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On Regular Power-Substitution**

Huanyin CHEN~*

Abstract The necessary and sufficient conditions under which a ring satisfies regular
power-substitution are investigated. It is shown that a ring R satisfies regular power-
substitution if and only if a=~b in R implies that there exist n € N and a U € GL,(R) such
that aU = Ub if and only if for any regular x € R there exist m,n € N and U € GL,(R)
such that ™I, = x™Ux™, where a~b means that there exists x,y,z € R such that
a = ybxr, b = xaz and x = xyx = xzx. It is proved that every directly finite simple ring
satisfies regular power-substitution. Some applications for stably free R-modules are also
obtained.

Keywords Regular power-substitution, Regular power-cancellation, Stably free module
2000 MR Subject Classification 16E50, 19B10

1 Introduction

Let R be an associative ring with identity. We say that R satisfies power-substitution in case
aR+bR = R implies that there exist n € Nand Y € M, (R) such that al,, +bY € GL,(R). If R
satisfies power-substitution, then R satisfies power-cancellation, i.e., R& B~ R&(C = B" &
C™ for some n € N. Many authors have studied power-substitution such as [1-4, 9, 11, 12].
We introduce, in this article, a new class of partially power cancellations, i.e., regular power-
substitution. A ring R is said to satisfy regular power-substitution in case for any regular z € R
there exist n € Nand U € GL,,(R) such that 2I,, = xUz. Many classes of rings of interest satisfy
regular power-substitution. For instance: (1) all Abelian ring, including all commutative rings,
(2) all domains, (3) all rings satisfying power-substitution, including all rings having stable
range one, and hence all unit-regular rings, all strongly m-regular rings and all unit w-regular
rings, (4) all directly finite simple rings (see Theorem 3.3). But there exist many rings satisfying
regular power-substitution which do not belong to the proceeding classes, e.g., M2(Z). From
these, we see that many known classes of rings satisfy regular power-substitution.

In this article, many characterizations of regular power-substitution are obtained. We prove
that R satisfies regular power-substitution if and only if a~b implies that there exist n € N and
a U € GL,(R) such that aU = Ub if and only if for any regular 2 € R there exist m,n € N and
U € GL,,(R) such that ™I, = 2™Uxz™. Further, we prove that every directly finite simple ring

satisfies regular power-substitution. Some applications for stably free R-modules are obtained
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as well. These extend many known results on power-substitution of modules.

Throughout this paper, all rings are associative with identity and all modules are right
modules. We say that an element x € R is regular provided that x = zyx for a y € R. Let
M, (R) be the ring of n x n matrices over R. M, (R) has identity I,,, and its group of units is

the general linear group GL, (R). We always use N to denote the set of all natural numbers.

2 Pseudo-similarity

We begin with a simple characterization of such rings.

Theorem 2.1 Let R be a ring. Then the following are equivalent:

(1) R satisfies regular power-substitution;

(2) Whenever ax +b = 1 with ba = 0, there exist n € N and Y € M,(R) such that
al, +bY € GL,(R).

Proof (1) = (2) Suppose that ax +b = 1 with ba = 0. Then aza = a. So we can find
n € N and U € GL,(R) such that al,, = aUa. Set E = aU. Then al,, = EU and E = E%
So we see that EUx + bl,, = I,,, and then EUx(I,, — E)+ b(I, — E) = I, — E. Tt follows that
al, +b(I, — E)U~' = BEU-' +b(I, — E\U~" = (I, — EUz(I,,— E))U~". Set Y = (I, — E)U~".
We have al,, +bY € GL,(R), as required.

(2) = (1) Given any regular € R, there exists y € R such that © = xyx and y = yxy.
Since yx + (1 —yz) = 1 and (1 — yx)y = 0, we can find n € N and Y € M, (R) such that
yl, + (1 —yz)Y = U € GL,(R). Therefore zI,, = z(yI, + (1 — yx)Y )z = 2Uxz, as asserted.

Further, we claim that a ring R satisfies regular power-substitution if and only if for any
regular a,b € R, aR + bR = R implies that there exist n € N and Y € M, (R) such that
al, +bY € GL,(R). Clearly, every ring satisfying power-substitution satisfies regular power-

substitution.

