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The Generalized Prime Number Theorem for
Automorphic L-Functions
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Abstract Let m and 7’ be automorphic irreducible cuspidal representations of GLi,(Qa)
and GL,,/(Qx), respectively, and L(s, 7 x ') be the Rankin-Selberg L-function attached to
m and 7'. Without assuming the Generalized Ramanujan Conjecture (GRC), the author
gives the generalized prime number theorem for L(s,m x 7') when m = «’. The result
generalizes the corresponding result of Liu and Ye in 2007.
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1 Introduction

To each irreducible unitary cuspidal representation 7 of GL,,(Q4), one can attach a global

L-function which is given by products for local factors for o > 1 as in [4]:

L(s,m) = [[ Lo(s,m) = > A“(f), (1.1)
P n=1

n

where
m My —1
L(s,mp) = H (1 - Lﬂg’j)) .
j=1

The complete L-function is defined by
‘I)(S, 7T) = Loo(sa 7Too)L(Sv 7T),

where
m

Loo(sa 7Too) = H FR(S + Mﬂ'(]))
j=1
is the Archimedean local factor. Here I'r(s) = 7 2I(%), ax(p,j) and p(j), j = 1,---,m,
are complex numbers associated with m, and 7, respectively, according to the Langlands
correspondence.
To link L(s, ) with primes, we take logarithmic differentiation in (1.1). Then for o > 1, we

have

Vism) 5 Alnas(n)

L(s,7) — ns
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where A(n) is the von Mangoldt function, and

ar(ph) = Y ax(p i)t
1<j<m
If 7’ is an automorphic irreducible cuspidal representation of GL,, (Qy), we define L(s, '),
s (D, 7)), pine (i) and an (p*) likewise for i = 1,--- ,m/. If 7 and 7’ are equivalent, then m = m’
and {ax(p,j)} = {ax(p,i)} for any p. Hence ar(n) = a. (n) for any n = p*, when 7 = 7/,
The prime number theorem for Rankin-Selberg L-function L(s, 7 x ') concerns the asymptotic
behavior of the function > A(n)ar(n)a@, (n), and the main theorem of Liu and Ye [11] asserts

n<zx
that
1t70 .
Z A)an(n)am ()= 4 TFim0 +O0{zexp(—cy/logz)}, if 7'=m @ |det|'™ for some 7 €R,
n<z O{x exp(—cy/logz)} if 7’27 ® |det|'” for any TER,

under the condition that at least one of m and #’ is self-contragredient.
In this paper, we will show a generalized prime number theorem for a special case of the

Rankin-Selberg L-function L(s,7 x 7). Consider

L0 (s,7 x 7) prse
—_— - = 1 1.2
L(s,mx @) Z 7=0 (12)

where k is a positive integer, and prxz (n) is a complex number attached to m and 7.

By modifying the argument of Liu and Ye [11], we are able to prove the following result.

Theorem 1.1 Let 7 and 7 be automorphic irreducible cuspidal representations of GLy,Q4).

Assume that m is self-contragredient: © = 7. Then

Zpﬂxw = (klog" 'z 4 a1 plog" 22+ 4 ar_14)x + O{zexp(—cy/logz)},  (1.3)
n<x
where the complex constants ajy, (j =1,---,k—1) are computable.

Note that [11, Lemma 5.1] is a special case of our theorem with k = 1.

2 Rankin-Selberg L-Functions

Let m and #’ be automorphic irreducible cuspidal representations of GL,,(Qa) and
GL, (Qp), respectively, over Q with unitary central characters. One can obtain the Rankin-
Selberg L-functions L(s, ™ x7') attached to m and 7/, which are developed by Jacquet, Piatetski-
Shapiro and Shalika [7] and Shahidi [17]. This L-function is given by local factors

L(s,m x7") HL (8,mp X Tp), (2.1)

where

’

Lp(s,mp X 70, ﬁ ( M)_l.

1 ps

3

>
Il

j=1
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The complete L-function is defined by
D(s,m X T') = Loo(8, Moo X T ) L(s,m x 7')

with the Archimedean local factor
LOO(S77TOO X %(/)o) = H H FR(S + Mo x 7 (.77 k))u
j=1k=1

where the complex numbers i, «7 (j, k) satisfy the trivial bound
Re(prxz (4, k)) > —1. (2.2)

Now we review some properties of the L-functions L(s, 7 x ') and ®(s, 7 x 7'), which we will

use for our proofs.

Proposition 2.1 (see [8]) The Euler product for L(s,m x ') in (2.1) converges absolutely
for o> 1.

