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1 Introduction

In this paper, we study the following diffusive prey-predator system:






∂u

∂t
− d1∆u = u(a − u − bv), in Ω × (0,∞),

∂v

∂t
− d2∆v = v

(
c − v

m + u

)
, in Ω × (0,∞),

∂νu = ∂νv = 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x) ≥ 0, 6≡ 0, v(x, 0) = v0(x) ≥ 0, 6≡ 0, on Ω,

(1.1)

where u(x, t) and v(x, t) respectively represent the species densities of the prey and predator.

di (i = 1, 2) is the diffusion coefficient corresponding to u and v. Here, Ω ⊂ R
n is a bounded

domain with smooth boundary ∂Ω, and ν is the outward unit normal vector on ∂Ω and ∂ν = ∂
∂ν

.

The admissible initial data u0(x) and v0(x) are continuous functions on Ω and all the parameters

appearing in model (1.1) are assumed to be positive constants. The homogeneous Neumann

boundary condition means that (1.1) is self-contained and has no population flux across the

boundary ∂Ω. For the more detailed biological implication for the model, one may further refer

to [1–3, 5, 8, 11, 14, 15, 17], etc.
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System (1.1) is based on the following prey-predator model




∂u

∂t
− d1∆u = u

(
a1 − b1u − c1v

1 + m1u

)
, in Ω × (0,∞),

∂v

∂t
− d2∆v = v

(
a2 −

c2v

m2 + u

)
, in Ω × (0,∞),

∂νu = ∂νv = 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x) ≥ 0, 6≡ 0, v(x, 0) = v0(x) ≥ 0, 6≡ 0, on Ω,

(1.2)

where a1, a2, b1, c1, c2 are positive constants, and m1, m2 are non-negative constants.

When m1 = m2 = 0, in [2, 3], the authors studied model (1.2). They paid more attention

to the steady-state problem of (1.2) in heterogeneous environment, and observed some quite

interesting phenomena of pattern formation.

If m1 > 0, m2 = 0, the functional response is of Holling-Tanner type. In [11, 12], the authors

analyzed the global stability of the unique positive constant steady-state and established some

results for the existence and non-existence of positive non-constant steady-states.

In this paper, we investigate the case m1 = 0, m2 > 0. Under the scaling

u 7→ b1u, v 7→ 1

b1c2
v,

we obtain the form of system (1.1), where a = a1, b = c1, c = a2, m = b1m2.

First of all, we note that (1.1) has three trivial non-negative constant steady states, namely,

E0 = (0, 0), E1 = (a, 0) and E2 = (0, cm). A simple analysis shows that model (1.1) has the

only positive constant steady-state solution if and only if bc < a
m

. We denote this steady state

by (u∗, v∗), where

u∗ =
a − bcm

1 + bc
and v∗ =

c(a + m)

1 + bc
.

Another aspect of our goal is to investigate the corresponding steady-state problem of the

reaction-diffusion system (1.1), which may display the dynamical behavior of solutions to (1.1)

as time goes to infinity. This steady-state problem satisfies





−d1∆u = u(a − u − bv), in Ω,

∂νu = 0, on ∂Ω,

−d2∆v = v
(
c − v

m + u

)
, in Ω,

∂νv = 0, on ∂Ω.

(1.3)

It is clear that only non-negative solutions of (1.3) are of realistic interest. For this system,

we will establish some a priori estimates for positive solutions. Based on these, using two

different mathematical techniques, we will discuss the non-existence of positive non-constant

solutions as the diffusion coefficient d1 or d2 is sufficiently large. Some of our mathematical

techniques are different from those in [11, 12]. For example, to obtain the improved global

stability of (u∗, v∗), we shall use the iteration argument. Moreover, in the course of the proofs

of the main results, the details of our analysis are more involved.

The remaining content in our paper is organized as follows. In Section 2, we mainly analyze

the local and global stability of (u∗, v∗) for (1.1). Then, in Section 3, we give a priori estimates
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of upper and lower bounds for positive solutions of (1.3), and finally in Section 4 we derive

some non-existence results of positive non-constant solutions of (1.3).

