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Abstract The canard phenomenon occurring in planar fast-slow systems under non-

generic conditions is investigated. When the critical manifold has a non-generic fold point,
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1 Introduction and Statement of the Main Result

In a system of singularly perturbed ordinary differential equations, a canard is a trajectory

which follows both the attracting and repelling parts of a slow manifold. Canard is a new kind

of bifurcation phenomena relative to other bifurcations in singularly perturbed systems, such as

Hopf bifurcation (see [24]), homoclinic bifurcation (see [19]), tori bifurcation (see [28]) and so on.

Canard phenomena were first found in a study of the van der Pol equation by using the method

of nonstandard analysis (see [1, 4]). Later, Eckhaus [8] and Mishchenko et al [2, 14, 21] applied

classical asymptotic analysis to the study of canards. Recently, some geometric methods (see,

for instance, [7, 15, 16, 25]) have also been used to analyze a variety of canards. In addition to

the van der Pol system, canard phenomena have been found and investigated in varying degrees

for a variety of chemical, biological and other systems (see for instance [3, 5, 12, 23, 26, 27] and

the references therein). However, most of the previous works use generic conditions. Few works

consider canards for non-generic conditions. In [18], Li studied the existence of multiple canard

cycles for a class of planar fast-slow systems under non-generic conditions by using classical

asymptotic analysis. Very recently, Maesschalck and Dumortier [20] used a geometric approach

to consider canards in the following fast-slow system:

ẋ = −y + x2n + O(x2n+1),

ẏ = ε(a + x2n−1) + O(ε2),
(1.1)

where 0 < ε ≪ 1, which is a kind of degenerate case for n > 1.
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The present paper is devoted to the study of canards under another kind of non-generic

conditions. When the critical manifold has a non-generic fold point, by using the method of

asymptotic analysis combined with the recently developed blow-up technique, we investigate

the existence of canards.

Let us consider a one-parameter family of singularly perturbed ODEs,

ẋ = −y + f(x),

ẏ = ε(x − λ),
(1.2)

where 0 < ε ≪ 1, |λ| ≪ 1, and the function f is of class Ck. Assume that (0, 0) is a quadratic

fold point of the critical manifold, that is,

f(0) = f ′(0) = f ′′(0) = f (3)(0) = 0, f (4)(0) > 0. (1.3)

Therefore, without loss of generality, in a small neighborhood of the origin, f(x) = x4 +O(x5).

The critical manifold of (1.2) consists of the attracting part Sa, the repelling part Sr and the

break off point (0, 0). It follows from the geometric singular perturbation theory (see [9, 13])

that outside an arbitrary small neighborhood of the origin, the manifolds Sa and Sr can be

perturbed smoothly to locally invariant slow manifolds Sa,ε and Sr,ε (see Figure ??). Notice

that these manifolds are not uniquely defined. An important issue is to study the dynamics

of system (1.2) and, in particular, to clarify the behavior of the slow manifolds Sa,ε and Sr,ε

in the vicinity of the origin. In what follows, we will prove the existence of the value λ∗(ε) of

the parameter λ for which the manifolds Sa,ε and Sr,ε merge in the neighborhood of the origin.

The manifold obtained for the parameter value λ∗(ε) is called the maximal canard.
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Figure 1 The critical manifold and slow manifolds

Our main result is the following theorem.

Theorem 1.1 Assume that (1.3) holds. There exist ε0 > 0 and λ∗(= O(ε
1
3 )) such that for

ε ∈ (0, ε0] and λ = λ∗, system (1.2) has a maximal canard.

2 Blow-up Analysis

The recently developed blow-up method (see [7, 15]) is essentially a clever coordinate trans-

formation by which the degenerate equilibrium is “blown-up” to a two-sphere. In certain

directions transverse to the sphere and even on the sphere, one gains enough hyperbolicity to
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allow a complete analysis by standard techniques. The technique is a generalization of the well

known blow-up methods for degenerate equilibria of planar vector field (see [6]).

Consider the extended system

ẋ = −y + x4 + O(x5),

ẏ = ε(x − λ),

ε̇ = 0,

λ̇ = 0.

(2.1)

The linearization of system (2.1) at the origin has fourfold zero eigenvalue while the linearization

at the other points of the critical manifold has a triple zero eigenvalue and one negative (resp.

positive) eigenvalue for x < 0 (resp. x > 0). Therefore, the quadratic fold point (0, 0, 0) is a

more degenerate equilibrium point of system (2.1).

