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Abstract Let π and π′ be automorphic irreducible cuspidal representations of GLm(QA)
and GL

m
′(QA), respectively, and L(s, π×eπ′) be the Rankin-Selberg L-function attached to

π and π′. Without assuming the Generalized Ramanujan Conjecture (GRC), the author
gives the generalized prime number theorem for L(s, π × eπ′) when π ∼= π′. The result
generalizes the corresponding result of Liu and Ye in 2007.
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1 Introduction

To each irreducible unitary cuspidal representation π of GLm(QA), one can attach a global

L-function which is given by products for local factors for σ > 1 as in [4]:

L(s, π) =
∏

p

Lp(s, πp) =

∞∑

n=1

λπ(n)

ns
, (1.1)

where

L(s, πp) =
m∏

j=1

(
1 − απ(p, j)

ps

)−1

.

The complete L-function is defined by

Φ(s, π) = L∞(s, π∞)L(s, π),

where

L∞(s, π∞) =

m∏

j=1

ΓR(s + µπ(j))

is the Archimedean local factor. Here ΓR(s) = π− s
2 Γ( s

2 ), απ(p, j) and µπ(j), j = 1, · · · , m,

are complex numbers associated with πp and π∞, respectively, according to the Langlands

correspondence.

To link L(s, π) with primes, we take logarithmic differentiation in (1.1). Then for σ > 1, we

have
L′(s, π)

L(s, π)
= −

∞∑

n=1

Λ(n)aπ(n)

ns
,
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where Λ(n) is the von Mangoldt function, and

aπ(pk) =
∑

1≤j≤m

απ(p, j)k.

If π′ is an automorphic irreducible cuspidal representation of GLm′(QA), we define L(s, π′),

απ′(p, i), µπ′(i) and aπ′(pk) likewise for i = 1, · · · , m′. If π and π′ are equivalent, then m = m′

and {απ(p, j)} = {απ′(p, i)} for any p. Hence aπ(n) = aπ′(n) for any n = pk, when π ∼= π′.

The prime number theorem for Rankin-Selberg L-function L(s, π× π̃′) concerns the asymptotic

behavior of the function
∑

n≤x

Λ(n)aπ(n)aπ′(n), and the main theorem of Liu and Ye [11] asserts

that

∑

n≤x

Λ(n)aπ(n)aπ′(n)=






x1+τ0

1+iτ0
+O{x exp(−c

√
log x )}, if π′∼=π ⊗ |det|iτ0 for some τ0∈R,

O{x exp(−c
√

log x )}, if π′ ≇π ⊗ |det|iτ for any τ ∈R,

under the condition that at least one of π and π′ is self-contragredient.

In this paper, we will show a generalized prime number theorem for a special case of the

Rankin-Selberg L-function L(s, π × π̃′). Consider

L(k)(s, π × π̃′)

L(s, π × π̃′)
= (−1)k

∞∑

n=1

ρπ×eπ′(n)

ns
, σ > 1, (1.2)

where k is a positive integer, and ρπ×eπ′(n) is a complex number attached to π and π′.

By modifying the argument of Liu and Ye [11], we are able to prove the following result.

Theorem 1.1 Let π and π̃ be automorphic irreducible cuspidal representations of GLm(QA).

Assume that π is self-contragredient: π ∼= π̃. Then

∑

n≤x

ρπ×eπ(n) = (k logk−1 x + a1,k logk−2 x + · · · + ak−1,k)x + O{x exp(−c
√

log x )}, (1.3)

where the complex constants aj,k (j = 1, · · · , k − 1) are computable.

Note that [11, Lemma 5.1] is a special case of our theorem with k = 1.

2 Rankin-Selberg L-Functions

Let π and π′ be automorphic irreducible cuspidal representations of GLm(QA) and

GLm′(QA), respectively, over Q with unitary central characters. One can obtain the Rankin-

Selberg L-functions L(s, π×π̃′) attached to π and π′, which are developed by Jacquet, Piatetski-

Shapiro and Shalika [7] and Shahidi [17]. This L-function is given by local factors

L(s, π × π̃′) =
∏

p

Lp(s, πp × π̃′
p), (2.1)

where

Lp(s, πp × π̃′
p) =

m∏

j=1

m′∏

k=1

(
1 − απ(p, j)απ′(p, k)

ps

)−1

.
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The complete L-function is defined by

Φ(s, π × π̃′) = L∞(s, π∞ × π̃′
∞)L(s, π × π̃′)

with the Archimedean local factor

L∞(s, π∞ × π̃′
∞) =

m∏

j=1

m′∏

k=1

ΓR(s + µπ×eπ′(j, k)),

where the complex numbers µπ×eπ′(j, k) satisfy the trivial bound

Re(µπ×eπ′(j, k)) > −1. (2.2)

Now we review some properties of the L-functions L(s, π × π̃′) and Φ(s, π × π̃′), which we will

use for our proofs.