Corollary 2.1 Let R be a ring, and let e = €? € R. If R satisfies reqular power-substitution,

then so does eRe.

Proof Suppose that axz+b = e with a,x,b € eRe and ba = 0. Then we have (a+1—e¢)(z+1—
e)+b = 1. Clearly, b(a+1—e) = 0. Since R satisfies regular power-substitution, there exist n € N
and Y € M, (R) such that (a+1—e)l, +bY € GL,(R). We infer that U((a+1—e)I, +bY) =
((a+1—=e), +bY)U = I,. Clearly, (1 —e)U = (1 —e)I,,. Hence eUe = Ue. Thus we have
(eUe)(al,+b(eYe)) = (al,+b(eYe))(eUe) = el,,. Hence, al,, +b(eYe) € GL,(eRe). It follows

from Theorem 2.1 that eRe satisfies regular power-substitution.

Let M be an R-R-bimodule. Then the module extension of R by M is the ring R X M
with the usual addition and multiplication defined by (r1,m1) + (re, ma) = (11 + re,m1 + ma),
(r1,m1)(ro,ma) = (r1re, r1ma + mare) for r1,79 € R and my, me € M. For module extensions
of regular power-substitution, we prove that a ring R satisfies regular power-substitution if and
only if so does RX M. Further, we see that a ring R satisfies regular power-substitution ring

if and only if so does the ring of all n x n lower (upper) triangular matrices over R.
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Recall that a~b with a,b € R if there exist some x,y,2z € R such that a = ybx,b = zaz
and x = xyx = xzzx. Guralnick and Lanski showed that a ring R satisfies internal cancellation
if and only if pseudo-similarity is equivalent to similarity in R. In the sequel, we observe that

regular power-substitution can be characterized by pseudo-similarity.

Theorem 2.2 Let R be a ring. Then the following are equivalent:
(1) R satisfies regular power-substitution;
(2) Whenever a=b, there exist n € N and a U € GL,,(R) such that aU = Ub.

Proof (1) = (2) Suppose that a=~b. Obviously, we have 2,y € R such that a = xby,
b = yazr, x = xyr and y = yry. As R satisfies regular power-substitution, we can find n € N
and V € GL,(R) such that yI,, = yVy. Set U = (I,, — ayl, — Vy)V (I, — yzl, — yV). We
verify U~! = (I, — yxI, —yV)V (I, — zyl,, — Vy). Furthermore, we have al,, = UbU !, as
required.

(2) = (1) Given any regular x € R, we have a y € R such that x = zyx and y = yxy. Since
xy = z(yx)y and yx = y(xy)z, we see that zy~yx. So there are n € N and V € GL,(R) such
that (xy)I,, = V(yx)V 1. Hence (1—ay)l, = V(1—yz)V 1. Set A = (1—2y)V (1—yz) and B =
(1—yz)V~Y(1—2y). Then (1—zy)I, = AB and (1—yz)I,, = BAwith A € (1—zy)M,,(R)(1—yz)
and B € (1 — yz)M,(R)(1 — zy). We deduce that ¢ : ((1 — zy)R)" = ((1 — yx)R)™. Clearly,
R" = (yzR)" @ ((1 — yx)R)™ = (zyR)"” @ ((1 — zy)R) with ¢* : (zyR)" = (xR)™ = (yzR)".
Define U € Endgr(R") so that U restricts to ¢* and U restricts to ¢. Then zI,, = Uz with
U € GL,(R), as desired.

Recall that an element a € R is strongly m-regular if there exist n € N and x € R such that

n +1

a™ =a" "z, ar = xa and z = zax. We say that the solution = € R is a Drazin inverse of a.

Corollary 2.2 Let R be a ring. Then the following are equivalent:

(1) R satisfies regular power-substitution;

(2) Whenever ab,ba € R are strongly m-regular, there exist n € N and U € GL,,(R) such
that (ab)iU = U (ba)?.

Proof (2) = (1) Given any regular x € R, there exists y € R such that z = zyx and
y = yxy. Obviously, zy, yz € R both have Drazin inverses, so we have n € N and U € GL,,(R)
such that (zy)?1, = U(yz)?U . That is, xyl,, = UyzU~'. Analogously to the consideration
in Theorem 2.2, we have V' € GL,,(R) such that I, = 2V z, as required.

