈ τ . If U ⊆↑τ F ⊆ V for some

F ∈ X(<ω), then U ≺ V . The converse is true if (X, τ) is locally strongly compact.

Proof Let F = {x1, x2, · · · , xn} and H = {W ∈ τ : W 6⊆ X \ clτ{xi} for all i =

1, 2, · · · , n} = τ\ ↓ {X \ clτ{x1}, X \ clτ{x2}, · · · , X \ clτ{xn}}. Then H ∈ υ(τ) and V ∈
H ⊆↑ {U}. By the definition of ≺, we have U ≺ V . Conversely, if (X, τ) is locally strongly

compact, then for each v ∈ V , there exists Fv ∈ X(<ω) such that x ∈ intτ ↑τ Fv ⊆↑τ Fv ⊆ V .

Hence V =
⋃

v∈V

int ↑τ Fv. Notice that U ≺ V implies U ≪ V . Therefore there exists

{v1, v2, · · · , vn} ⊆ V such that

U ⊆
n
⋃

i=1

intτ ↑τ Fvi
⊆

n
⋃

i=1

↑τ Fvi
⊆ V.

Let F =
n
⋃

i=1

Fvi
. Then U ⊆↑τ F ⊆ V .

Lemma 2.2 For a topological space (X, τ), the following conditions are equivalent:

(1) (X, τ) is locally strongly compact,

(2) For every U ∈ τ , x ∈ U , there exists V ∈ τ such that x ∈ V ≺ U ,

(3) (τ,⊆) is a hypercontinuous lattice,

(4) For every U ∈ τ , x ∈ U , there exists H ∈ υ(τ) such that U ∈ H and
⋂

V ∈H

V is a

neighborhood of x in (X, τ).

Proof (1) ⇒ (2) Let U ∈ τ and x ∈ U . Then there exists F ∈ X(<ω) such that

x ∈ intτ ↑τ F ⊆↑τ F ⊆ U . By Lemma 2.1, we have intτ ↑τ F ≺ U .

(2) ⇔ (3) Trivial.

(3) ⇒ (1) Let U ∈ τ , x ∈ U . Then U 6⊆ X \ clτ{x}. By Theorem 2.1, there exist

V, V1, V2, · · · , Vn ∈ τ satisfying the following two conditions:

( i ) V 6⊆ X \ clτ{x} and U 6⊆ Vi for all i = 1, 2, · · · , n,

(ii) ∀W ∈ τ , either V ⊆ W or W ⊆ Vi for some i ∈ {1, 2, · · · , n}.

For each i ∈ {1, 2, · · · , n}, choose xi ∈ U \ Vi and let F = {x1, x2, · · · , xn}. Then ↑τ F ⊆ U

since U is open. Now we show that V ⊆↑τ F . Suppose that V 6⊆↑τ F . Then ∃ v ∈ V \ ↑τ F .

Let W0 = X \ clτ{v}. Then F ⊆ W0. By F 6⊆ Vi (i = 1, 2, · · · , n), we know W0 6⊆ Vi for all

i ∈ {1, 2, · · · , n}. By (ii), we have V ⊆ W0, which contradicts v ∈ V . Since V 6⊆ X \ clτ{x} ⇔
x ∈ V , it follows that x ∈ V ⊆ intτ ↑τ F ⊆↑τ F ⊆ U .

(3) ⇒ (4) Let U ∈ τ and x ∈ U . Then there exists W ∈ τ such that x ∈ W ≺ U . By the

definition of ≺, there exists H ∈ υ(τ) such that U ∈ H ⊆↑ {W}. Then x ∈ W ⊆
⋂

V ∈H

V .
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(4) ⇒ (2) For every U ∈ τ , x ∈ U , let H ∈ υ(τ) satisfy the condition (4). Then there exists

V ∈ τ such that x ∈ V ⊆
⋂

V ∈H

V . Then U ∈ H ⊆↑ {V }. Hence x ∈ V ≺ U .

Corollary 2.1 (see [2]) For a domain D, D is quasicontinuous if and only if the lattice

σ(D) of all Scott open sets of D is hypercontinuous.

Lemma 2.3 For a distributive hypercontinuous lattice L, the topological space SpecL is a

locally strongly compact sober space.

Proof Since L is a distributive hypercontinuous lattice, SpecL is order generating. Hence

SpecL is sober. Now we prove that (O(SpecL),⊆) is hypercontinuous. Let △L(a) and △L(b)

be two open sets in the hull-kernel topology with △L(a) 6⊆△L(b). Then a 6≤ b since SpecL is

order generating. By the hypercontinuity of L, there exist u ∈ L and F = {x1, x2, · · · , xn} ⊆ L

such that

( i ) a 6∈↓ F , b 6∈↑ u,

(ii) For all x ∈ L, either x ∈↓ F or x ∈↑ u.

