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1 Introduction

Variational inequalities provide a broad unifying setting for the study of optimization and

equilibrium problems which have their origin in various areas such as economics and engineering.

The theory of variational inequalities started around 40 years ago in two different areas: partial

differential systems with G. Stampacchia and his collaborators and mathematical programming

with R. Cottle.

Infinite-dimensional variational inequalities were developed for studying free boundary prob-

lems defined by non-linear partial differential equations arising mostly in unilateral mechanics.

They have numerous applications as it is well-known. Let us mention for instance the books by

Baiocchi and Capello [2] and Kinderleherer and Stampacchia [12] for the abstract theory and

by Glowinski, Lions and Trémolière [9] for the numerical analysis. The reader is also referred to

the recent book by Giannessi [8] and the references therein. The well-known generalization by

Stampacchia of the Lax–Milgram lemma for coercive bilinear forms to convex sets, published

in Comptes Rendus de l’Académie des Sciences in 1964 (see [20]), is the starting point of the

theory of infinite-variational inequalities. This famous result was extended some years later by

Lions and Stampacchia [15] to not necessarily coercive bilinear forms and has an important

application in the theory of elliptic and parabolic operators and in problems with unilateral
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constraints (Signorini’s problem for example). We would like to mention the abstract regular-

ity theorem for variational inequalities associated to nonlinear monotone operators obtained by

Brezis and Stampacchia [3] which applies to the case of a convex set defined via an obstacle

from above and an obstacle from below.

The theory of finite-dimensional variational inequalities is related to finite-dimensional op-

timization and in particular to nonlinear programming. It was developed independently by the

mathematical programming community first by Cottle [6] and later by several authors. The

reader could find a nice survey on finite-dimensional variational inequalities and the references

therein in the book by Facchinei and Pang [7]. We would like to mention particularly the work

by Robinson [18] in connection with generalised equations, who developed an original frame-

work to obtain qualitative and numerical results for variational inequalities in analogy with

classical Newton-type methods.

This note focuses on a specific part of a general talk given at the Shanghai Forum on Applied

and Industrial Mathematics in May 2006 and is related to a previous work of the same authors

(see [1]). It concerns the existence of a T -periodic solution u ∈ C0([0, T ]; Rn) of the evolution

variational inequality:

du

dt
(t) + F (u(t)) − f(t) ∈ −∂ϕ(u(t)), a.e. t ∈ [0, T ]. (1.1)

In this problem the solution u satifies

du

dt
∈ L∞(0, T ; Rn), (1.2)

u is right-differentiable on [0, T ), (1.3)

u(0) = u(T ). (1.4)

We suppose that F : R
n → R

n is a continuous map, ϕ : R
n → R is a convex function,

f ∈ C0([0, +∞[ ; Rn) is such that df
dt

∈ L1
loc(0, +∞; Rn) and T > 0 is a prescribed period and

as it will be recalled later, ∂ϕ is the convex subdifferential of ϕ.

The paper is organized as follows. In Section 2, we recall some materials. A particular

attention is given to the Brouwer topological degree, since it will play a central role in the proof

of the results. In Section 3, we recall the existence and uniqueness result by Schowalter [21],

and we see how the problem of the existence of a periodic solution to the evolution problem

(1.1) is equivalent to the existence of a fixed point of the Poincaré operator associated to the

problem under consideration. Finally, Section 5 is devoted to the main theorem (Theorem 4.1)

which proves the existence of a periodic solution, using the method of guiding functions.

2 Brouwer Topological Degree and the Resolvent Operator J
ϕ
λ

It is well-known that the degree theory is a powerful tool for the study of the existence of

a solution to a nonlinear equation f(x) = 0, where f is a continuous function defined on the

closure Ω of a bounded subset Ω of R
n, with values in R

n and such that 0 is outside the image

of the boundary ∂Ω of Ω.
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In the sequel, the scalar product on R
n is denoted as usual by 〈 · , · 〉 and ‖ · ‖ is the

associated norm. For r > 0, we note Br := {x ∈ R
n : ‖x‖ < r}, Br = {x ∈ R

n : ‖x‖ ≤ r} and

∂Br := {x ∈ R
n : ‖x‖ = r} = Br \ Br.