(1) = (2) Suppose that ab and ba have Drazin inverses. One easily checks that (ab)? =
a(ba)?(ba)®, (ba)? = (ba)?b(ab)?a and (ba)?ba(ba)b = (ba)?. So (ba)?=~(ab)?. Therefore we
complete the proof by Theorem 2.2.

Theorem 2.3 Let R be a ring. Then the following are equivalent:

(1) R satisfies regular power-substitution;

(2) For any idempotents e, f € R, eR = fR implies that there existn € N and U € GL,(R)
such that eU = U f;

(3) For any idempotents e, f € R, eR = fR implies that there exist n € N and U,V €
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GL,(R) such that eI, = UfV.

Proof (1) = (2) For any idempotents e, f € R, eR = fR implies that e~f. So there exist
n € N and U € GL,(R) such that el,, = UfU~! by Theorem 2.2.

(2) = (3) Trivial.

(3) = (1) Given any regular x € R, thereis ay € R such that x = zyx and y = yzy. Clearly,
ry~yz. So we can find n € N and U,V € GL,(R) such that el,, = VfU 1. Set Y = VfV 1,
and W =1I,—el,+Y. ThenYe=VfV le=VfV WU ' =VfU ' =el,; Y =V V=
VUIU)W=t =eUV~L SoeY =Y. It is easy to check that W~ = I,, +el,, — Y. Since
eVf =Vf, we deduce that WV f = (I, —el, + Y)Vf =V f—-eVf+YVf =Vf Also
we have eWV = e(l, —el, +Y)V = eYV = eV f = Vf. Thus, eWU = WUf. That is,
el, = WU f(WU)~L. Similarly to the consideration in Theorem 2.2, we show that zI,, = zWx
for some W € GL,,(R). Therefore R satisfies regular power-substitution.

Corollary 2.3 Let R be a ring. Then the following are equivalent:

(1) R satisfies regular power-substitution;

(2) For any regular a,b € R, aR = bR implies that there exist n € N and U,V € GL,,(R)
such that aU = V'b.

Proof (2) = (1) Clear from Theorem 2.3.

(1) = (2) Suppose that aR = bR with regular a,b € R. Since a and b are regular, we
have idempotents e, f € R such that aR = eR and bR = fR. Hence eR = fR. It follows
by Theorem 2.3 that there exist s € N and V; € GL4(R) such that el, = Vlfol. From
aR = eR, we have an x € R such that ax = e. Since (ze)a(xe) = xe and a(xe) = e, we may
assume that « € R is regular. So we have t € N and W € GL;(R) such that I, = zWx. Set
E =xW. Then zI; = EW~! and E = E?. Clearly, we have y € R such that a = ey. It follows
from zy + (1 — zy) = 1 that EW Yy + (1 — ay)I; = I;; hence, xl; + (1 — xy)(I; — E)W 1 =
(I; — EWYy(I, — E))W~t. Set Vo = (I; — EWYy(I, — E))W~!. As azy = a, we deduce
that el; = axl, = aVa. Likewise, we have m € N and Vo € GL,,(R) such that fI,, = bVs.
Set U = diag(Va, - -+ , Vo) smdiag(Va, - - - , V1 )emdiag(Vs, - - - ,‘/3);51 and V = diag(V1, -, V1) tm.-
Then we see that U,V € GLg,(R) and aU = Vb, as required.

3 Power-Cancellation

Now we investigate power-cancellation of modules over regular power-substitution.

Theorem 3.1 Let P be a right R-module. Then the following are equivalent:
(1) Endg(P) satisfies regular power-substitution;
(2) Whenever P~ A® B>~ A® C, there exists n € N such that B™ = C".