2 Some Properties of Solutions to (1.1) and Stability of (u∗
, v

∗)

In this section, we are mainly concerned with some simple properties of solutions to (1.1) and

the global stability of (u∗, v∗) for system (1.1). Throughout this section, let (u(x, t), v(x, t)) be

the unique solution of (1.1). It is easily seen that (u(x, t), v(x, t)) exists globally and is positive,

namely, u(x, t), v(x, t) > 0 for all x ∈ Ω and t > 0.

2.1 Some simple properties of the solutions to (1.1)

Lemma 2.1 For 0 < ε ≪ 1, there exists a t0 ≫ 1, such that the non-negative solution

(u(x, t), v(x, t)) of (1.1) satisfies

u(x, t) < a + ε, cm − ε < v(x, t) < c(a + m) + ε (2.1)

for all x ∈ Ω and t ≥ t0.

Proof For 0 < ε ≪ 1, from system (1.1), it follows that there exists a t0 ≫ 1, such that

u(x, t) < a + ε and v(x, t) > cm − ε for all x ∈ Ω and t ≥ t0, by the comparison principle for

the parabolic equation. Hence, v(x, t) is a lower solution of the following problem:





∂z

∂t
− d2∆z =

cm + c(a + ε) − z

m + (a + ε)
z, in Ω × (t0,∞),

∂νz = 0, on ∂Ω × (t0,∞),

z(x, t0) = v(x, t0) > 0, on Ω.

(2.2)

Let v(t) be the unique positive solution of the problem





wt =
cm + c(a + ε) − w

m + (a + ε)
w, in (t0,∞),

w(t0) = max
Ω

v(x, t0) > 0.

Then v(t) is an upper solution of (2.2). As lim
t→∞

v(t) = c(a+m)+cε, taking larger t0 if necessary,

from the comparison principle, we can get

v(x, t) < v(t) + ε < c(a + m) + (c + 1)ε for all x ∈ Ω, t ≥ t0.

The proof is complete.

Theorem 2.1 Let (u(x, t), v(x, t)) be the solution to (1.1).

( i ) Assume bc ≥ a
m

. Then

(u(x, t), v(x, t)) → (0, cm), uniformly on Ω as t → ∞. (2.3)

( ii ) Assume bc < a
m

. Then, for 0 < ε ≪ 1, there exists a t0 ≫ 1, such that the solution

(u(x, t), v(x, t)) of (1.1) satisfies

u(x, t) < K + ε, v(x, t) < c(m + K) + ε (2.4)
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for all x ∈ Ω and t ≥ t0, where K = a − bcm.

(iii) Assume bc < min{ a
m

, 1}. Then, for 0 < ε ≪ 1, there exists a t0 ≫ 1, such that

u(x, t) > L − ε, v(x, t) > c(m + L) − ε (2.5)

for all x ∈ Ω and t ≥ t0, where L = a − bc(m + K).

Proof The idea for our proof comes from [9]. We only prove (2.3) and the first inequality

of (2.4). The rest of our conclusions can be established in a similar manner as that of Lemma

2.1.

For 0 < ε ≪ 1, by Lemma 2.1 there exists a t0 ≫ 1, such that v(x, t) > cm− ε for all x ∈ Ω

and t ≥ t0. Hence, u(x, t) is a lower solution of the following problem





∂z

∂t
− d1∆z = (a − bcm + bε − z)z, in Ω × (t0,∞),

∂νz = 0, on ∂Ω × (t0,∞),

z(x, t0) = u(x, t0) > 0, on Ω.

(2.6)

If bc ≥ a
m

, from (2.6), the simple comparison argument shows that

0 < u(x, t) < ε uniformly on Ω as t → ∞.

As a result, using the second equation in (1.1), one easily knows that

v(x, t) → cm uniformly on Ω as t → ∞.

The proof of (2.3) is complete.

If bc < a
m

, let u(t) be the unique positive solution of the problem





wt = (a − bcm + bε − w)w, in (t0,∞),

w(t0) = max
Ω

u(x, t0) > 0.

Then u(t) is an upper solution of (2.6). As lim
t→∞

u(t) = (a − bcm) + bε, taking larger t0 if

necessary, we can get from the comparison principle that

u(x, t) < u(t) + ε < (a − bcm) + (b + 1)ε,

for all x ∈ Ω and t ≥ t0. Thus, the proof is complete.