To system (2.1) we apply the blow-up transformation Φ : B = S2 × [−µ, µ] × [0, ρ] → R
4:

x = r x, y = r4y, ε = r6ε, λ = rλ, (2.2)

where µ and ρ are chosen such that system (1.2) is described by the extended system (2.1) in

the region Φ(B). Denote by X the blown-up vector field. It is easy to check that there are four

equilibria pa, pr, qin and qout in the invariant circle λ = r = ε = 0, where pa and pr correspond

to the two branches of the critical manifold, qin corresponds to the incoming critical fibre, and

qout corresponds to the outgoing critical fibre. We need two charts to describe all the dynamics,

namely the usual rescaling chart K2 defined by

x = r2x2, y = r4
2y2, ε = r6

2 , λ = r2λ2, (2.3)

and the chart K1 defined by

x = r1x1, y = r4
1 , ε = r6

1ε1, λ = r1λ1, (2.4)

with coordinates (x1, r1, ε1, λ1) ∈ R
4 and (x2, y2, r2, λ2) ∈ R

4. Loosely speaking, K2 describes

a neighborhood of the upper half-sphere defined by ε1 > 0, and K1 describes a neighborhood

of the equator of S2 defined by y2 > 0.

Lemma 2.1 Let κ12 denote the change of coordinates from K1 to K2. Then for ε1 > 0,

κ12 is given by

x2 = x1ε
−

1
6

1 , y2 = ε
−

2
3

1 , r2 = r1ε
1
6
1 , λ2 = λ1ε

−
1
6

1 , (2.5)

and for y2 > 0, κ21 = κ−1
12 is given by

x1 = x2y
−

1
4

2 , r1 = r2y
1
4
2 , ε1 = y

−
3
2

2 , λ1 = λ2y
−

1
4

2 . (2.6)

Proof Straightforward computations from (2.3)–(2.4).

2.1 Analysis of the dynamics in the chart K2

The dynamics of the blown-up vector field X in a neighborhood of the upper half-sphere is

studied in the chart K2. Using the blow-up change (2.3) to desingularize the origin of system

(2.1), we obtain
x′

2 = −y2 + x4
2 + σr2x

5
2 + O(r2

2),

y′

2 = x2 − λ2,
(2.7)
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where the prime denotes the differentiation with respect to t2, t2 ≡ r3
2t, and σ = f(5)(0)

5! .

Setting r2 = λ2 = 0 in (2.7), we have

x′

2 = −y2 + x4
2,

y′

2 = x2.
(2.8)

In what follows, we analyze the global dynamics of system (2.8). It follows from [11, Theorem

4.8] that the origin is a center of (2.8). To investigate the dynamics of the singular points at

infinity, we make the Poincaré transformation:

z =
1

x2
, u =

y2

x2
.

From (2.8) it follows that

du

dt
=

1

z3
[(1 + u2)z3 − u],

dz

dt
=

1

z2
(uz3 − 1). (2.9)

By rescaling the time dτ = 1
z3 dt, system (2.9) becomes

du

dτ
= (1 + u2)z3 − u,

dz

dτ
= z(uz3 − 1). (2.10)

System (2.10) has an integral line z = 0, and the origin is a stable node.

Now we investigate the infinite singular point on y2-axis. By the transformation

z =
1

y2
, v = −x2

y2
,

system (2.8) becomes
dz

dt
= −zv,

dv

dt
=

1

z3
(z3 + v2z3 − v4).

Letting dτ = 1
z3 dt, from the above equations we have

dz

dτ
= z4v,

dv

dτ
= z3 + v2z3 − v4. (2.11)

In order to investigate the dynamics of (2.11) in the neighborhood of (0, 0), we make the

transformation

z = w3, v = v.

From (2.11), we obtain
dw

dτ
= 3w2v,

dv

dτ
= w + wv2 − v4. (2.12)

It follows from [11, Theorem 5.5, Chapter 1] that the origin is an equilibrium of saddle type for

system (2.12). Hence, we have the global phase portrait of (2.8) as shown in Figure 2.

Lemma 2.2 System (2.8) has a unique separatrix denoted by γ2 homoclinic to the infinite

singular point p on the compactified Poincaré disc.