If f : Br → R
n is continuous and 0 6∈ f(∂Br), then the Brouwer topological degree of f with

respect to Br and 0 is well-defined (see, e.g., [16, 17]) and is denoted by deg(f, Br, 0).

Let us now recall some properties of the topological degree that we will use later.

Proposition 2.1 (1) If 0 6∈ f(∂Br) and deg(f, Br , 0) 6= 0, then there exists x ∈ Br such

that f(x) = 0.

(2) Let ϕ : [0, 1] × Br → R
n, (λ, x) → ϕ(λ, x), be continuous such that, for each λ ∈ [0, 1],

one has 0 6∈ ϕ(λ, ∂Br). Then the map λ → deg(ϕ(λ, · ), Br, 0) is constant on [0, 1].

(3) Let us denote by idRn the identity mapping on R
n. We have

deg(idRn , Br, 0) = 1.

(4) If 0 6∈ f(∂Br) and α > 0, then

deg(αf, Br , 0) = deg(f, Br, 0)

and

deg(−αf, Br, 0) = (−1)n deg(f, Br, 0).

(5) If 0 6∈ f(∂Br) and f is odd on Br (i.e., f(−x) = −f(x), ∀x ∈ Br), then deg(f, Br, 0) is

odd.

(6) Let f(x) = Ax − b, with A ∈ R
n×n being a nonsingular matrix and b ∈ R

n. Then

deg(f, A−1b + Br, 0) = sgn(det A) = ±1.

Let V ∈ C1(Rn; R) and suppose that there exists r0 > 0 such that, for every r ≥ r0,

0 6∈ ∇V (∂Br). Then deg(∇V, Br, 0) is constant for r ≥ r0 and one defines the index of V at

infinity “ind(V,∞)” by

ind(V,∞) := deg(∇V, Br , 0), ∀ r ≥ r0.

Let us now recall some basic properties on convex functions defined on R
n. Given a convex

function ϕ : R
n → R, it is well-known (see [19]) that

(a) ϕ is continuous,

(b) For all x ∈ R
n, the directional derivative of ϕ at x ∈ R

n in the direction ξ ∈ R
n, i.e.,

ϕ′(x; ξ) = lim
α↓0

ϕ(x + αξ) − ϕ(x)

α
,

exists and is finite for every ξ ∈ R
n (see, e.g., [10, p. 164]),

(c) For all x ∈ R
n, the convex subdifferential of ϕ at x is a nonempty compact and convex

subset of R
n and is defined by

∂ϕ(x) = {w ∈ R
n : ϕ(v) − ϕ(x) ≥ 〈w, v − u〉, ∀ v ∈ R

n},
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and

w ∈ ∂ϕ(x) ⇐⇒ 〈w, ξ〉 ≤ ϕ′(x; ξ), ∀ ξ ∈ R
n. (2.1)

Since the subdifferetial operator is a maximal monotone operator (see for instance Brezis

for the Hilbert setting and Rockafellar for the reflexive Banach setting), for each λ > 0 the

resolvent operator J
ϕ
λ : R

n → R
n defined by

y → J
ϕ
λ (y) = (I + λ∂ϕ)−1(y)

is well-defined and is a contraction on R
n, i.e.,

‖Jϕ
λ (x) − J

ϕ
λ (y)‖ ≤ ‖x − y‖, ∀x, y ∈ R

n, ∀λ > 0.

Hence J
ϕ
λ is continuous on R

n. For simplicity, we note Pϕ instead of J
ϕ
1 when the parameter

λ = 1.

3 The Poincaré Operator

Let us first recall some general existence and uniqueness result (see, e.g., [21]).

Theorem 3.1 Let ϕ : R
n → R be a convex function. Let F : R

n → R
n be a continuous

operator such that, for some ω ∈ R, F + ωI is monotone, i.e.,

〈F (x) − F (y), x − y〉 ≥ −ω‖x − y‖2, ∀x, y ∈ R
n.

Suppose that f : [0, +∞) → R
n satisfies

f ∈ C0([0, +∞); Rn),
df

dt
∈ L1

loc(0, +∞; Rn).