Remark 2.1 Theorem 2.1 shows that for any small ε > 0, the rectangle [0, K + ε)× (cm−
ε, c(a + m) + ε) is a global attractor of system (1.1) in R

2
+. If bc < min{ a

m
, 1} holds, the

solution of system (1.1) has the persistence property. Furthermore, from Theorem 2.3, under

this condition, the solution (u∗, v∗) of system (1.1) is globally asymptotically stable in R
2
+.

2.2 Local stability of (u∗
, v

∗) to system (1.1)

From Theorem 2.1(i), we see that if bc ≥ a
m

, then (0, cm) is the unique non-negative solution

of (1.3). Then, from now on, without special statement, we always assume that bc < a
m

, which
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guarantees the existence of (u∗, v∗). In this subsection, we will analyze the local stability of

(u∗, v∗) to (1.1). To this end, we first introduce some notations.

In the following, we always let 0 = µ0 < µ1 < µ2 < · · · be the eigenvalues of the operator

−∆ on Ω with the homogeneous Neumann boundary condition. Set

X =
{
(u, v) ∈ [C1(Ω)]2

∣∣∣
∂u

∂ν
=

∂v

∂ν
= 0 on ∂Ω

}
,

and consider the decomposition X =
∞⊕

j=0

Xj , where Xj is the eigenspace corresponding to µj .

Theorem 2.2 The positive constant solution (u∗, v∗) to system (1.1) is uniformly asymp-

totically stable, provided that bc < a
m

(in the sense of [4]).

Proof The proof is similar to that of [16, Theorem 2.1]. The linearization of (1.1) at

(u∗, v∗) is
∂

∂t

(
u

v

)
= L

(
u

v

)
+

(
f1(u − u∗, v − v∗)
f2(u − u∗, v − v∗)

)
,

where fi(z1, z2) = O(z2
1 + z2

2), i = 1, 2, and

L =


d1∆ − a − bcm

1 + bc

−b(a− bcm)

1 + bc

c2 d2∆ − c


 .

For each j, j = 0, 1, 2, · · · , Xj is invariant under the operator L, and ξ is an eigenvalue of L on

Xj if and only if ξ is an eigenvalue of the matrix

Aj =



−d1µj −
a − bcm

1 + bc

−b(a − bcm)

1 + bc

c2 −d2µj − c



 ,

detAj = d1d2µ
2
j +

(
d1c +

d2(a − bcm)

1 + bc

)
µj + c(a − bcm),

trAj = −(d1 + d2)µj − c − a − bcm

1 + bc
≤ −c − a − bcm

1 + bc
,

where detAj and tr Aj are respectively the determinant and trace of Aj . It is easy to check

that detAj > 0 and tr Aj < 0. Therefore, the two eigenvalues ξ+
j and ξ−j have negative real

parts. Note that ξ±0 < 0. For any j ≥ 1, the following hold:

( i ) If (trAj)
2 − 4 detAj ≤ 0, then

Re ξ±j =
1

2
tr Aj ≤ 1

2

(
− c − a − bcm

1 + bc

)
< 0;

(ii) If (tr Aj)
2 − 4 detAj > 0, then

Re ξ−j =
1

2

{
trAj −

√
(tr Aj)2 − 4 detAj

}
≤ 1

2
tr Aj ≤ 1

2

(
− c − a − bcm

1 + bc

)
< 0,

Re ξ+
j =

1

2

{
trAj +

√
(tr Aj)2 − 4 detAj

}
=

2 detAj

tr Aj −
√

(tr Aj)2 − 4 detAj

≤ detAj

tr Aj

< −δ

for some positive δ which is independent of j.

This shows that there exists a positive constant δ, which is independent of j, such that

Re ξ±j < −δ, ∀ j. Consequently, the spectrum of L lies in {Re ξ < −δ} (since the spectrum of

L consists of eigenvalues), and we conclude the proof.
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2.3 Global stability of (u∗
, v

∗) to system (1.1)

This subsection is devoted to the global stability of (u∗, v∗) for system (1.1).

Proposition 2.1 Assume that

bc < min
{ a

m
,

4

a2
[2m2 + 2ma + (2m + a)

√
m(m + a) ]

}
. (2.7)

Then (u∗, v∗) is globally asymptotically stable.