Proposition 2.1 (see [8]) The Euler product for L(s, π × π̃′) in (2.1) converges absolutely

for σ > 1.

Proposition 2.2 (see [17–20]) The complete L-function Φ(s, π × π̃′) has an analytic con-

tinuation to the entire complex plane and satisfies the functional equation

Φ(s, π × π̃′) = ε(s, π × π̃′)Φ(1 − s, π × π̃′)

with

ε(s, π × π̃′) = τ(π × π̃′)Q−s
π×eπ′ ,

where Qπ×eπ′ > 0 and τ(π × π̃′) = ±Q
1
2

π×eπ′.

Proposition 2.3 (see [8, 9]) Denote α(g) = |det(g)|. When π′ ≇ π⊗|det|iτ for any τ ∈ R,

Φ(s, π × π̃′) is holomorphic. When m = m′ and π′ ∼= π ⊗ |det|iτ0 for some τ0 ∈ R, the only

poles of Φ(s, π × π̃′) are simple poles at s = iτ0 and s = 1 + iτ0 coming from L(s, π × π̃′).

Proposition 2.4 (see [3]) Φ(s, π × π̃′) is meromorphic of order one away from its poles,

and bounded in vertical strips.

Proposition 2.5 (see [2, 16, 17]) Φ(s, π × π̃′) and L(s, π × π̃′) are non-zero in σ ≥ 1.

Furthermore, it is zero-free in the region

σ ≥ 1 − c3

log(Qπ×eπ′(|t| + c4))
, |t| ≥ 1 (2.3)

and at most one exceptional zero in the region

σ ≥ 1 − c3

log(Qπ×eπ′c4)
, |t| ≤ 1 (2.4)

for some effectively computable positive constants c3 and c4, if at least one of π and π′ is

self-contragredient.
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In addition to the above Propositions 2.1–2.5, we will also need to use a region C(m, m′),

defined as the complex plane C with the discs

|s − 2n + µπ×eπ′(j, k)| <
1

8mm′
, n ≤ 0, 1 ≤ j ≤ m, 1 ≤ k ≤ m′

excluded. For j = 1, · · · , m and k = 1, · · · , m′, denote by β(j, k) the fractional part of

Re(µπ×eπ′(j, k)). In addition, let β(0, 0) = 0 and β(m, m′) = 1. Then all β(j, k) ∈ [0, 1],

and hence there exist β(j1, k1) and β(j2, k2), such that β(j2, k2) − β(j1, k1) ≥ 1
3mm′ and

there is no β(j, k) lying between β(j1, k1) and β(j2, k2). It follows that the strip S0 = {s :

β(j1, k1) + 1
8mm′ ≤ σ ≤ β(j2, k2) − 1

8mm′ } is contained in C(m, m′). Consequently, for all

n = 0,−1,−2, · · · , the strips

Sn =
{
s : n + β(j1, k1) +

1

8mm′
≤ σ ≤ n + β(j2, k2) −

1

8mm′

}
(2.5)

are subsets of C(m, m′). This structure of C(m, m′) will be used later.

Firstly, we give a lemma which is the expansion of [12, Lemma 4.1(e) and Lemma 4.2].

Lemma 2.1 Let s = σ+iτ . Assume m = m′ and π′ ∼= π⊗|det|iτ0 for some nonzero τ0 ∈ R.

( i ) If −2 ≤ σ ≤ 2, then for |T | > 2, there exists a τ with T ≤ τ ≤ T + 1, such that

dk

dsk
log L(σ ± iτ, π × π̃′) ≪ logk+1(Qπ×eπ′ |τ |).

(ii) If s is in some strip Sn as in (2.5) with n ≤ −2, then

dk

dsk
log L(σ ± iτ, π × π̃′) ≪ 1.

The proof of this lemma is similar to that of Liu and Ye [11] as we mentioned above, so we

omit the proof.

Lemma 2.2 Assume that n is an integer and f is a meromorphic function on the complex

plane. Then f(n)

f
could be expressed as the differential polynomial of f ′

f
.