Proof From the above analysis and by noting that the trajectories of (2.8) are symmetric

about the y-axis, the result follows.
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p

Figure 2 The global phase portrait of (2.8)

2.2 Analysis of the dynamics in the chart K1

The chart K1 is used to analyze the dynamics of the blown-up vector field X in a neighbor-

hood of the equator. Substituting (2.4) into system (2.1), we obtain in K1,

x′

1 = −1 + x4
1 −

1

4
ε1x1(x1 − λ1) + O(r1),

r′1 =
1

4
r1ε1(x1 − λ1),

ε′1 = −3

2
ε2
1(x1 − λ1),

λ′

1 = −1

4
λ1ε1(x1 − λ1),

(2.13)

where the prime denotes the derivative with respect to a rescaled time variable t1, t1 ≡ r3
1t.

The hyperplane r1 = 0, ε1 = 0, λ1 = 0 is invariant for the flow of system (2.13), and

the invariant line l1 := {(x1, 0, 0, 0) : x1 ∈ R} contains two equilibria pa = (−1, 0, 0, 0) and

pr = (1, 0, 0, 0).

The dynamics in the invariant plane ε1 = λ1 = 0 is governed by

x′

1 = −1 + x4
1 + O(r1),

r′1 = 0.
(2.14)

For r1 small enough, it follows from the Implicit Function Theorem that system (2.14) has two

curves Sa,1 and Sr,1 of equilibria emanating from pa and pr, respectively. The dynamics in the

invariant plane r1 = λ1 = 0 is governed by

x′

1 = −1 + x4
1 −

1

4
ε1x

2
1,

ε′1 = −3

2
ε2
1x1.

(2.15)

Obviously, there exist an attracting one-dimensional center manifold Na,1 at pa and a repelling

one-dimensional center manifold Nr,1 at pr. Define

D1 ≡ {(x1, r1, ε1, λ1) : −2 < x1 < 2, 0 ≤ r1 ≤ ρ, 0 ≤ ε1 ≤ δ, −µ < λ1 < µ},

where ρ, δ and µ are small positive constants.
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Lemma 2.3 The constants ρ, δ and µ can be chosen sufficiently small such that the fol-

lowing assertions hold for system (2.13).

( i ) There exists an attracting three-dimensional Ck-center manifold Ma,1 at pa that contains

the curve of equilibria Sa,1 and the center manifold Na,1. In D1, the manifold Ma,1 is given as

a graph x1 = ha(r1, ε1, λ1) with

ha = −1 − 1

22
ε1 +

σ

4
r1 +

3σ

484
ε1r1 −

4

121
ε1λ1 −

1

968
ε2
1 +

3σ2

32
r2
1 + o(2). (2.16)

(ii) There exists an repelling three-dimensional Ck-center manifold Mr,1 at pr that contains

the curve of equilibria Sr,1 and the center manifold Nr,1. In D1 the manifold Mr,1 is given as

a graph x1 = hr(r1, ε1, λ1) with

hr = 1 +
1

22
ε1 −

σ

4
r1 −

3σ

484
ε1r1 −

4

121
ε1λ1 +

1

968
ε2
1 −

3σ2

32
r2
1 + o(2), (2.17)

where o(2) = o(ε2
1, r

2
1 , λ

2
1, ε1r1, ε1λ1, r1λ1).

Proof The assertions follow from the center manifold theory (see [10, 17] for instance),

where (2.16) and (2.17) can be obtained by using the method of [17].

We define the sections:

∆in
a,1 ≡ {(x1, r1, ε1, λ1) ∈ D1 : r1 = ρ, |1 + x1| < β},

∆out
a,1 ≡ {(x1, r1, ε1, λ1) ∈ D1 : ε1 = δ, |1 + x1| < β},

∆in
r,1 ≡ {(x1, r1, ε1, λ1) ∈ D1 : ε1 = δ, |1 − x1| < β},

∆out
r,1 ≡ {(x1, r1, ε1, λ1) ∈ D1 : r1 = ρ, |1 − x1| < β},

where β > 0 is small enough. For λ1 = 0, Figure 3 shows the geometry of K1.
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Figure 3 Geometry of K1 for λ1 = 0
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Remark 2.1 Note that system (2.8) under the transformation (2.6) corresponds to (2.15) in

K1. The infinite singular point p is “blown-up” into two hyperbolic points pa and pr. Therefore,

to investigate the dynamics in the neighborhood of p for system (2.8), we only need to analyze

the dynamics in the neighborhoods of pa and pr for system (2.15) in K1. From the global phase

portrait of (2.8) and Lemma 2.3, we know that, for y2 > 0, κ21(γ2) corresponds to the center

manifolds Na,1 and Nr,1; that is, γ2 is a heteroclinic orbit connecting the singular points pa and

pr in the blown-up vector field X, which also implies that the center manifolds Na,1 and Nr,1

are unique.