Proof In order to give the proof, we need to construct a Lyapunov function. First, we

define

E(u)(t) =

∫

Ω

{
u(x, t) − u∗ − u∗ ln

u(x, t)

u∗

}
dx,

E(v)(t) =

∫

Ω

{
v(x, t) − v∗ − v∗ ln

v(x, t)

v∗

}
dx.

We note that E(u)(t) and E(v)(t) are non-negative, E(u)(t) = 0 and E(v)(t) = 0 if and only if

(u(x, t), v(x, t)) = (u∗, v∗). Furthermore, easy computations yield

dE(u)

dt
=

∫

Ω

(
1 − u∗

u

)
utdx =

∫

Ω

{
− d1

u∗|∇u|2
u2

+ (u − u∗)(a − u − bv)
}
dx

=

∫

Ω

{
− d1

u∗|∇u|2
u2

+ (u − u∗)(u∗ + bv∗ − u − bv)
}
dx

=

∫

Ω

{
− d1

u∗|∇u|2
u2

− (u − u∗)2 − b(u − u∗)(v − v∗)
}

dx.

Similarly,

dE(v)

dt
=

∫

Ω

(
1 − v∗

v

)
vtdx =

∫

Ω

{
− d2

v∗|∇v|2
v2

+ (v − v∗)
(
c − v

m + u

)}
dx

=

∫

Ω

{
− d2

v∗|∇v|2
v2

+ (v − v∗)
( v∗

m + u∗
− v

m + u

)}
dx

=

∫

Ω

{
− d2

v∗|∇v|2
v2

− 1

m + u
(v − v∗)2 +

v∗

(m + u)(m + u∗)
(u − u∗)(v − v∗)

}
dx.

Now define

E(t) = E(u)(t) + λE(v)(t),

where the constant λ satisfies λ > 0 and will be determined later. Set ξ = u − u∗, η = v − v∗.

We have

dE(t)

dt
=

dE(u)(t)

dt
+ λ

dE(v)(t)

dt

=

∫

Ω

{
− d1

u∗|∇u|2
u2

− ξ2 − bξη − d2λ
v∗|∇v|2

v2
− λ

m + u
η2 +

λc

m + u
ξη

}
dx

≤
∫

Ω

{
− ξ2 +

( λc

m + u
− b

)
ξη − λ

m + u
η2

}
dx. (2.8)

If the inequality ( λc

m + u
− b

)2

− 4λ

m + u
< 0 (2.9)
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holds, from (2.8), it is easy to see that

−ξ2 +
( λc

m + u
− b

)
ξη − λ

m + u
η2

takes negative values unless u = u∗ and v = v∗.

Next, we will show that under some conditions, it is possible to choose a suitable λ > 0 such

that (2.9) holds. To this end, we rewrite (2.9) as

c2

(m + u)2
λ2 − 2(bc + 2)

m + u
λ + b2 < 0. (2.10)

We find that (2.10) holds if and only if λ ∈ (λ−, λ+), where

λ− = λ−(u) =
m + u

c2
(bc + 2 − 2

√
1 + bc ),

λ+ = λ+(u) =
m + u

c2
(bc + 2 + 2

√
1 + bc ).

In order to find a fixed constant λ > 0 such that λ ∈ (λ−, λ+) holds, it suffices to require

λ−(a) < λ+(0), that is

m + a

c2
(bc + 2 − 2

√
1 + bc ) <

m

c2
(bc + 2 + 2

√
1 + bc ),

which is equivalent to

a2(bc)2 − 16m(m + a)bc − 16m(m + a) < 0. (2.11)

This holds if (2.7) is satisfied.

Furthermore, we can choose a small ε > 0, such that λ−(a + ε) < λ+(0), and thus there

exists a fixed constant λ > 0 satisfying λ−(a + ε) < λ < λ+(0). Hence

λ−(u) ≤ λ−(a + ε) < λ < λ+(0) ≤ λ+(u), ∀u ∈ [0, a + ε].