The lemma is [21, Lemma 1.8].

3 A Weighted Generalized Prime Number Theorem

Now we prove a weighted generalized prime number theorem.

Theorem 3.1 Let π be a self-contragredient automorphic irreducible cuspidal representation

of GLm over Q. Then

∑

n≤x

(
1 − n

x

)
ρπ×eπ(n) =

(k

2
logk−1 x + b1,k logk−2 x + · · · + bk−1,k

)
x + O{x exp(−c

√
log x )},

where the constants bj,k (j = 1, · · · , k − 1) are computable.

Proof By Proposition 2.1, we have

J(s) := (−1)k L(k)(s, π × π̃)

L(s, π × π̃)
=

∞∑

n=1

ρπ×eπ(n)

ns
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for σ > 1. Note that

1

2πi

∫

(b)

ys

s(s + 1)
ds =





1 − 1

y
, if y ≥ 1,

0, if 0 < y < 1,

where (b) means the line σ = b > 0. Taking b = 1 + 1
log x

, we have

∑

n≤x

(
1 − n

x

)
ρπ×eπ(n) =

1

2πi

∫

(b)

J(s)
xs

s(s + 1)
ds =

1

2πi

(∫ b+iT

b−iT

+

∫ b−iT

b−i∞

+

∫ b+i∞

b+iT

)
.

The last two integrals are clearly bounded by

∫ ∞

T

x

t2
dt =

x

T
.

Thus
∑

n≤x

(
1 − n

x

)
ρπ×eπ(n) =

1

2πi

∫ b+iT

b−iT

J(s)
xs

s(s + 1)
ds + O

( x

T

)
.

Choose a real number a with −2 < a < −1, such that the vertical line σ = a is contained in

the strip S−2 ⊂ C(m, m′); this is guaranteed by the structure of C(m, m′). Without loss of

generality, let T > 0 be a large number, such that T and −T can be taken as the τ in Lemma

2.1( i ). Now we consider the contour

C1 : b ≥ σ ≥ a, t = −T,

C2 : σ = a, −T ≤ t ≤ T,

C3 : a ≤ σ ≤ b, t = T.

Note that three poles s = 1, 0,−1, some trivial zeros, and certain nontrivial zeros ρ = β +iγ

of L(π × π̃) are passed by the shifting of the contour. Also note that s = 1 is a pole of

order k and s = 0 is of order k + 1. The trivial zeros can be determined by Proposition 2.2

and (2.2): s = −µπ×eπ(j, k) with a < −Re(µπ×eπ(j, k)) < 1 and s = −2 − µπ×eπ(j, k) with

a + 2 < −Re(µπ×eπ(j, k)) < 1. Here we have used −2 < a < −1. Then we have

1

2πi

∫ b+iT

b−iT

J(s)
xs

s(s + 1)
ds =

1

2πi

( ∫

C1

+

∫

C2

+

∫

C3

)
+ Res

s=1,0,−1
J(s)

xs

s(s + 1)

+
∑

a<−Re(µπ×eπ(j,k))<1

Res
s=−µπ×eπ(j,k)

J(s)
xs

s(s + 1)

+
∑

a+2<−Re(µπ×eπ(j,k))<1

Res
s=−2−µπ×eπ(j,k)

J(s)
xs

s(s + 1)

+
∑

|γ|≤T

Res
s=ρ

J(s)
xs

s(s + 1)
. (3.1)

By Lemma 2.1( i ), for any large τ > 0, we can choose T in τ < T < τ + 1 such that, when

−2 ≤ σ ≤ 2,
dk

dsk
log L(σ ± iT, π × π̃) ≪ logk+1(Qπ×eπT ).
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Furthermore, using Lemma 2.2, we can get the following estimate

J(σ ± iT ) ≪ log2k(Qπ×eπT ).

Hence ∫

C1

≪
∫ b

a

log2k(Qπ×eπT )
xσ

T 2
dσ ≪ x log2k(Qπ×eπT )

T 2
.

The same upper bound also holds for the integral on C3. By Lemma 2.1(ii), we can choose a σ

such that, when |t| ≤ T ,

dk

dsk
log L(σ ± it, π × π̃) ≪ 1.

Also using Lemma 2.2, we obtain

J(σ + it) ≪ 1.

Therefore ∫

C2

≪
∫ T

−T

xσ

(|t| + 1)2
dt ≪ 1

x
.