The following result gives an estimate of the separatrix.

Lemma 2.4 The separatrix γ2 in K2 can be parametrized with (x2, y2) = (x2, ϕ0(x2))

satisfying α(x2) ≤ ϕ0(x2) ≤ β(x2), where

α(x2) =

{
x4

2 − 0.25, |x2| ≥ 1,

x4
2 + 0.3x2

2 + 0.2|x2| − 0.75, |x2| < 1,

β(x2) =

{
x4

2 − (4x2
2 + 6|x2|)−1, |x2| ≥ 1,

x4
2 + 0.4x2

2 − 0.5, |x2| < 1.

Proof In view of symmetry, we only consider the case of x2 ≤ 0.

For x2 ≤ −1,

x2

−α(x2) + x4
2

− α′(x2) = 4x2(1 − x2
2) ≥ 0,

x2

−β(x2) + x4
2

− β′(x2) = −48x6
2 − 144x5

2 + 108x4
2 + 4x2 − 3

2x2
2(2x2 − 3)2

< 0.

For −1 < x2 ≤ 0,

x2

−α(x2) + x4
2

− α′(x2) = −160x5
2 − 240x4

2 − 584x3
2 − 36x2

2 + 158x2 + 45

4x2
2 − 6x2 − 15

> 0,

x2

−β(x2) + x4
2

− β′(x2) = −120x5
2 − 80x4

2 − 282x3
2 − 18x2

2 + 59x2 + 15

5(6x2
2 − 4x2 − 15)

< 0.

As x2 → −∞, we consider the auxiliary functions α(x2) and β(x2) in K1. Denote by α2 (resp.

β2) the curve determined by y2 = α(x2) (resp. y2 = β(x2)) in K2. From (2.6) we have in K1,

κ21(α2) : 1 = x4
1 −

1

4
ε

2
3
1 ,

κ21(β2) : 1 = x4
1 −

ε1

4x2
1 − 6x1ε

1
6
1

.

It follows from (2.16) that the center manifold Na,1 can be represented as

x1 = −1 − 1

22
ε1 + O(ε2

1).

Clearly, both κ21(α2) and κ21(β2) pass through the point pa. For ε1 > 0 small enough, the

center manifold Na,1 lies between the curves κ21(α2) and κ21(β2). Thus, we complete the proof

of Lemma 2.4.
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3 Proof of Theorem 1.1

For j = a, r, let ∆j ≡ {(x, ρ4), x ∈ Ij} be a section of Sj , where Ia and Ir are suitable

intervals containing −ρ and ρ, respectively (see Figure ??). To show the existence of parameter

λ for which Sa,ε is connected to Sr,ε, we need to extend Sa,ε and Sr,ε down to x = 0, which

will be studied in K1 and K2.

Noting the maps Πa : ∆a → ∆in
a,1 and Πr : ∆out

r,1 → ∆r, we only need to consider the positive

and negative trajectories emanating from the center manifolds Ma,1 and Mr,1, respectively. De-

note by A(x1, r1, δ, λ1) the first intersection point of ∆out
a,1 and the positive trajectory emanating

from Ma,1. Then from (2.16) and (2.5) we have

x4
1 = 1 +

2

11
δ + O(δ2) + (σδ−

1
6 + O(δ

5
6 ))r2 + O(r2

2δ−
1
3 ). (3.1)

By eliminating the time variable t2, it follows from (2.7) that

(−y2 + x4
2 + σr2x

5
2 + O(r2

2))
dy2

dx2
= x2 − λ2. (3.2)

We seek solutions of (3.2) of the form

y2 = ϕ0(x2) +

∞∑

i=1

ϕi(x2)r
i
2. (3.3)

Let

λ2 =

∞∑

i=1

λ2,ir
i
2. (3.4)

Substituting (3.3) and (3.4) into (3.2), we obtain

O(1) order : ϕ′

0(x2) =
x2

x4
2 − ϕ0(x2)

,

O(r2) order :
dϕ1

dx2
=

x2ϕ1

x4
2 − ϕ0(x2)

− σx6
2

(x4
2 − ϕ0(x2))2

− λ2,1

x4
2 − ϕ0(x2)

. (3.5)