Proposition 2.2 (see [17-20]) The complete L-function ®(s,m x ) has an analytic con-

tinuation to the entire complexr plane and satisfies the functional equation
O(s,mx ) =¢e(s,m x7)P(1 — 5,7 x 7)

with

—S

(s, m x7) =7(m x T)Q Sz

where Qrxz >0 and 7(w x 7') = :I:Q%

X7
Proposition 2.3 (see [8,9]) Denote a(g) = |det(g)|. When ' 2 n®|det|'™ for any 7 € R,
(s, m x 7') is holomorphic. When m = m/ and ' = 7 ® |det|'™ for some 7o € R, the only

poles of ®(s,m x 7') are simple poles at s =ity and s =1+ ity coming from L(s, 7 x 7).

Proposition 2.4 (see [3]) ®(s,m x ) is meromorphic of order one away from its poles,

and bounded in vertical strips.

Proposition 2.5 (see [2, 16, 17]) ®(s,7 x ©) and L(s,m x ©') are non-zero in o > 1.

Furthermore, it is zero-free in the region

C3
c>1-— , =1 2.3
g @rm (i) " 2
and at most one exceptional zero in the region
c3
o>1 , i1 <1 (2.4)

 log(Qrxzca)

or some effectively computable positive constants c3 and ca, if at least one of @ and ©' 1is
[ I Y p P 3 4,

self-contragredient.
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In addition to the above Propositions 2.1-2.5, we will also need to use a region C(m,m’),

defined as the complex plane C with the discs

|S_2n+,uﬂ'><%’(jak)|<ﬁa n§0,1§j§m,1§k§m/
mim

excluded. For j = 1,---,m and k = 1,---,m/, denote by (3(j,k) the fractional part of
Re(pnx7(4,k)). In addition, let 3(0,0) = 0 and B(m,m’) = 1. Then all 5(j,k) € [0,1],
and hence there exist ((ji,k1) and [(j2,k2), such that ((j2,k2) — B(j1, k1) > 577
there is no 3(j, k) lying between [((ji, k1) and S(j2,k2). It follows that the strip Sy = {s :
Bl1, k1) + 5 < 0 < B(j2,k2) — 5=} is contained in C(m,m’). Consequently, for all

n=0,—1,—2,---, the strips

and

Sn:{s:n—i—ﬁ(jl,kl)—i— mlm,SUSn-f-ﬁ(Jé,kz)— ! ,} (2.5)

8 8mm

are subsets of C(m,m’). This structure of C(m,m’) will be used later.

Firstly, we give a lemma which is the expansion of [12, Lemma 4.1(e) and Lemma 4.2].
Lemma 2.1 Let s = o+ir. Assumem =m' and ' = 7@ |det[™ for some nonzero 1o € R.
(1) If =2 <o <2, then for |T| > 2, there exists a T with T <7 <T + 1, such that
k
dsk
(ii) If s is in some strip Sy, as in (2.5) with n < —2, then

log L(o +ir, 7 x @) < log"t (Qaxz|7]).

k
dk

The proof of this lemma is similar to that of Liu and Ye [11] as we mentioned above, so we

logL(oc +ir,mx 7)) < 1.

omit the proof.

Lemma 2.2 Assume that n is an integer and f is a meromorphic function on the complex

(n) ’
plane. Then fT could be expressed as the differential polynomial of fT

The lemma is [21, Lemma 1.8].

3 A Weighted Generalized Prime Number Theorem

Now we prove a weighted generalized prime number theorem.

Theorem 3.1 Let 7w be a self-contragredient automorphic irreducible cuspidal representation
of GL,, over Q. Then

k
Z (1 - g)p”;(n) = (5 log" '@ + by g log" 2o+ + bk—l,k)fv + O{zexp(—cy/logz)},

n<zx
where the constants bj, (j =1,--- ,k —1) are computable.

Proof By Proposition 2.1, we have

L()swxw p,rw
J(s) = (— 1)’“7“”” Z .
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for o > 1. Note that

1
1/ Y 1—2, ify>1,
— ———ds = Yy

2mi Jw) (s + 1) 0, f0<y<1,

where (b) means the line 0 =b > 0. Taking b= 1+ @, we have
n 1 - 1 bHT b—iT bico
Bt [ 0w L[ T
7; ( 2 )P () 27 J ) (S)S(S +1) * 7 2 b—iT b—ico  JbHT

The last two integrals are clearly bounded by

* x x
Tt T
b+iT s

S (1 - g)pﬂﬁ(n) - % /HT J(s)ﬁds + 0(%).

n<x

Thus

Choose a real number a with —2 < a < —1, such that the vertical line ¢ = a is contained in
the strip S_a C C(m,m’); this is guaranteed by the structure of C(m,m’). Without loss of
generality, let T > 0 be a large number, such that 7" and —7" can be taken as the 7 in Lemma

2.1(i). Now we consider the contour

Ci:b>0>a,t=-T,

Cy: o=a, - T<t<T,
Cs: a<o<b t=T.