On taking T ≫ exp(
√

log x ), finally we can get

∫

C1

+

∫

C2

+

∫

C3

≪ x exp(−c
√

log x ). (3.2)

The function

J(s)
xs

s(s + 1)

has a simple pole at s = −1 with the residue O(x−1), and two poles at s = 1, 0 with the order

k and k + 1, respectively. The residue at s = 1 is

Res
s=1

J(s)
xs

s(s + 1)
= lim

s→1

((−1)k(s − 1)kL(k)(s, π × π̃)xs

(k − 1)!L(s, π × π̃)s(s + 1)

)(k−1)

= x
( k−1∑

j=0

bj,k logk−1−j x
)
,

where

b0,k = lim
s→1

((−1)k(s − 1)kL(k)(s, π × π̃)

(k − 1)!L(s, π × π̃)s(s + 1)

)
=

k!

2(k − 1)!
=

k

2
,

and the other constants bj,k (j = 1, · · · , k − 1) are also computable. Similarly,

Res
s=0

J(s)
xs

s(s + 1)
= lim

s→0

((−1)kskL(k)(s, π × π̃)xs

k!L(s, π × π̃)(s + 1)

)(k)

=

k∑

i=0

ci,k logk−i x ≪ logk x.

Therefore

Res
s=1,0,−1

J(s)
xs

s(s + 1)
=

(k

2
logk−1 x + b1,k logk−2 x + · · · + bk−1,k

)
x + O(logk x). (3.3)
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Suppose that the order of a trivial zero s = −µπ×eπ(j,k) is l. If l < k, we can express J(s) as

G(s)xs

(s + µ)ls(s + 1)
,

where G(−µπ×eπ(j, k)) 6= 0. The residues at these trivial zeros can therefore be computed

similarly to what we have done in (3.3). By (2.2), we know that Re(µπ×eπ(j, k)) ≥ 1 − δ for

some δ > 0. Consequently,

∑

a<−Re(µπ×eπ(j,k))<1

Res
s=−µ π×eπ

l<k

(j,k)
J(s)

xs

s(s + 1)
≪ x1−δ logl−1 x ≪ x1−δ logk−1 x.

For l ≥ k, we get

J(s) =
G′(s)xs

(s + µ)ks(s + 1)
, G′(−µπ×eπ(j, k)) 6= 0

and ∑

a<−Re(µπ×eπ(j,k))<1

Res
s=−µ π×eπ

l≥k

(j,k)
J(s)

xs

s(s + 1)
≪ x1−δ logk−1 x.

Finally, we obtain

∑

a<−Re(µπ×eπ(j,k))<1

Res
s=−µπ×eπ(j,k)

J(s)
xs

s(s + 1)
≪ x1−δ logk−1 x. (3.4)

Similarly, we have the estimate

∑

a+2<−Re(µπ×eπ(j,k))<1

Res
s=−2−µπ×eπ(j,k)

J(s)
xs

s(s + 1)
≪ x−1−δ logk−1 x. (3.5)

To compute the residue corresponding to nontrivial zeros, we recall Propositions 2.4 and

2.5, and get

∑

ρ

1

|ρ(ρ + 1)| < ∞,
∑

ρ

1

|ρi| < ∞,
∑

ρ

1

|(ρ + 1)i| < ∞, i ≥ 2.

Just like the trivial zeros, we should pay attention to the order of the nontrivial zero ρ. Suppose

that the order of a nontrivial zero ρ is l′. If l′ < k, we can express J(s) as

J(s) =
g(s)xs

(s − ρ)l′s(s + 1)
,

where g(ρ) 6= 0. Consequently,

∑

|γ|≤T

Res
s=ρ

l′<k

J(s)
xs

s(s + 1)
=

∑

|γ|≤T

lim
s→ρ

( g(s)xs

(l′ − 1)!s(s + 1)

)l′−1

=
∑

|γ|≤T

lim
s→ρ

{ l′−1∑

i=0

Ci
l′−1

( 1

s(s + 1)

)i

(g(s)xs)l′−1−i
}

≪ xβ logl′−1 x
∑

|γ|≤T

max
0≤i≤l′−1

∣∣∣Ci
l′−1

( 1

s(s + 1)

)i∣∣∣
s=ρ
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≪ xβ logk−1 x
∑

|γ|≤T

{ l′∑

i=2

( 1

|ρi| +
1

|(ρ + 1)i|
)