Let u0 ∈ R
n and 0 < T < +∞ be given. There exists a unique u ∈ C0([0, T ]; Rn) such that

du

dt
∈ L∞(0, T ; Rn), (3.1)

u is right-differentiable on [0, T ), (3.2)

u(0) = u0, (3.3)

du

dt
(t) + F (u(t)) − f(t) ∈ −∂ϕ(u(t)), a.e. t ∈ [0, T ]. (3.4)

Remark 3.1 Suppose that F : R
n → R

n is of the type

F (x) = Ax + Ψ′(x) + F1(x), ∀x ∈ R
n,

where A ∈ R
n×n is a real matrix, Ψ ∈ C1(Rn; R) is convex and F1 is Lipschitz continuous, i.e.,

‖F1(x) − F1(y)‖ ≤ k‖x − y‖, ∀x, y ∈ R
n

for some constant k > 0. Then F is continuous and F + ωI is monotone provided that

ω ≥ sup
‖x‖=1

〈−Ax, x〉 + k.

We note that if F is k-Lipschitz, then F + kI is monotone.



Periodic Solutions of Evolution Variational Inequalities 265

Remark 3.2 Let u : [0, T ] → R be the unique solution of (3.1)–(3.4). Then using (3.4) and

(2.1), we have

〈du

dt
(t) + F (u(t)) − f(t), ξ

〉

+ ϕ′(u(t); ξ) ≥ 0, ∀ ξ ∈ R
n, a.e. t ∈ [0, T ].

Let T > 0 be given. Theorem 3.1 enables us to define the one parameter family {S(t) : 0 ≤
t ≤ T } of operators from R

n into R
n as follows:

∀ y ∈ R
n, S(t)y = u(t), (3.5)

u being the unique solution on [0, T ] to the evolution problem (3.1)–(3.4). Note that

∀ y ∈ R
n, S(0)y = y.

Lemma 3.1 (See [21]) Let T > 0 be given and let a, b ∈ L1(0, T ; R) with b(t) ≥ 0, a.e.

t ∈ [0, T ]. Let the absolutely continuous function w : [0, T ] → R+ satisfy

(1 − α)
dw

dt
(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [0, T ],

where 0 ≤ α < 1. Then

w1−α(t) ≤ w1−α(0)e
R

t

0
a(s)ds +

∫ t

0

e
R

t

s
a(q)dqb(s)ds, ∀ t ∈ [0, T ].

Theorem 3.2 Suppose that the assumptions of Theorem 3.1 hold. Then

‖S(t)y − S(t)z‖ ≤ eωt‖y − z‖, ∀ y, z ∈ R
n, t ∈ [0, T ].

Proof Let y, z ∈ R
n be given. We have

−
〈 d

dt
S(t)y + F (S(t)y) − f(t), S(t)z − S(t)y

〉

− ϕ(S(t)z) + ϕ(S(t)y) ≤ 0, a.e. t ∈ [0, T ],

〈 d

dt
S(t)z + F (S(t)z) − f(t), S(t)z − S(t)y

〉

− ϕ(S(t)y) + ϕ(S(t)z) ≤ 0, a.e. t ∈ [0, T ].

It results that
〈 d

dt
(S(t)z − S(t)y), S(t)z − S(t)y

〉

≤ω‖S(t)z − S(t)y‖2 − 〈[F + ωI](S(t)z) − [F + ωI](S(t)y), S(t)z − S(t)y〉, a.e. t ∈ [0, T ].

Our hypothesis ensures that F + ωI is monotone. It results that

d

dt
‖S(t)z − S(t)y‖2 ≤ 2ω‖S(t)z − S(t)y‖2, a.e. t ∈ [0, T ]. (3.6)

Using Lemma 3.1 with w( · ) := ‖S( · )z − S( · )y‖2, a( · ) := 2ω, b( · ) = 0 and α = 0, we get

‖S(t)z − S(t)y‖2 ≤ ‖z − y‖2e2ωt, ∀ t ∈ [0, T ].

The conclusion follows.