As a consequence, for any u ∈ [0, a+ ε], it follows that dE(t)
dt

≤ 0. Using Lemma 2.1, we can

find a large T > 0, such that u(x, t) ≤ a + ε for all t > T and x ∈ Ω. Therefore, dE(t)
dt

≤ 0 for

all t > T , and the equality holds if and only if (u, v) = (u∗, v∗). Hence, the standard arguments

together with Theorem 2.1( ii ) and Theorem 2.2 deduce that (u∗, v∗) attracts all solutions of

(1.1). The proof is complete.

In the following, we employ comparison argument and iteration technique to improve the

above result.

Proposition 2.2 Assume that bc < min{ a
m

, 1}. Then (u∗, v∗) for system (1.1) is globally

asymptotically stable in R
2
+.

Proof The proof is similar to that of Theorem 2.1. Let (u, v) be any solution of (1.1). By

(2.5), for any 0 < ε ≪ 1, there exists a t0 ≫ 1, such that u(x, t) > L− ε, v(x, t) > c(m + L)− ε

for all x ∈ Ω and t ≥ t0. Hence, u(x, t) is a lower solution of the following problem:





∂z

∂t
− d1∆z = (a − z − bc(m + L) + bε)z, in Ω × (t0,∞),

∂νz = 0, on ∂Ω × (t0,∞),

z(x, t0) = u(x, t0) > 0, on Ω.

(2.12)
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Let u(t) be the solution of the problem





wt = (a − w − bc(m + L) + bε)w, in (t0,∞),

w(t0) = max
Ω

u(x, t0) > 0.

Then u(t) is an upper solution of (2.12). As lim
t→∞

u(t) = a− bc(m + L) + bε, we deduce that for

0 < ε ≪ 1, x ∈ Ω and t ≥ t0,

u(x, t) < a − bc(m + L) + ε := K1 + ε.

Hence, applying the equation for v(x, t) as above, we have

v(x, t) < c(m + K1) + ε.

As a result, for any 0 < ε ≪ 1, there exists a t0 > 0, such that

u(x, t) > L − ε and v(x, t) < c(m + K1) + ε

for all x ∈ Ω and t ≥ t0. Hence, u(x, t) is an upper solution of the following problem:






∂z

∂t
− d1∆z = (a − z − bc(m + K1) − bε)z, in Ω × (t0,∞),

∂νz = 0, on ∂Ω × (t0,∞),

z(x, t0) = u(x, t0) > 0, on Ω.

(2.13)

Let u(t) be the solution of the problem





wt = (a − w − bc(m + K1) − bε)w, in (t0,∞),

w(t0) = min
Ω

u(x, t0) > 0.

Then u(t) is a lower solution of (2.13). As lim
t→∞

u(t) = a−bc(m+K1)−bε, we get, for 0 < ε ≪ 1,

x ∈ Ω and t ≥ t0,

u(x, t) > a − bc(m + K1) − ε := L1 − ε,

and in turn

v(x, t) > c(m + L1) − ε.

It is clear to see that L < L1 < K1 < K. Repeating the above arguments, inductively, for

i ≥ 1, we see that there exists an increasing sequence {Li} and a decreasing sequence {Ki}
satisfying

Li = a − bc(m + Ki), Ki+1 = a − bc(m + Li),

L < L1 < · · · < Li < Li+1 < · · · < Ki+1 < Ki < · · · < K1 < K.

Hence, we have

lim
t→∞

(Li, Ki) = (L̃, K̃).
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Moreover, (L̃, K̃) satisfies

L̃ = a − bc(m + K̃), K̃ = a − bc(m + L̃),

since bc < 1. Furthermore, L̃ − K̃ = bc(L̃ − K̃), so

L̃ = K̃ =
a − bcm

1 + bc
= u∗.

This shows that u → u∗ uniformly on Ω as t → ∞. Owing to the comparison principle, we get

v → v∗ uniformly on Ω as t → ∞, which ends the proof.

From Propositions 2.1 and 2.2, we have the following result.

Theorem 2.3 Assume that

bc <
a

m
and bc < max

{
1,

4

a2
[2m2 + 2ma + (2m + a)

√
m(m + a) ]

}
. (2.14)

Then (u∗, v∗) for system (1.1) is globally asymptotically stable in R
2
+.