Note that three poles s = 1,0, —1, some trivial zeros, and certain nontrivial zeros p = G+ iy
of L(m x ) are passed by the shifting of the contour. Also note that s = 1 is a pole of
order k and s = 0 is of order k 4+ 1. The trivial zeros can be determined by Proposition 2.2
and (2.2): s = —paxz(j, k) with a < —Re(urxz(4,k)) < 1 and s = =2 — pr«5(j, k) with
a+2 < —Re(urx#(j,k)) < 1. Here we have used —2 < a < —1. Then we have

1/b+iTJ() - d 1(/ +/ +/)+ Res J()ixs

L RO AN PR

omi Jyr T a5 1) 2mN S, Jo, ' Jey ) T emtom1”  s(s + 1)
+ >

xS

Res  J(s)
0 Re(res (<1 S~ xR s(s 1)

+ Z Res J(s) -

wt2<—Repma Gy <1 =2 R @R s(s+ 1)

+ ﬂzg:TE{ES J(s)m. (3.1)

S

By Lemma 2.1(1), for any large 7 > 0, we can choose T in 7 < T < 7 + 1 such that, when
—2<0<L2,
k

d
IF log L(o £iT, 7 x 77) < logkﬂ( axwl)-
s
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Furthermore, using Lemma 2.2, we can get the following estimate
J(o £iT) < 10g%* (Qrx=T).

Hence , o
v log™" (Qrx=zT)
log2® T ‘T_d ‘TA'
~/Cl<</a 0™ (Qrx )T2 oK T2
The same upper bound also holds for the integral on C5. By Lemma 2.1(ii), we can choose a o

such that, when |t| < T,

dk ~
T log Lo +it,m x 7) < 1.
Also using Lemma 2.2, we obtain

J(o+1it) < 1.

/<</T Y gt
o, Jor ([t +1)? z

On taking T > exp(y/logx ), finally we can get

/C1 +/Cz+/cs < zexp(—cy/log ). (3.2)

Therefore

The function

YrS

I(5) s(s+1)

has a simple pole at s = —1 with the residue O(z~!), and two poles at s = 1,0 with the order
k and k + 1, respectively. The residue at s =1 is

. ((—1)% — DL (s, 7 x %)xs)uc—l)
B s—1

Reg J(s) o= DIL(s,m X 7)s(s + 1)

1 s(s+1)

k—1
= :v( Z bj. loght77 x),

Jj=0
where
. (=DFs = DLW (s, x 7) k! k
box = lim ( ~ )= =3,
T s=1 N (B = D)IL(s,m x T)s(s+ 1) 2(k—=1)! 2
and the other constants b;j (j =1,---,k — 1) are also computable. Similarly,
x® . (=1)FsF L) (5,70 x 7)a®\ (B)
Res .J = lim ( Sk )
A (S)s(s +1) b ElL(s,mxm)(s+1)
k
= Z Cik logk_i T << logk x.
i=0
Therefore
s k
s:}},g,s—l I(s) S(sx—l— 1) (5 log" ™"+ by log™ P 4+ bk_l’k)x +Ollog" z). (33)
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Suppose that the order of a trivial zero s = —pirxz(jk) 18 . If I <k, we can express J(s) as
G(s)x®
(s+p)ts(s+1)

where G(—prx#z(j,k)) # 0. The residues at these trivial zeros can therefore be computed
similarly to what we have done in (3.3). By (2.2), we know that Re(prx7(j,k)) > 1 — ¢ for
some d > 0. Consequently,

S

2 Res o755 < ' log' e < 2! 0 logh T 2
a<—Re(pmxx(GR)<1 " 7T (J:k) s(s+1)

For [ > k, we get

G'(s)z®
J R Y G (- ax7 (1, k 0
(#) (s +pu)rs(s+1)’ (—pnxz (), k) #
and S
T
2 Res  J(s) < 2% logh .
0 Re( s (Gayy<1 =M @) s(s 1)
Finally, we obtain
xS
Res ) <a'™log" M a. (3.4)
o< Re(pn Gy <1 “=HexsGR) T s(s 1)
Similarly, we have the estimate
xS
R J(s)——— —1-8 150k 1 4. 35
Z 5:_2_H?rs><fr(j7k) (s) s(s+1) < g (3.5)

a+2<—Re(urxz(4,k))<1

To compute the residue corresponding to nontrivial zeros, we recall Propositions 2.4 and
2.5, and get