Let us now consider the Poincaré operator S(T ) : R
n → R

n; y → S(T )y. Theorem 3.2

ensures that S(T ) is Lipschitz continuous, i.e.,

‖S(T )y − S(T )z‖ ≤ eωT ‖y − z‖, ∀ y, z ∈ R
n.
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Remark 3.3 ( i ) Note that if F is continuous and monotone, then Theorem 3.2 holds with

ω = 0. In this case, the Poincaré operator S(T ) is nonexpansive, i.e.,

‖S(T )y − S(T )z‖ ≤ ‖y − z‖, ∀ y, z ∈ R
n.

(ii) If F is continuous and strongly monotone, i.e., there exists α > 0 such that

〈F (x) − F (y), x − y〉 ≥ α‖x − y‖2, ∀x, y ∈ R
n,

then Theorem 3.2 holds with ω = −α < 0 and the Poincaré operator S(T ) is a contraction.

According to (3.5), the unique solution to the problem (3.1)–(3.4) satisfies, in addition, the

periodicity condition

u(0) = u(T )

if and only if y is a fixed point of S(T ), that is,

S(T )y = y.

Thus the problem of the existence of a periodic solution to the evolution problem (3.1)–(3.2)

and (3.4) reduces to the existence of a fixed point for S(T ).

4 Periodic Solutions

Definition 4.1 Let Ω ⊂ R
n be a given subset of R

n. We say that V ∈ C1(Rn; R) is a

guiding function for (1.2) on Ω provided that

〈F (x) − f(t),∇V (x)〉 + ϕ′(x;∇V (x)) < 0, ∀x ∈ Ω, t ∈ [0, T ]. (4.1)

Remark 4.1 ( i ) Suppose that there exists a guiding function V ∈ C1(Rn; R) for (1.2) on

∂Br (r > 0), i.e.,

〈F (x) − f(t),∇V (x)〉 + ϕ′(x;∇V (x)) < 0, ∀x ∈ ∂Br, t ∈ [0, T ].

Then for any τ ∈ [0, T ], we have

deg(∇V, Br , 0) = (−1)n deg(idRn − Pϕ(idRn − F + f(τ)), Br , 0). (4.2)

(ii) Suppose that there exists a guiding function V ∈ C1(Rn; R) for (1.2) on

ΩR := {x ∈ R
n : ‖x‖ ≥ R} = R

n \ BR, R > 0.

Then for r ≥ R and any τ ∈ [0, T ], we have

ind(V,∞) = (−1)n deg(idRn − Pϕ(idRn − F + f(τ)), Br , 0).

Proposition 4.1 Suppose that there exists R > 0 such that

〈F (x) − f(t),∇V (x)〉 < 0, ∀x ∈ R
n, ‖x‖ ≥ R, t ∈ [0, T ]. (4.3)

Then for r ≥ R and any τ ∈ [0, T ], we have

ind(V,∞) = deg(f(τ) − F, Br, 0).
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Proof Let r ≥ R be given and let h : [0, 1] × Br → R
n, (λ, y) → h(λ, y) := λ∇V (y) +

(1 − λ)(f(0) − F (y)). We claim that h(λ, y) 6= 0, ∀ y ∈ ∂Br, λ ∈ [0, 1]. Indeed, suppose by

contradiction that

λ∇V (y) + (1 − λ)(f(τ) − F (y)) = 0

for some y ∈ ∂Br and λ ∈ [0, 1]. Then

λ〈∇V (y), f(τ) − F (y)〉 = −(1 − λ)‖f(τ) − F (y)‖2. (4.4)

Obviously λ 6= 0. Indeed, if λ = 0, we obtain f(τ)−F (y) = 0, a contradiction to condition (4.3)

since y ∈ ∂Br and r ≥ R. Thus (4.4) yields 〈∇V (y), f(τ) − F (y)〉 < 0 which also contradicts

(4.3). Thus deg(∇V, Br , 0) = deg(h(1, · ), Br, 0) = deg(h(0, · ), Br, 0) = deg(f(τ) − F, Br, 0).