Remark 2.2 From Theorem 2.3, a meticulous computation gives that (u∗, v∗) for system

(1.1) is globally asymptotically stable, if one of the cases holds:

(1) a
m

≤ 1 and bc < a
m

,

(2) 1 < a
m

≤ 16 + 12
√

2 and bc < min{ a
m

, 4
a2 [2m2 + 2ma + (2m + a)

√
m(m + a) ]},

(3) a
m

> 16 + 12
√

2 and bc < 1.

3 A priori Estimates for Positive Solutions to (1.3)

From now on, our aim is to investigate the steady-state problem (1.3). In this section, we

will deduce a priori estimates of positive upper and lower bounds for positive solutions of (1.3).

In order to obtain the desired bounds, we need to use the following Harnack inequality due to

[6].

Lemma 3.1 (Harnack Inequality) Let w ∈C2(Ω) ∩C1(Ω) be a positive solution to ∆w(x)

+ c(x)w(x) = 0 in Ω subject to the homogeneous Neumann boundary condition, where c(x) ∈
C(Ω). Then there exists a positive constant C∗ = C∗(‖c‖∞, Ω), such that

max
Ω

w ≤ C∗ min
Ω

w.

Theorem 3.1 Assume that bc 6= a
m

, and let d be an arbitrary fixed positive number. Then

there exists a positive constant C only depending on a, b, c, m, d and Ω, such that if d1 ≥ d,

any positive solution (u, v) of (1.3) satisfies

C < u(x) < a, cm < v(x) < c(a + m).

Proof Simple comparison argument shows u(x) < a and cm < v(x) < c(m + a). Now, it

suffices to verify the lower bounds of u(x). We shall prove by contradiction.
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Suppose that Theorem 3.1 is not true. Then there exists a sequence {d1,i}∞i=1 with d1,i ≥ d

and the positive solution (ui, vi) of (1.3) corresponding to d1 = d1,i, such that

min
Ω

ui(x) → 0, as i → ∞. (3.1)

By the Harnack inequality, we know that there is a positive constant C independent of i,

such that max
Ω

ui(x) ≤ C min
Ω

ui(x). Consequently,

ui(x) → 0 uniformly on Ω as i → ∞. (3.2)

Let wi = ui

‖ui‖∞

and (wi, vi) satisfy the following elliptic model:





−d1,i∆wi = wi(a − ui − bvi), in Ω,

∂νwi = 0, on ∂Ω,

−d2∆vi = vi

(
c − vi

m + ui

)
, in Ω,

∂νvi = 0, on ∂Ω.

(3.3)

Moreover, integrating over Ω by parts, we have

∫

Ω

wi(a − ui − bvi)dx = 0,

∫

Ω

vi

(
c − vi

m + ui

)
dx = 0. (3.4)

The embedding theory and the standard regularity theory of elliptic equations guarantee

that there is a subsequence of (wi, vi) also denoted by itself, and two non-negative functions

w, v ∈ C2(Ω), such that (wi, vi) → (w, v) in [C2(Ω)]2 as i → ∞. Since ‖wi‖∞ = 1, we have

‖w‖∞ = 1. Since (wi, vi) satisfies (3.4), so does (w, v). It follows from the second integral

identity of (3.4) that v = cm. In view of bc 6= a
m

, the first integral identity of (3.4) yields∫
Ω

wdx = 0, which implies a contradiction. The proof is complete.

4 Non-existence of Positive Non-constant Solutions to (1.3)

In this section, based on the a priori estimates in Section 3 for positive solutions to (1.3), we

present some results for non-existence of positive non-constant solutions of (1.1) as the diffusion

coefficient d1 or d2 is sufficiently large.

Note that µ1 is the smallest positive eigenvalue of the operator −∆ in Ω subject to the

homogeneous Neumann boundary condition. Now, using the energy estimates, we can claim

Theorem 4.1 (i) There exists a positive constant d̃1 = d̃1(a, b, c, m,Ω), such that (1.3) has

no non-constant positive solutions, provided that µ1d1 > d̃1;

(ii) There exists a positive constant d̃2 = d̃2(a, b, c, m,Ω), such that (1.3) has no non-

constant positive solutions, provided that µ1d2 > d̃2 and µ1d1 > a.