Proof (1) = (2) Suppose that P =2 A@® B =2 A @ C. Then we have right R-module
decompositions P = A; ® B’ = Ay ® C’ such that A; ® A= Ay, B’ = B and C' = C. Let
e: A=A @B — A — A & B’ = A be given by e(a1,b’) = a; for any a; € Ay, ¥ € B’
and f: A=A, ®C" — Ay — Ay ® C" = A be given by f(as,) = as for any ay € As,
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¢ e . Assume that ¢ : A1 2 As. Letx : A=A ®B — A 2 Ay — A, ®C' = A be
given by e(ai,b’) =¢(ay) for any ay € A1, b € B andy: A=A, C' - Ay — A1 B =4
be given by y(ag,c’) = ¥ ~1(az) for any az € As, ¢’ € C'. Clearly, e = yfz, f = wey and
x = zyx. Hence e~f. In view of Theorem 2.3, there exist n € N and U € GL,,(R) such that
el, = UfU™!, and then (1 —e)I,, = U(1 — f)U~!. Define right R-module homomorphism
¢: (1=e)P)" — ((1 = f)P)" by
P P
olA-eln| || =UT" | (Q-e)n| :
Pn Pn
@

Clearly, ¢ is well defined. In addition, ¢ is injective. Given any (1 — f)I,, < :

dn

) e((@—-e)p)m,

@
we have (1 —e)I,,U ( ) € ((1 — e)P)™ such that
an
il a1
olA=eLU| | [=0=
dn an
Therefore we show that B™ 2 (B')" = (C')™ = C™, as required.

(2) = (1) Given any regular € Endg(P), we have a y € Endgr(P) such that z = zyz
and y = yay. Obviously, we have right R-module decompositions P = (zy)P & (1 — ay)P =
(yxP) @ (1 — yx)P with ¢ : (zy)P = (yx)P. Thus we have n € N such that ¢ : ((1 — zy)P)" =
((1 — yx)P)™. Denote by ¢* : ((zy)P)™ = ((yz)P)™ the corresponding homomorphism of ).
Define U € Endg(P"™) so that U restricts to ¢* and U restricts to ¢. Then zI, = zUx with
U € GL,(Endg(P)), as desired.

A projective right R-module P is called stably free in case there is a free module F of finite
dimension such that the direct sum P & F is free (see [9]). We say that P is power free in case
P? is free for a positive integer s. An interesting problem is when a stably free module is power
free. If R is a right Noetherian ring or a commutative ring, then every stably free module is

power free (see [9, Theorems 5.10 and 5.11]). We now observe the following fact.

Corollary 3.1 If M, (R) satisfies reqular power-substitution for alln € N, then every stably

free right R-module is power free.

Proof A theorem of Gabel guarantees that every non-finitely generated projective right
R-module is always free, so it suffices to consider finitely generated projective right R-modules.
Let P be a right R-module with P & R™ = R™. Assume that n > m. Then R® &2 P & R™ =
R" ™ @ R™. Clearly, Endr(R™) = M, (R) satisfies regular power-substitution for all n € N. It
follows from Theorem 3.1 that P* = R%("=™) is free for some s € N.

Assume that n < m. Then we have R" = P®R™ " ®R" = 0@ R". Inasmuch as Endg(R™)
satisfies regular power-substitution for all n € N, from Theorem 3.1, we can find s € N such that

P# @ Rs(m=7) > (), a contradiction. Therefore we conclude that P is power free, as asserted.
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Recall that a ring R is directly finite provided that for any x,y € R, xy = 1 if and only if
yx = 1. Obviously, every ring satisfying regular power-substitution is directly finite. Further,

we observe the following interesting fact.
Theorem 3.2 FEvery directly finite simple ring satisfies reqular power-substitution.

Proof Let R be a directly finite simple ring. Given R = Ay & B1 = Ay @ By with A1 & Ao,
then there exist idempotents e, f € R such that By = eR and By = fR. If By = 0, then
R = R & By, hence, B, = 0. Likewise, By = 0 implies By = 0. Thus, we may assume that
B; # 0 and By # 0. Since R is simple, ReR = RfR = R. Thus, we have some s;,¢; (1 <i<n)

such that 1 = Y s;et;,. Construct a map ¢ : n(eR) — R given by @(ery, - ,er,) = Xn: sier;
i=1

for any (ery,--- ,er,) € n(eR). Obviously, ¢ is an R-epimorphism, and so R ® Ker ¢ = n(eR).

Hence, A1 <% R <% n(eR). Likewise, A3 <® R <% n(fR).