To obtain the initial condition of (3.5), applying the transformation (2.5) to (3.3) we have

1 = ϕ0(x1δ
−

1
6 )δ

2
3 + ϕ1(x1δ

−
1
6 )δ

2
3 r2 + · · · . (3.6)

Comparing the coefficients of r2 in (3.1) and (3.6), we obtain

ϕ1(x1δ
−

1
6 ) = δ−

2
3 (σδ−

1
6 + O(δ

5
6 )). (3.7)

Therefore, we obtain the solution to (3.5) with the initial condition (3.7):

ϕ1(x2) = δ−
2
3 (σδ−

1
6 + O(δ

5
6 ))eQ(x2)−Q(x1δ

−

1
6 )

−
∫ x2

x1δ
−

1
6

eQ(x2)−Q(s)
[ σs6

(s4 − ϕ0(s))2
+

λ2,1

s4 − ϕ0(s)

]
ds, x2 < 0,

where Q(x2) =
∫ x2

0
ξ

(ξ4−ϕ0(ξ))2
dξ. Taking δ → 0, we get

ϕ1(x2) = −
∫ x2

−∞

eQ(x2)−Q(s)
[ σs6

(s4 − ϕ0(s))2
+

λ2,1

s4 − ϕ0(s)

]
ds, x2 < 0. (3.8)
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In a similar way, considering the negative trajectory emanating from Mr,1, we can obtain

ϕ1(x2) =

∫ +∞

x2

eQ(x2)−Q(s)
[ σs6

(s4 − ϕ0(s))2
+

λ2,1

s4 − ϕ0(s)

]
ds, x2 ≥ 0. (3.9)

By the continuity of ϕ1(x2) at x2 = 0, it follows from (3.8)–(3.9) that

∫ +∞

−∞

e−Q(s)
[ σs6

(s4 − ϕ0(s))2
− λ2,1

s4 − ϕ0(s)

]
ds = 0. (3.10)

Noting that the function 1
x4
2−ϕ0(x2)

is of at most algebraic growth for x2 → ±∞, we have

∫ +∞

−∞

e−∆(s)

s4 − ϕ0(s)
ds < +∞,

∫ +∞

−∞

s6e−∆(s)

(s4 − ϕ0(s))2
ds < +∞.

Therefore, λ2,1 is uniquely determined from (3.10). Thus, there exists a unique λ2,1 ∈ R such

that (3.5) has a continuous solution ϕ1(x2) defined on R. The function ϕ1(x2) is of at most

algebraic growth for x2 → ±∞, which follows from the following lemma.

Lemma 3.1 Suppose that the continuous function g(x) defined on R is of at most algebraic

growth for x2 → ±∞; that is, there exists a ν > 0 such that sup
x∈R

{|g(x)| · |x|−ν} < +∞ holds.

Then

sup
x∈R+

{∣∣∣
∫ +∞

x

eQ(x)−Q(s)g(s)ds
∣∣∣ · |x|−ν

}
< +∞,

sup
x∈R−

{∣∣∣
∫ x

−∞

eQ(x)−Q(s)g(s)ds
∣∣∣ · |x|−ν

}
< +∞.

Proof From the definition of Q(x), we have

Q(0) = Q′(0) = 0, Q′′(x) > 0, x ∈ R.

Then

|x|−ν

∫ +∞

x

eQ(x)−Q(s)|g(s)|ds ≤
∫ +∞

x

eQ(x)−Q(s)|g(s)| · |s|−νds

≤ sup
x∈R+

{|g(x)| · |x|−ν}
∫ +∞

x

eQ(x)−Q(s)ds

≤ sup
x∈R+

{|g(x)| · |x|−ν}
∫ +∞

0

e−Q(s)ds

< +∞.

This proves the first inequality, and the second one can be proved in the same way.

Let us continue the proof of Theorem 1.1. Setting

y2 = ϕ0(x2) + ϕ1(x2)r2 + zr2
2 , λ2 = λ2,1r2 + ~r2

2

in (3.2), we obtain

dz

dx2
=

x2z

(x4
2 − ϕ0(x2))2

+ Λ(x2, ~) + Ξ(x2, z, r2)r2, (3.11)
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where

Λ(x2, ~) =
(ϕ1(x2) − σx5

2)(x2ϕ1(x2) − σx6
2 − (x4

2 − ϕ0(x2))λ2,1)

(x4
2 − ϕ0(x2))3

− ~

x4
2 − ϕ0(x2)

,

and the function Ξ is of at most algebraic growth for x2 → ±∞ provided that z is of at most

algebraic growth for x2 → ±∞.