Proof Let (u, v) be any positive solution of (1.3) and denote

g =
1

|Ω|

∫

Ω

gdx.
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Then, multiplying the corresponding equation in (1.3) by u−u and v−v
v

respectively, integrating

over Ω, we obtain

d1

∫

Ω

|∇u|2dx =

∫

Ω

(au − u2 − buv)(u − u)dx

=

∫

Ω

[a(u − u) − (u2 − u2) − (buv − buv)](u − u)dx

=

∫

Ω

[a − (u + u) − bv](u − u)2dx − b

∫

Ω

u(u − u)(v − v)dx

≤ [a + C(ε, a, b, c, m, Ω)]

∫

Ω

(u − u)2dx + ε

∫

Ω

(v − v)2dx,

d2

∫

Ω

m|∇v|2
c(a + m)2

dx ≤ d2

∫

Ω

v|∇v|2
v2

dx =

∫

Ω

(
c − v

m + u
+

v

m + u

)
(v − v)dx

=

∫

Ω

− 1

m + u
(v − v)2dx +

∫

Ω

v

(m + u)(m + u)
(u − u)(v − v)dx

≤
∫

Ω

(
− 1

m + u
+ ε

)
(v − v)2dx + C(ε, a, b, c, m, Ω)

∫

Ω

(u − u)2dx.

Consequently, there exists a 0 < ε ≪ 1, which depends only on a, b, c, m and Ω, such that

∫

Ω

{d1|∇(u − u)|2 + d2|∇(v − v)|2}dx ≤ C(a, b, c, m,Ω)

∫

Ω

(u − u)2dx. (4.1)

Thanks to the well-known Poincaré inequality

µ1

∫

Ω

(g − g)2dx ≤
∫

Ω

|∇(g − g)|2dx,

from (4.1), we have

µ1

∫

Ω

{d1(u − u)2 + d2(v − v)2}dx ≤ C(a, b, c, m,Ω)

∫

Ω

(u − u)2dx.

It is clear that there exists a d̃1 depending only on a, b, c, m and Ω, such that when d1 > d̃1,

u ≡ u =const., in turn, v ≡ v =const., which asserts our result ( i ).

As above, we have

µ1

∫

Ω

{d1(u − u)2 + d2(v − v)2}dx ≤ (a + ε)

∫

Ω

(u − u)2dx + C(ε, a, b, c, m, Ω)

∫

Ω

(v − v)2dx.

The remaining arguments are rather similar as above. The proof is complete.

Next, we will improve the result (ii) in Theorem 4.1 in some cases by applying the implicit

function theorem. Our idea comes from [11]. For our purpose, we first have to state a lemma.

Lemma 4.1 Fix d1, a, b, c, m, and assume that bc < a
m

holds. Let (ui, vi) be the positive

solution of (1.3) with d2 = d2,i and d2,i → ∞ as i → ∞. Then (ui, vi) → (u∗, v∗) in [C2(Ω)]2

as i → ∞.

Proof By Theorem 3.1, the embedding theory and the standard regularity theory of elliptic

equations, there is a subsequence of (ui, vi) also labeled by itself, such that (ui, vi) → (u, v) in
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[C2(Ω)]2 as i → ∞. Moreover, v ≡ δ, where δ is a positive constant and δ ≤ c(a + m), u > 0

on Ω, and (u, δ) solves 



−d1∆u = u(a − u − bδ), in Ω,

∂νu = 0, on ∂Ω,
∫

Ω

(
c − δ

m + u

)
dx = 0.

(4.2)

Hence, together with [11, Lemma 3.2], from the first equation in (4.2), a simple analysis

shows that u must be a positive constant, and so we see (u, v) = (u∗, v∗) through the second

equation in (4.2). This ends our proof.

Now, on the base of the above lemma, we can obtain the following result.

Theorem 4.2 Assume that bc < a
m

and let ε be an arbitrary positive number. Then,

there exists a large positive constant D2 = D2(ε, a, b, c, m, Ω), such that (1.3) has no positive

non-constant solution when d1 > ε and d2 > D2.

Proof By Theorem 4.1(ii), for a fixed large constant D1 depending only on a, b, c, m and

Ω, there exists a D2 = D2(a, b, c, m, Ω), such that (1.3) has no positive non-constant solution if

d1 > D1, d2 > D2. Therefore, in the following, it suffices to consider the case of d1 ∈ [ε, D1].