Write n(eR) = A; @ D and n(fR) =2 Ay @ E. Then (n + 1)(eR) = eR® (A1 @ D) =
JR® (A2 ® D) = fR® (A1 ® D) = fR ® n(eR). Likewise, (n + 1)(fR) = eR @ n(fR).
For any m > 2n, write m = 2n + p, where p > 0. Then m(eR) = n(eR) & (n + p)(eR) =
n(eR) & (n + p)(fR) = n(eR) & n(fR) & p(fR) = (n +n)(fR) & p(/R) = m(fR). Thus,
there exists m € N such that mB; = mBy. Therefore R satisfies regular power-substitution by
Theorem 3.1.

A ring R is an exchange ring if for every right R-module A and any two decompositions

A=M®N =@ A,;, where Mr = R and the index set I is finite, there exist submodules
il

Al C A; such that A = M @ ( &b A;) The class of exchange rings is very large. It includes all

regular rings, all r-regular ringsl,efgll strongly 7-regular rings, all semiperfect rings, all left or right

continuous rings, all clean rings, all unit C*-algebras of real rank zero and all right semi-Artinian

rings (see [5-7]). We easily see that every exchange ring satisfying regular power-substitution

satisfies power-substitution. Immediately, we deduce that every directly finite simple exchange

ring satisfies power-cancellation. This provides a large class of such exchange rings.

Corollary 3.2 Let R be a simple ring. If M, (R) is directly finite for all n € N, then every
stably free right R-module is power free.

Proof Since R is simple, so is M,,(R). Thus, each M, (R) is directly finite, simple ring.
According to Theorem 3.2, M,,(R) satisfies regular power-substitution. Therefore we complete

the proof by Corollary 3.1.

4 Unit-Regularity

Recall that an element x € R is unit m-regular provided that there exist an m € N and a
u € U(R) such that ™ = 2™uz™. In [3], the author investigated power-substitution by means
of unit 7-regularity. The main purpose of this section is to extend the corresponding results on

power-substitution to regular power-substitution by virtue of unit w-regularity.
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Lemma 4.1 Let R be a ring. If for any regular x,y € R, there exist n € N and A € M, (R)
such that xI, — A is unit-regular and I, — yA € GL,(R), then R satisfies regular power-

substitution.

Proof Let x € R be regular. Then we have a y € R such that = zyx and y = yxy.
So there is a positive integer n and a matrix A € M, (R) such that yI, — A = W is unit-
regular and I, — zA € GL,(R). Thus aW + (1 — zy)l, = I, — x(yI, — W) € GL,(R), hence,
xl, + (1 —zy)W=! = U € GL,(R). Therefore x1,, = xyzl, = zyU, and then I, = 2U 'z,

as asserted.

Theorem 4.1 Let R be a ring. Then the following are equivalent:
(1) R satisfies regular power-substitution;
(2) For any reqular x € R, there ezistm,n € N andU € GL,,(R) such that x™I,, = x™Uz™.

Proof (1) = (2) Trivial.
(2) = (1) Given any regular x,y € R, there are m,n € N and U € GL,(R) such that

™I, = xmUx™. Set

0, --- 0, 0, I, zI, --- za2™',
I, - 0, O, 0, I, - 0.,
A= . . . 5 B = . . )
y" yl, I
1, 0, O,
C= ) € Mpn(R)
0, I, 0,
Hence, we have
Op -+ 0, 2™, 0 N O N
B(alpn —A) = | : C |, Clpn —yA) = | ¥ o O
Op -+ al, = : D
0, --- =1, * 0y, R

Clearly, B,C € GL,,,(R). Hence I, —yA € GLy,,,(R). Since ™1, is unit-regular, we assume
that ™1, = eu for some e = e* € M, (R) and u € GL,,(R). So we have

0, - 0, eu!
&l —A=DB"" : :
0p xl, *
0, -1, *
= B! : :
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Thus 21, — A = (2L, — A)ULEB(21,, — A), where

On 0 U71 € On On
0, - zl, * 0, 0, --- 0,
Op -+ —I, On 0p -+ I

It follows from (21, — A)\UYEB + (I, — (xlnn — A)\UYEB) = I, that a1, — A =
(w1 — AW (21, — A), where W = U~ Iy + (Inn — E)B(2lp, — A)YUTTE)1B. That is,

Zlpmn — A is unit-regular. According to Lemma 4.1, R satisfies regular power-substitution.