Since SpecL is order generating, △L(u) and {△L(x1), △L(x2), · · · , △L(xn)} satisfy the following

two conditions:

( i )′ △L(u) 6⊆△L(b) and △L(a) 6⊆△L(xi) for all i = 1, 2, · · · , n,

(ii)′ For each △L(c) ∈ O(SpecL), either △L(u) ⊆△L(c) or △L(c) ⊆△L(xi) for some i ∈ {1, 2,

· · · , n}.

By Theorem 2.1, (O(SpecL),⊆) is a hypercontinuous lattice. Therefore, by Lemma 2.2, SpecL

is locally strongly compact.

Theorem 2.2 (Topological Representations for Distributive Hypercontinuous Lattices)

(1) For a distributive hypercontinuous lattice L, the topological space SpecL is a locally

strongly compact space and L is order isomorphic to O(SpecL).

(2) For a locally strongly compact space X, O(X) is a distributive hypercontinuous lattice

and X is homeomorphic to SpecO(X) if, in addition, X is a sober space.

Let SOB be the category of all sober spaces and all continuous maps, and FRM0 be

the category of all complete lattices in which the prime elements are order generating and

the maps between them preserve arbitrary sups and finite infs. It is well-known that the

categories SOB and FRM0 are dual equivalent through the functors O and Spec (see [1, V-5]

for details). Let LSCSOB denote the full subcategory of SOB whose objects are the locally

strongly compact sober spaces, and DHCL the full subcategory of FRM0 whose objects are

distributive hypercontinuous lattices. Then the categories LSCSOB and DHCL are dual

equivalent. Unfortunately, the morphisms preserving arbitrary sups and finite infs seem to be

of no particular significance for hypercontinuous lattices. So it is worthwhile finding appropriate

morphisms for hypercontinuous lattices.

3 Topological Representations for Distributive

Hyperalgebraic Lattices

In this section, we apply the developments of the preceding section to hyperalgebraic lattices,

i.e., algebraic hypercontinuous lattices.

Definition 3.1 A topological space (X, τ) is called strongly locally compact if it has a base

consisting of fintary open upper sets, i.e., for all U ∈ τ , x ∈ U , there exists F ∈ X(<ω) such

that x ∈ intτ ↑τ F =↑τ F ⊆ U .
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Definition 3.2 A complete lattice L is called hyperalgebraic provided x = ∨{y ∈ L : y ≺
y ≤ x} for all x ∈ L.

Lemma 3.1 For a complete lattice L, the following conditions are equivalent:

(1) L is hyperalgebraic,

(2) L is both hypercontinuous and algebraic,

(3) For all U ∈ υ(L), x ∈ U , there exists y ∈ U such that x ∈ intυ(L) ↑ y =↑ y ⊆ U ,

(4) For all x, y ∈ L with x 6≤ y, there exist F ∈ L(<ω) and u ∈ L satisfying the following

two conditions:

( i ) x 6∈↓ F , y 6∈↑ u, ↓ F∩ ↑ u = ∅,
(ii) For every z ∈ L, either z ∈↓ F or z ∈↑ u.

Proof (1) ⇒ (2) Trivial.

(2) ⇒ (3) Let U ∈ υ(L), x ∈ U . By Theorem 1.1, {u ∈ L : u ≺ u ≤ x} = {u ∈ L : u ≪ u ≤
x} is a sup-semilattice of L. So by ∨{u ∈ L : u ≺ u ≤ x} = x ∈ U ∈ υ(L) = σ(L), there exists

y ∈ {u ∈ L : u ≺ u ≤ x} with y ∈ U . Therefore x ∈ intυ(L) ↑ y =↑ y ⊆ U .

(3) ⇒ (4) Let x, y ∈ L with x 6≤ y. Then x ∈ L\ ↓ y ∈ υ(L). By (3), there exists u ∈ L\ ↓ y

with x ∈ intυ(L) ↑ u =↑ u ⊆ L\ ↓ y. By the definition of the upper topology, there exists a

family {Fi ∈ L(<ω) : i ∈ I} such that
⋃

i∈I

(L\ ↓ Fi) = L \
⋂

i∈I

↓ Fi = intυ(L) ↑ u =↑ u. Hence
⋂

i∈L

↓ Fi = L\ ↑ u ∈ ω(L). By Corollary 1.1 (applying to the dual of L), there exists a finite

I0 ⊆ I such that
⋂

i∈I0

↓ Fi = L\ ↑ u ∈ ω(L). Let F =
{

∧

i∈I0

ϕ(i) : ϕ ∈
∏

i∈I0

Fi

}

. Then F ∈ L(<ω)

and x ∈ L\ ↓ F = L \
⋂

i∈I0

↓ Fi =↑ u ⊆ L\ ↓ y. Hence F and u satisfy the conditions (i) and

(ii).