We make the decomposition

v = w + ξ, where

∫

Ω

wdx = 0, ξ ∈ R
+.

We observe that finding the positive solution of (1.3) is equivalent to solving the following

problem: 




d1∆u + u(a − u) − bu(w + ξ) = 0, in Ω,

∂νu = 0, on ∂Ω,

∆w + ρP
{

(w + ξ)
(
c − w + ξ

m + u

)}
= 0, in Ω,

∂νw = 0, on ∂Ω,
∫

Ω

(w + ξ)
(
c − w + ξ

m + u

)
dx = 0, ξ > 0, u > 0, on Ω,

(4.3)

where ρ = d−1
2 and Pz = z − 1

|Ω|

∫
Ω zdx, i.e., P is the projective operator from L2(Ω) to

L2
0(Ω) = {g ∈ L2(Ω) |

∫
Ω

gdx = 0}. Clearly, (u, w, ξ) = (u∗, 0, v∗) is a solution of (4.3) for

ρ > 0.

From the above analysis, to verify our assertion, by the finite covering argument, it is enough

to prove that for any fixed d̃1 ∈ [ε, D1], there exists a small positive constant δ0, such that if

ρ ∈ (0, δ0), d1 ∈ (d̃1 − δ0, d̃1 + δ0), then (u∗, 0, v∗) is the unique solution of (4.3). Define

F (d1, ρ, u, w, ξ) = (f1, f2, f3)(ρ, u, w, ξ),

f1(d1, ρ, u, w, ξ) = d1∆u + u(a − u) − bu(w + ξ),

f2(d1, ρ, u, w, ξ) = ∆w + ρP
{

(w + ξ)
(
c − w + ξ

m + u

)}
,

f3(d1, ρ, u, w, ξ) =

∫

Ω

(w + ξ)
(
c − w + ξ

m + u

)
dx.
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Then

F : R
+ × R

+ × W 2,2
ν × (L2

0(Ω) ∩ W 2,2
ν (Ω)) × R

+ → L2(Ω) × L2
0(Ω) × R,

where

W 2,2
ν (Ω) = {g ∈ W 2,2(Ω) | ∂νg = 0 on ∂Ω}.

Clearly, (4.3) is equivalent to solving F (d1, ρ, u, w, ξ) = 0. Moreover, (4.3) has a unique

solution (u, w, ξ) = (u∗, 0, v∗) when ρ = 0. By simple computations, we have

Φ ≡ D(u,w,ξ)F (d̃1, 0, u∗, 0, v∗) : W 2,2
ν × (L2

0(Ω) ∩ W 2,2
ν (Ω)) × R

+ → L2(Ω) × L2
0(Ω) × R,

where

Φ(y, z, τ) =




d̃1∆y − a − bcm

1 + bc
y − b(a − bcm)

1 + bc
(z + τ)

∆z∫

Ω

{c2y − c(z + τ)}dx




.

In order to use the implicit function theorem, we have to verify that Φ is both invertible

and surjective. In fact, assume that Φ(y, z, τ) = (0, 0, 0), then z ≡ 0. Thus, τ ∈ R implies

that y must be a constant through the first equation in y. Thus, the integral equation in

Φ(y, z, τ) = (0, 0, 0) yields τ = cy. On the other hand, note that a − bcm > 0 due to bc < a
m

.

Then, by the first equation in y again, it is easily verified that y = τ = 0 and so Φ is invertible.

Similarly, we also easily see that Φ is a surjection.

By the implicit function theorem, there exist positive constants ρ0 and δ0, such that for each

ρ ∈ [0, ρ0] and d1 ∈ (d̃1 − δ0, d̃1 + δ0), (u∗, 0, v∗) is the unique solution of F (d1, ρ, u, w, ξ) = 0 in

Bδ0
(u∗, 0, v∗), where Bδ0

(u∗, 0, v∗) is the ball in W 2,2
ν (Ω) × (L2

0(Ω) ∩ W 2,2
ν (Ω)) × R centered at

(u∗, 0, v∗) with radius δ0. Taking smaller ρ0 and δ0 if necessary, we can deduce the conclusion

in Theorem 4.2 by use of Lemma 4.1.
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