Theorem 4.1 We make the assumptions that f ∈ C0([0, +∞); Rn) and df
dt

∈ L1
loc(0, +∞;

R
n). Let ϕ : R

n → R be a convex function. Let F : R
n → R

n be a mapping such that F + ωI

is monotone for some ω ∈ R. Suppose that there exist constants C1 ≥ 0 and C2 ≥ 0 such that

〈F (x), x〉 + ϕ′(x; x) ≤ C1‖x‖2 + C2‖x‖, ∀x ∈ R
n. (4.5)

Let T > 0 be given. Assume that there exists a (guiding) function V ∈ C1(Rn; R) and R > 0

such that

〈F (x) − f(t),∇V (x)〉 + ϕ′(x;∇V (x)) < 0, ∀x ∈ R
n, ‖x‖ ≥ R, t ∈ [0, T ]. (4.6)

Then there exists at least one u ∈ C0([0, T ]; Rn) such that du
dt

∈ L∞(0, T ; Rn),

u(0) = u(T ), (4.7)

du

dt
(t) + F (u(t)) − f(t) ∈ −∂ϕ(u(t)), a.e. t ∈ [0, T ]. (4.8)

Proof We will prove that there exists r0 > R such that for any τ ∈ [0, T ] we have

deg(idRn − S(T ), Br, 0) = deg(idRn − Pϕ(idRn − F + f(τ)), Br , 0)

= (−1)nind(V,∞), ∀ r ≥ r0.

Let us first remark that without loss of generality, we may assume C1 > 0. We set

r0 := R eC1T +
C2

C1
(eC1T − 1) +

∫ T

0

‖f(s)‖eC1sds.

Step 1 We claim that if y ∈ R
n, ‖y‖ = r with r ≥ r0, then

‖S(t)y‖ ≥ R, ∀ t ∈ [0, T ].

Suppose by contradiction that there exists t∗ ∈ [0, T ] such that ‖S(t∗)y‖ < R. We know that

u( · ) ≡ S( · )y satisfies

du

dt
(t) + F (u(t)) − f(t) ∈ −∂ϕ(u(t)), a.e. t ∈ [0, T ], (4.9)
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and thus

du

dt
(t∗ − t) + F (u(t∗ − t)) − f(t∗ − t) ∈ −∂ϕ(u(t∗ − t)), a.e. t ∈ [0, t∗]. (4.10)

Setting

Y (t) = u(t∗ − t), t ∈ [0, t∗],

we derive

−dY

dt
(t) + F (Y (t)) − f(t∗ − t) ∈ −∂ϕ(Y (t)), a.e. t ∈ [0, t∗]. (4.11)

Thus

〈dY

dt
(t), ξ

〉

≤ 〈F (Y (t)) − f(t∗ − t), ξ〉 + ϕ′(Y (t); ξ), ∀ ξ ∈ R
n, a.e. t ∈ [0, t∗].

For ξ = Y (t), we have

〈dY

dt
(t), Y (t)

〉

≤ 〈F (Y (t)) − f(t∗ − t), Y (t)〉 + ϕ′(Y (t); Y (t))

≤ C1‖Y (t)‖2 + C2‖Y (t)‖ + ‖f(t∗ − t)‖‖Y (t)‖, a.e. t ∈ [0, t∗].

Thus
1

2

d

dt
‖Y (t)‖2 ≤ C1‖Y (t)‖2 + (C2 + ‖f(t∗ − t)‖)‖Y (t)‖, a.e. t ∈ [0, t∗].

Using Lemma 3.1 with α := 1
2 , w( · ) := ‖Y ( · )‖2, a( · ) := C1 and b( · ) := C2 + ‖f(t∗ − · )‖, we

obtain

‖Y (t)‖ ≤ ‖Y (0)‖eC1t +

∫ t

0

C2e
C1(t−s)ds +

∫ t

0

‖f(t∗ − s)‖eC1(t−s)ds, ∀ t ∈ [0, t∗].

Since Y (t∗) = u(0) = S(0)y = y and Y (0) = u(t∗) = S(t∗)y, we get

‖y‖ ≤ ‖S(t∗)y‖eC1t∗ +

∫ t∗

0

C2e
C1(t

∗−s)ds +

∫ t∗

0

‖f(t∗ − s)‖eC1(t
∗−s)ds

< R eC1T +
C2

C1
(eC1T − 1) +

∫ T

0

‖f(s)‖eC1sds = r0.