(4) ⇒ (1) For x ∈ L, let y = ∨{y ∈ L : y ≺ y ≤ x}. If x 6≤ y, then x ∈ L\ ↓ y ∈ υ(L). By

(4), there exist F ∈ L(<ω) and u ∈ L such that the conditions (i) and (ii) are satisfied. That is,

x ∈ L\ ↓ F =↑ u ⊆ L\ ↓ y. Hence ↑ u ∈ υ(L). It follows that u ≺ u, which is in contradiction

with ↑ u ⊆ L\ ↓ y and y = ∨{y ∈ L : y ≺ y ≤ x}. So x = y = ∨{y ∈ L : y ≺ y ≤ x}. Therefore

L is hyperalgebraic.

The condition (4) in the above theorem is called the intrinsic characterization of hyperalge-

braic lattices, which is first obtained in [11].

Lemma 3.2 Let (X, τ) be a topological space and U ∈ τ . If U = intτ ↑τ Fu =↑τ F for

some F ∈ X(<ω), then U ≺ U . The converse is true if (X, τ) is strongly locally compact.

Proof Let U ∈ τ . If U = intτ ↑τ Fu =↑τ F for some F ∈ X(<ω), then U ≺ U by Lemma

2.1. Conversely, if (X, τ) is strongly locally compact, then for all u ∈ U , there exists Fu ∈ X(<ω)

such that x ∈ intτ ↑τ Fu =↑τ Fu ⊆ U . Hence U =
⋃

u∈U

int ↑τ Fu =
⋃

u∈U

↑τ Fu. Notice that

U ≺ U implies U ≪ U . Therefore there exists {u1, u2, · · · , uk} ⊆ U such that U ⊆
k
⋃

i=1

intτ ↑τ

Fui
=

k
⋃

i=1

↑τ Fui
. Let F =

k
⋃

i=1

Fui
. Then F ∈ X(<ω) and U = intτ ↑τ Fu =↑τ F .

Lemma 3.3 For a topological space (X, τ), the following two conditions are equivalent:

(1) (X, τ) is strongly locally compact,

(2) (τ,⊆) is a hyperalgebraic lattice.

Proof (1) ⇒ (2) Let U ∈ τ . For x ∈ U , by the strongly local compactness of (X, τ),

there exists F ∈ X(<ω) such that x ∈ intτ ↑τ F =↑τ F ⊆ U . Let V = intτ ↑τ F . Then by
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Lemma 3.2, we have x ∈ V ≺ V ⊆ U . Whence U = ∪{V ∈ τ : V ≺ V ⊆ U}. Thus (τ,⊆) is

hyperalgebraic.

(2) ⇒ (1) Let U ∈ τ and x ∈ U . Then by (2), there exists V ∈ τ such that x ∈ V ≺ V ⊆ U .

Hence there exists {V1, V2, · · · , Vn} ∈ τ (<ω) with x ∈ V ∈ τ\ ↓ {V1, V2, · · · , Vn} ⊆↑ {V }. For

each i ∈ {1, 2, · · · , n}, choose xi ∈ V \Vi. Let F = {x1, x2, · · · , xn}. Then x ∈↑τ F . If not, then

F ⊆ X \ clτ{x}; hence X \ clτ{x} ∈ τ\ ↓ {V1, V2, · · · , Vn} ⊆↑ {V }, which is in contradiction

with x ∈ V . So x ∈↑τ F . Now we show that V =↑τ F . Clearly, ↑τ F ⊆ V since V is open. On

the other hand, if there is a y ∈ V \ ↑τ F , then {x1, x2, · · · , xn} ⊆ X \ clτ{y}. It follows that

X \ clτ{y} ∈ τ\ ↓ {V1, V2, · · · , Vn} ⊆↑ {V }, which is in contradiction with y ∈ V . Therefore

V =↑τ F . Hence x ∈ intτ ↑τ F =↑τ F ⊆ U . Thus (X, τ) is strongly locally compact.

Lemma 3.4 For a distributive hyperalgebraic lattice L, the topological space SpecL is a

strongly locally compact sober space.

Proof By Lemma 3.1, L is distributive, hypercontinuous and algebraic, so SpecL is or-

der generating. Hence SpecL is sober. Now we prove that (O(SpecL),⊆) is hyperalgebraic.

Let ∆L(a) and ∆L(b) be two open sets in the hull-kernel topology with ∆L(a) 6⊆ ∆L(b).

Then a 6≤ b since SpecL is order generating. Since L is hyperalgebraic, there exist F =

{x1, x2, · · · , xn} ⊆ L and u ∈ L such that

( i ) a 6∈↓ F , b 6∈↑ u, ↓ F∩ ↑ u = ∅,

(ii) For all x ∈ L, either x ∈↓ F or x ∈↑ u.