Corollary 4.1 If every reqular element in R is unit w-reqular, then R satisfies reqular

power-substitution.
Proof It immediately follows from Theorem 4.1.

Recall that an element a € R is strongly w-regular provided that there exist n € Nand x € R
such that a™ = a" 'z, ax = xa. As an immediate consequence of Corollary 4.1, we deduce that
all rings in which every regular element is strongly m-regular satisfy regular power-substitution.
Though every strongly m-regular ring is unit 7-regular, it is worth noting that the converse is

[ee]
not true. Let R = [] M,(S), where S is a unit-regular ring. Then R is unit-regular. Hence,
n=1

every element in R is unit m-regular. Let a; = 0 and a,, = e12 + €23 + -+ + €(_1)n, Where ¢;;
is the » x n matrix with 1 in the (7, j) position and 0’s elsewhere (n > 2). One easily checks
that e;jerr = ey (j = k) and e;jep, = 0 (§ # k). Thus, a” =0 and a”’~! # 0 (n € N). Choose
a = (ay,az, --). Then aR 2 a’R 2 -++. Thus, regular element a € R is unit 7w-regular, while

a € R is not strongly m-regular.

Lemma 4.2 Let R be a ring. If for any reqular x,y € R, there exist a positive integer n
and A € M, (R) such that xI, — A is invertible and I, — yA is unit-reqular, then R satisfies

reqular power-substitution.

Proof Let x € R be regular. Then we have a y € R such that * = zyx and y = yxy. So
there is a positive integer n and a matrix A € M, (R) such that yI, — A = W € GL,(R) and
I, — A € M, (R) is unit-regular. Thus «W + (1 — zy)I,, = I,, — x(yI,, — W) € M,,(R); hence,
U:=zl, + (1 —zy)W~! € M,(R) is unit-regular. Write U = EV, where E = E? € M,(R),
V € GL,(R). Then (zI, + (1 — ay)W Yy + (1 — zy)(I, — (1 — 2zy)W~ly) = I, hence,
EVy+ (1 —ay)(I, — (1 —2y)Wty) = I,. This infers that zI,, + (1 — ay)(W ! + (I,, — (1 —
zy)Wly)(I, — E)V) € GL,(R). Consequently, zI,, = 2V (I, + EVy(I, — E))z, as desired.

Theorem 4.2 Let R be a ring. If for any reqular x,y € R, there exist positive integers
m,n and a matriv U € GL,(R) such that I, + ™ (y™I, — U) is unit-regular, then R satisfies

reqular power-substitution.

Proof Given any regular z,y € 1 + I, there exist positive integers m,n and a matrix
U € U(R) such that I, +a™(y™I, —U) € M,(R) is unit-regular. Thus y™I,, — a, is invertible,
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I, + x™ay, is unit-regular and a,, = y"™1I,, — U. Set

0, --- 0 am I, zI, --- a™'I,
I, -~ 0 0, 0, I, --- 0,
A= . . . 5 B = . . . )
y" yl, In
C= ) € Myn(R)
0, I, 0,

0 0 x2™I, +an
-1, 0, *
B(xly, — A) = : ,
0,, xl, *
0 -1, *
I, 0, *
C(Lpy — yA) = | ~¥In On *
0y 1, *

Since B,C € GLyn(R), we show that x1,,, — A is invertible and I,,,,, — yA is unit-regular.

According to Lemma 4.2, we complete the proof.

Corollary 4.2 Let R be a ring. If for any reqular x,y € R, there exist a positive integer m
and a u € U(R) such that 1 + 2™ (y™ — u) € U(R), then R satisfies regular power-substitution.

Corollary 4.3 Let R be a unital complex C*-algebra. If for any regular x € R, there
exists some n € N such that ™ is the sum of a unitary and a unit, then R satisfies regular

power-substitution.

Proof For any regular =,y € R, we have a unitary v € R such that (1 + |ly]|)z” —v is a

unit for some 7 € N. Let u = 17r. Then 2" —u € U(R). As ||v|]| = 1, we have [|y"u| < 1,

hence, 1 — y"u € U(R). So y" —u~! € U(R). Let w = 2™ —u. Then 1 — y"(2" — w) € U(R).
According to Corollary 4.2, we complete the proof.
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