Hence, ‖y‖ < r0, a contradiction.

Step 2 Let r ≥ r0 be given. We claim that there exist ε > 0 and T ∗ ∈ (0, T ] such that

〈F (x) − f(t),∇V (y)〉 + ϕ′(x;∇V (y)) < 0,

∀x ∈ R
n, y ∈ R

n, ‖y‖ = r, ‖x − y‖ ≤ ε, t ∈ [0, T ∗].

Indeed, recalling that the mapping (z, ξ) 7→ ϕ′(z; ξ) is upper semicontinuous (see, e.g., [10]), we

note that the mapping (t, x, y) 7→ 〈F (x)− f(t),∇V (y)〉+ϕ′(x;∇V (y)) is upper semicontinuous

on [0, T ]× R
n × R

n and if y ∈ R
n and ‖y‖ = r ≥ r0 ≥ R, then (by condition (4.6))

〈F (y) − f(0),∇V (y)〉 + ϕ′(y;∇V (y)) < 0.

Thus, for t > 0 close to 0, let us say t ≤ T ∗; and x close to y, let us say ‖x − y‖ ≤ ε, ε > 0,

small; we have 〈F (x) − f(0),∇V (y)〉 + ϕ′(x;∇V (y)) < 0.



Periodic Solutions of Evolution Variational Inequalities 269

Step 3 We claim that there exists T ∈ (0, T ∗] such that

‖S(t)y − y‖ ≤ ε, ∀ y ∈ ∂Br, ∀ t ∈ [0, T ].

Indeed, by contradiction, suppose that there exist sequences tn ∈ [0, T∗

n
] (n ∈ N, n ≥ 1) and

yn ∈ R
n, ‖yn‖ = r, such that ‖S(tn)yn − yn‖ > ε. Taking a subsequence if necessary, we may

assume that tn → 0+ and yn → y∗ ∈ ∂Br. On the other hand, we have

‖S(tn)yn − yn‖ = ‖S(tn)yn − S(tn)y∗ + S(tn)y∗ − yn‖
≤ ‖S(tn)yn − S(tn)y∗‖ + ‖S(tn)y∗ − yn‖.

Then using Theorem 3.2, we obtain

‖S(tn)yn − yn‖ ≤
√

e2wtn ‖yn − y∗‖ + ‖S(tn)y∗ − yn‖.

Using the continuity of the map t 7→ S(t)y, we see that ‖S(tn)yn − yn‖ → 0, a contradiction.

Step 4 Let HT : [0, 1] × Cr → R
n, (λ, y) → HT (λ, y) := y − (1 − λ)∇V (y) − S(λT )y. We

claim that the homotopy HT is such that 0 6= HT (λ, y), ∀ y ∈ ∂Br, λ ∈ [0, 1]. By contradiction,

suppose that there exists y ∈ R
n, ‖y‖ = r and λ ∈ [0, 1] such that

y − (1 − λ)∇V (y) − S(λT )y = 0.

Then

S(λT )y − y = −(1 − λ)∇V (y)

and thus

〈S(λT )y − y,∇V (y)〉 = −(1 − λ)‖∇V (y)‖2 ≤ 0. (4.12)

On the other hand, we know that

〈 d

dt
S(t)y, v − S(t)y

〉

+ ϕ(v) − ϕ(S(t)y)

≥ 〈−F (S(t)y) + f(t), v − S(t)y〉, ∀ v ∈ R
n, a.e. t ∈ [0, T ]. (4.13)

Thus
〈 d

dt
S(t)y,∇V (y)

〉

+ ϕ′(S(t)y;∇V (y)) ≥ 〈−F (S(t)y) + f(t),∇V (y)〉, a.e. t ∈ [0, T ].

Therefore,

〈

∫ λT

0

d

ds
S(s)yds,∇V (y)

〉

≥
∫ λT

0

〈−F (S(s)y) + f(s),∇V (y)〉 − ϕ′(S(s)y;∇V (y))ds.