+
1

|ρ(ρ + 1)|
}

= xβ logk−1 x
( ∑

|γ|≤T
ρ∈E

+
∑

|γ|≤T

ρ6∈E

){ l′∑

i=2

( 1

|ρi| +
1

|(ρ + 1)i|
)

+
1

|ρ(ρ + 1)|
}
,

where E is the set of exceptional zeros in (2.4). We have |E| < 1, and hence it is clear that the

sum over ρ ∈ E is far less than x1−δ logk x for some δ > 0. By (2.3), the sum over ρ 6∈ E is far

less than

x exp
(
− c3

log x

2 log(Qπ×eπT )

){ l′∑

i=2

( 1

|ρi| +
1

|(ρ + 1)i|
)

+
1

|ρ(ρ + 1)|
}
≪ x exp(−c

√
log x )

by taking T = exp(
√

log x ) + d for some d with 0 < d < 1.

Similarly, for l′ ≥ k, we have

J(s) =
g′(s)xs

(s − ρ)ks(s + 1)
, g′(ρ) 6= 0,

and

∑

|γ|≤T

Res
s=ρ

l′≥k

J(s)
xs

s(s + 1)
=

∑

|γ|≤T

lim
s→ρ

( g(s)xs

(k − 1)!s(s + 1)

)k−1

=
∑

|γ|≤T

lim
s→ρ

{ k−1∑

i=0

Ci
k−1

( 1

s(s + 1)

)i

(g(s)xs)k−1−i
}

≪ xβ logk−1 x
∑

|γ|≤T

max
0≤i≤k−1

∣∣∣Ci
k−1

( 1

s(s + 1)

)i∣∣∣
s=ρ

≪ xβ logk−1 x
∑

|γ|≤T

{ k∑

i=2

( 1

|ρi| +
1

|(ρ + 1)i|
)

+
1

|ρ(ρ + 1)|
}

= xβ logk−1 x
( ∑

|γ|≤T
ρ∈E

+
∑

|γ|≤T

ρ6∈E

){ k∑

i=2

( 1

|ρi| +
1

|(ρ + 1)i|
)

+
1

|ρ(ρ + 1)|
}

≪ x exp(−c
√

log x ).

Finally, we obtain
∑

|γ|≤T

Res
s=ρ

J(s)
xs

s(s + 1)
≪ x exp(−c

√
log x ). (3.6)

Theorem 3.1 then follows by applying (3.2)–(3.6) to (3.1).

4 Completion of Theorem 1.1

By induction, we can easily find that ρπ×eπ(n) is a positive number. So the weight 1 − n
x

can be removed from Theorem 3.1 by a standard argument of de la Vallée Poussin.
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Proof of Theorem 1.1 Let Ψ(x) denote the quality on the left-hand side of (1.3). Then

Theorem 3.1 states that
∫ x

1

Ψ(t)dt =
(k

2
logk−1 x + b1,k logk−2 x + · · · + ak−1,k

)
x2 + O{x2 exp(−c

√
log x )}.

By the Taylor expansion of log(1 + h
x
), we get

1

h

∫ x+h

x

Ψ(t)dt = (k logk−1 x + a1,k logk−2 x + · · · + ak−1,k)x

+ O(h logk−1 x) + O
{x2

h
exp(−c

√
log x )

}

= (k logk−1 x + a1,k logk−2 x + · · · + ak−1,k)x

+ O
{

x exp
(
− c

2

√
log x

)
log

k−1
2 x

}

= (k logk−1 x + a1,k logk−2 x + · · · + ak−1,k)x

+ O{x exp(−c′
√

log x )}, (4.1)

where we have chosen

h = x exp
(
− c

2

√
log x

)
(log x)−

k−1
2

and ai,k = 2bi,k + bi−1,k(k − i), i = 1, 2, · · · , k − 1. Similarly, we get

1

h

∫ x

x−h

Ψ(t)dt = (k logk−1 x + a1,k logk−2 x + · · · + ak−1,k)x + O{x exp(−c′
√

log x )}. (4.2)

Note that the terms in Ψ(t) are non-negative. Therefore, we have

1

h

∫ x

x−h

Ψ(t)dt ≤ Ψ(x) ≤ 1

h

∫ x+h

x

Ψ(t)dt. (4.3)

By (4.1)–(4.3), we obtain

∑

n≤x

ρπ×eπ(n) = (k logk−1 x + a1,k logk−2 x + · · · + ak−1,k)x + O{x exp(−c′
√

log x )},

which gives Theorem 1.1.
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