1 1 1
— < 00, — < 00, —— <00, 1>2.
zp: lp(p +1)] ZP: 7| ZP: [(p +1)7]

Just like the trivial zeros, we should pay attention to the order of the nontrivial zero p. Suppose

that the order of a nontrivial zero p is I'. If I’ < k, we can express J(s) as

9(s)z

R )

where g(p) # 0. Consequently,

Res J(s) % N pin (9s)z U
|’VZST ls/zf‘f (S) S(S + 1) ﬂZST sllg; ((l/ _ 1)'8(8 T 1))
V-1
= 3 i (Y0 (s) e )
lyI<T i=0
. i ) .
< Plog "1z o BB ‘01/71 (8(87—1—1)) -~
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4

< alogh e Y {Z( it I(pil)il) * Ip(p1+1)|}

VST =2 Pl

—Iﬁﬂf”x(EZ-FEZ){EQ(m| p+1H)+WMp11N}

7T [v|ST
pEE PEE

where F is the set of exceptional zeros in (2.4). We have |E| < 1, and hence it is clear that the
sum over p € E is far less than 21~ log" z for some § > 0. By (2.3), the sum over p € E is far
less than

’

xexp(—qloi){z:(i—i- ! ')+|p(1 )|}<<wexp(—c\/@)
i=2

210g(QrxzT) 'l |(p+ 1) p+1

by taking T = exp(y/logz ) + d for some d with 0 < d < 1.

Similarly, for I’ > k, we have

g'(s)z® '
)= sy W F
and
. , (s)z* kot
ResJ( ):1:7: Z i (TG D)
v <T l/>k (S + 1) [v[<T G ((k 1) (S + 1))
) ; kflci 1 i s\k—1—i
D lm D Ci ) O
pr<r” " i
_ 1 i
B10gh 1 156D
< 2" log x|z<:T0<I?3?1’C’“ 1( (8+1))
YIS
<<x510gk_1$2{zk:(i‘+ 1 ,)+ 1 }
—\[pi] " [(p+1)[) " |plp+1)
I<T - i=2
1 1
_ 51 k—1 + i +
o (22,;;){§:(m| G ) e
pEE (222
< xexp(—c\/@)'
Finally, we obtain
:L.S
|§T5§§ J(S)s(s 0 < zexp(—cy/log ). (3.6)

Theorem 3.1 then follows by applying (3.2)—(3.6) to (3.1).

4 Completion of Theorem 1.1

By induction, we can easily find that pr.z(n) is a positive number. So the weight 1 — 2

can be removed from Theorem 3.1 by a standard argument of de la Vallée Poussin.
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Proof of Theorem 1.1 Let ¥(z) denote the quality on the left-hand side of (1.3). Then
Theorem 3.1 states that

¥ k
/ U (t)dt = (5 log" ™t x + by plog" a4+ ak,lﬁk)xz + O{2? exp(—cy/logz)}.
1

By the Taylor expansion of log(1 + %), we get

1 x+h
7 / U(t)dt = (klog" 'z + ay plog" 2z + -+ ap_10)x
2
+O(hlog" ' z)+ 0O g; exp(—cy/log )}
-2

x + e + ak—l,k})‘r
+ O{:Cexp ( — g\/log:v) log% x}
= (k log" 1z + ai k log" 22+ + Ak—1,%)T

+ O{zexp(—c'/logz )}, (4.1)

= (k log" 1z + ai g log”

where we have chosen
h = zexp ( - g\/log:r)(logx)*%

and a; = 2b; +bi—1k(k—14),i=1,2,--- ,k — 1. Similarly, we get

1

7 / U(t)dt = (klog" '+ ay plog" 2 + -+ ap_1x)x + O{zexp(—'\/logz)}.  (4.2)
z—h

Note that the terms in W(¢) are non-negative. Therefore, we have

T x+h
% / W< v < % / w(t)dt. (43)

By (4.1)-(4.3), we obtain

Z prxi(n) = (klog" 'z + ai g log" 22+ + ap—11)r + O{xexp(—c'y/logx)},

n<xz

which gives Theorem 1.1.
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