Step 1 of this proof ensures that ‖S(t)y‖ ≥ R, ∀ t ∈ [0, λT ] ⊂ [0, T ]. Step 3 of this proof

guarantees that ‖S(t)y− y‖ ≤ ε, ∀ t ∈ [0, λT ] ⊂ [0, T ]. Then using Step 2 of this proof, we may

assert that the map s 7→ 〈F (S(s)y)− f(s),∇V (y)〉+ϕ′(S(s)y;∇V (y)) is upper semicontinuous

and strictly negative on [0, λT ]. Thus

∫ λT

0

〈−F (S(s)y) + f(s),∇V (y)〉 − ϕ′(S(s)y;∇V (y))ds > 0.
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We obtain

〈S(λT )y − y,∇V (y)〉 =
〈

∫ λT

0

d

ds
S(s)yds,∇V (y)

〉

> 0.

This contradicts relation (4.12).

Step 5 Thanks to Step 4 of this proof, we may use the invariance by homotopy property

of the topological degree and see that

deg(idRn − S(T ), Br, 0) = deg(HT (1, · ), Br, 0)

= deg(HT (0, · ), Br, 0)

= deg(−∇V, Br, 0)

= (−1)n deg(∇V, Br, 0).

Step 6 Let H : [0, 1] × Br → R
n, (λ, y) → H(λ, y) := y − S((1 − λ)T + λT )y. We claim

that H(λ, y) 6= 0, ∀ y ∈ ∂Br, λ ∈ [0, 1]. By contradiction, suppose that there exists y ∈ R
n,

‖y‖ = r and λ ∈ [0, 1] such that y = S((1 − λ)T + λT )y. Set h := (1 − λ)T + λT . We have

y = S(h)y

and thus

V (y) = V (S(h)y). (4.14)

On the other hand,

〈 d

dt
S(t)y, v − S(t)y

〉

+ ϕ(v) − ϕ(S(t)y)

≥ 〈−F (S(t)y) + f(t), v − S(t)y〉, ∀ v ∈ R
n, a.e. t ∈ [0, T ]. (4.15)

Thus

〈 d

dt
S(t)y,∇V (S(t)y)

〉

+ ϕ′(S(t)y;∇V (S(t)y))

≥ 〈−F (S(t)y) + f(t),∇V (S(t)y)〉, a.e. t ∈ [0, T ]. (4.16)

Step 1 of this proof ensures that ‖S(t)y‖ ≥ R, ∀ t ∈ [0, T ]. The map s → 〈F (S(s)y) −
f(s),∇V (S(s)y)〉 + ϕ′(S(s)y;∇V (S(s)y)) is upper semicontinuous and (by condition (4.6))

strictly negative on [0, T ]. Thus, using (4.16), we obtain

V (S(h)y) − V (y) =

∫ h

0

d

ds
V (S(s)y)ds

=

∫ h

0

〈 d

ds
S(s)y,∇V (S(s)y)

〉

≥
∫ h

0

〈−F (S(s)y) + f(s),∇V (S(s)y)〉 − ϕ′(S(s)y;∇V (S(s)y))ds

> 0.

This is a contradiction to (4.14).
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Step 7 Thanks to Step 6 of this proof, we may use the invariance by homotopy property

of the topological degree and see that

deg(idRn − S(T ), Br, 0) = deg(H(0, · ), Br, 0)

= deg(H(1, · ), Br, 0)

= deg(idRn − S(T ), Br, 0).

In conclusion, for all r ≥ r0, we have

deg(idRn − S(T ), Br, 0) = deg(idRn − S(T ), Br, 0),

deg(idRn − S(T ), Br, 0) = (−1)n deg(∇V, Br, 0).

Thus

deg(idRn − S(T ), Br, 0) = (−1)nind(V,∞).

Finally, for any τ ∈ [0, T ], we also have (see Remark 4.1)

(−1)nind(V,∞) = deg(idRn − Pϕ(idRn − F + f(τ)), Br , 0).

It results that, for r > 0 large enough, we have deg(idRn − S(T ), Br, 0) 6= 0 and the existence

of a fixed point for the Poincaré operator follows from the existence property of the topological

degree.
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