Since SpecL is order generating, ∆L(u) and {∆L(x1), ∆L(x2), · · · , ∆L(xn)} satisfy the following

two conditions:

( i )′ ∆L(u) 6⊆ ∆L(b), ∆L(a) 6⊆ ∆L(xi) for all i = 1, 2, · · · , n, and ↓ {∆L(x1), ∆L(x2), · · · ,

∆L(xn)}∩ ↑ {∆L(u)} = ∅,

(ii)′ For each ∆L(c) ∈ O(SpecL), either ∆L(u) ⊆ ∆L(c) or ∆L(c) ⊆ ∆L(xi) for some

i ∈ {1, 2, · · · , n}.

By Lemma 3.1, (O(SpecL),⊆) is hyperalgebraic. Therefore, by Lemma 3.3, SpecL is strongly

locally compact.

By Lemmas 3.3 and 3.4, we get the following

Theorem 3.1 (Topological Representations for Distributive Hyperalgebraic Lattices)

(1) For a distributive hyperalgebraic lattice L, the topological space SpecL is a strongly

locally compact space and L is order isomorphic to O(SpecL).

(2) For a strongly locally compact space X, O(X) is a hyperalgebraic lattice and X is

homeomorphic to SpecO(X) if, in addition, X is a sober space.

For a topological space (X, τ), let L = (τ,⊆). We call F ⊆ L an upper-open filter in L if F
is upper-open, i.e., F ∈ υ(L), and a filter in L. The set of upper-open filters in L is denoted

by Filtυ(L). A subset A ⊆ X is called saturated if A = ∩{U ∈ τ : A ⊆ U}. It is easy to check

that A is saturated ⇔ A =↑τ A. The set of strongly compact saturated subsets of X is written

as S(X).

We will end this paper by showing that Filtυ(L) is order-isomorphic to S(X), i.e., there is

a result analogous to the well-known Hofmann-Mislove Theorem.

The following important lemma is due to Keimel and Paseka [5].

Lemma 3.5 Let X be a sober space and F a Scott-open filter in O(X). Then every open

set U containing K = ∩F is already a member of F .

Lemma 3.6 Let (X, τ) be a sober space. If F is an upper-open filter in O(X), then K = ∩F
is strongly compact; if, in addition, all the member of F are nonempty, then K = ∩F is



206 X. Q. Xu and J. B. Yang

nonempty, too.

Proof Let U ∈ τ and K = ∩F . If K ⊆ U , then U ∈ F by Lemma 3.5. As F is upper-

open, there exist V1, V2, · · · , Vn ∈ τ such that U ∈ τ\ ↓ {V1, V2, · · · , Vn} ⊆ F . Thus there exists

xi ∈ U \Vi for each i ∈ {1, 2, · · · , n}. Let F = {x1, x2, · · · , xn}. Then ↑τ F ⊆ U since U is open.

Now we show that K ⊆↑τ F . If not, then there exists k ∈ K\ ↑τ F . Hence F ⊆ X \ clτ{k} ∈ τ .

Since xi ∈ X \ clτ{k} and xi 6∈ Vi, it follows that X \ clτ{k} 6⊆ Vi for each i ∈ {1, 2, · · · , n}.
Thus X \ clτ{k} ∈ τ\ ↓ {V1, V2, · · · , Vn} ⊆ F . It implies K = ∩F ⊆ X \ clτ{k}, which is a

contradiction. Therefore K ⊆↑τ F ⊆ U . Thus K = ∩F is strongly compact. If K = ∅, then

∅ ∈ F again by Lemma 3.5.

Lemma 3.7 Let (X, τ) be a topological space and S a strongly compact set in X. Then

U(S) = {U ∈ τ : S ⊆ U} is an upper-open filter in τ .

Proof Obviously, U(S) is a filter in τ . Let U ∈ U(S). Then by the strong compactness

of S, there exists F = {x1, · · · , xn} ⊆ X such that S ⊆↑τ F ⊆ U . Let Vi = X \ clτ{xi}
and H = {V ∈ τ : V 6⊆ Vi for all i = 1, 2, · · · , n} = τ\ ↓ {V1, V2, · · · , Vn} ∈ υ(τ). Then

U ∈ H ⊆ U(S). Therefore, U(S) is upper-open in τ .

By Lemmas 3.6 and 3.7, we get the following

Theorem 3.2 Let (X, τ) be a sober space and L = (τ,⊆). Then (S(X),⊇) is order-

isomorphic to (Filtυ(L),⊆), the isomorphisms being

S(X) → Filtυ(L), S 7→ U(S) and Filtυ(L) → S(X), F 7→ ∩F .

Corollary 3.1 Let X be a sober space and (Si)i∈I a filtered family of nonempty strongly

compact saturated subsets of X. Then
⋂

i∈I

Si is nonempty, strongly compact and saturated.
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