Define a Banach space:

Cz ≡
{
z ∈ C(R, R) : sup

x2∈R

{|z(x2)| · |x2|−ℓ} < +∞
}
,

where ℓ is a positive constant. In view of (3.11), we introduce the operator T as follows:

T z(x2) =





−
∫ +∞

x2

eQ(x2)−Q(s)[Λ(s, ~) + Ξ(s, z(s), r2)r2]ds, x2 ≥ 0,

∫ x2

−∞

eQ(x2)−Q(s)[Λ(s, ~) + Ξ(s, z(s), r2)r2]ds, x2 < 0.

From the continuity of T z(x2) at x2 = 0, we get

∫ +∞

−∞

e−Q(s)[Λ(s, ~) + Ξ(s, z(s), r2)r2]ds = 0. (3.12)

For any z ∈ Cz, the functions Λ and Ξ are of at most algebraic growth for x2 → ±∞. Hence,

for each z ∈ Cz , there exists a unique ~ ∈ R such that (3.12) holds.

Finally, with the help of Lemma 3.1 it is not difficult to check that T is a contracting map

from Cz to itself. Thus, we have proved that for λ2 = λ2,1r2 + ~r2
2, (2.7) has a trajectory which

is of at most algebraic growth for x2 → ±∞ near ϕ0(x2). This trajectory connects Ma,1 to

Mr,1 in K1, which implies the existence of a maximal canard. By the transformation (2.3), we

have λ∗ = λ2,1r
2
2 + ~r3

2 = O(ε
1
3 ). The proof of Theorem 1.1 is completed.

Remark 3.1 If the critical manifold of (1.2) has a higher order degenerate fold point, that

is, instead of the condition (1.3) we assume

f(0) = f ′(0) = · · · = f (m−1)(0) = 0, f (m)(0) > 0,

where m > 4 is an even number, then we can similarly obtain the existence of canards and the

asymptotic expansion of canard value.

Remark 3.2 Applying our approach to the following system (the case of generic folds):

x′ = −yh1(x, y, λ, ε) + x2h2(x, y, λ, ε) + εh3(x, y, λ, ε),

y′ = ε(xh4(x, y, λ, ε) − λh5(x, y, λ, ε) + yh6(x, y, λ, ε)),

where

h3(x, y, λ, ε) = O(x, y, λ, ε),

hj(x, y, λ, ε) = 1 + O(x, y, λ, ε), j = 1, 2, 4, 5,

we can obtain the same results as [15], and we can easily calculate the asymptotic expansion of

arbitrary order for the canard value λ.
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Remark 3.3 It is a pity that we can not obtain the exact coefficients in the asymptotic

expansion of the canard value, because we do not know the exact formula of ϕ0(x2). However,

with the aid of the auxiliary functions α(x2) and β(x2), we can estimate the range of the canard

value. See the following example.

Example 3.1 Consider the system (see [18])

ε
dx

dt
= y − 1

2
x4 +

3

5
x5 − 5

7
x7,

dy

dt
= a − x.

(3.13)

By the transformation

x̃ = − 1
3
√

2
x, ỹ =

1
3
√

2
y, λ = − 1

3
√

2
a, τ =

t

ε
,

system (3.13) can be transformed into the form

dx̃

dτ
= −ỹ + x̃4 − 6

5
x̃5 − 20

7
x̃7,

dỹ

dτ
= ε(x̃ − λ).

(3.14)

It follows from Theorem 1.1 that there exists a λ∗ such that for λ = λ∗ system (3.14) has a

canard, where λ∗ has the asymptotic expansion λ∗ = ωε
1
3 + O(ε

1
2 ). Therefore, for a = a∗ =

− 3
√

2ωε
1
3 +O(ε

1
2 ), system (3.13) has a canard. In (3.10), substituting ϕ0(x2) with the auxiliary

functions α(x2) and β(x2), respectively, we get 0.1187 < − 3
√

2ω < 0.2969. Take ε = 0.05. Then

a∗ lies approximately between 0.04373 and 0.10938. Figure 4 shows the canard obtained by

numerical simulation for ε = 0.05, a = 0.05568.

x

· · · · · · The critical manifold

· · · · · · The canard

y

Figure 4 For ε = 0.05, a = 0.05568, the canard obtained by numerical simulation
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