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1 Introduction

Throughout this paper, let n > 2 be a fixed integer. Denote the unit ball in C" by B,,

and let v be the normalized Lebesgue volume measure on B,,. For —1 < a < oo, we denote

by v, the measure on B,, defined by dv,(z) = ca(1 — |2|*)*dv(z), where ¢, = % is a
normalizing constant such that v, (B,) = 1. For 1 < p < oo, we write || - ||, for the norm on

LP(By,,dv,) and (-, )4 for the inner product on L?(B,,,dv,). The weighted Bergman space

A2 is the space of analytic functions on B,, that are also in L?(B,,,dv,). Reproducing kernels

K and normalized reproducing kernels £ in A2 are given by, respectively,

n+a+l
2

(1 —fwl)

1
K(@)
(1 = (z,w))r+ott

w (Z) = (1 _ <Z7w>)n+o¢+l

and k(¥ (z) =

for z,w € B,. For every h € A2, we have (h, K)o = h(w) for all w € B,. The orthogonal

a?

projection P, of L?(B,,dv,) onto A2 is given by

1
(1= (w, z))m+o+t

(Pag)(w) = (9. K)o = [ o) dva (2)

n

for g € L?(B,,,dv,) and w € B,,.
Given f € L>(B,,), the Toeplitz operator T is defined on A2 by T¢h = Pa(fh). We have

f(2)h(z)

(= fw, )55

(T2h)(w) = (T8h, K = (fh, K)o = / dva(2)

n
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for h € A2 and w € B,. Note that the above integral formula makes sense, and defines a
function analytic on B, if f € L?(B,,dv,). So, if g € A2, we define T3 by the formula

(Tgh)(w) = / a _‘ifi)g()izl*ﬂhl*l dva (2)

for all h € A2 and w € B,. If also f € A}, then TPT2h is the analytic function fTi¢h for
h € H>®(B,).
Given f € L*(B,,), the Hankel operator H; is defined on A2 by H¢h = (I — P,)(fh). Then

() = fw)hw) - Pa(i)(w) = [ 2T gy, )

B, (1 _ <w72>)n+o¢+1 Vo

for h € A2 and w € B,. The latter formula will be used to define Hy densely on AZ if
f € L*(Bp,dv,). If g € L*°(B,,) and u € (A2)1, then

H;‘u(w) = <H;U=K1(ua)>a = <U7H9K1(ua)>a = <u79K1(ua)>a

) is bounded, the latter formula makes sense for all ¢ € L?(B,,,dv,),

for w € B,,. Since Kl(ua
and we use it to define the operator H densely on (A2)L. Note that the star need no longer
be the adjoint (but would of course coincide with the adjoint in case the operator H, is itself
bounded).

By [1, Theorem 3.14], C.(By), the set of all continuous functions with compact support in
B,,,is dense in L?(B,,, dv, ), so certainly C..(B,,)N(A2)+ is dense in (A2)+. If f,g € L?(B,,,dv,)
and u € Ce(By) N (A2)*, then H}u is bounded, and the meaning of HyHu is clear: it is the
function Hy(Hju). This defines the Hankel product HyH; on a dense subset of (A2)+, namely,
Co(Ba) N (42)4,

It is well-known that Toeplitz operator, Hankel operator and dual Toeplitz operator are
closely related to each other. Under the decomposition L?(B,,dv,) = A2 @ (A2)*, for f €

L*>(B,,), the multiplication operator M} is represented as

My = <Tf Hf) :
Hy Sy
The operator Sy is an operator on (A2)%, which is called the dual Toeplitz operator with
symbol f. The identity My, = MM, implies the following basic algebraic relation between

these operators
Hypg = HfT) + SpHy.

Suppose ¢ € H>*(B,,) and ¢ € L>°(B,,). Then we have
HyTS = S H, (1.1)

and, by taking adjoints, we have
TZ5Hj, = H},S5. (1.2)

It is easy to prove that identities (1.1) and (1.2) also hold if ¢ € H*(B,,) and ¢ € L?(B,,,dv,,).
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In this paper, we shall consider questions of when, for analytic functions f and g, the product
2

a?

TFT3 extends to a bounded linear operator on Az . and when, for square integrable functions
J and g, the product HyH extends to a bounded linear operator on (A2)+.

On the Hardy space H?(T), bounded Toeplitz operators arise only from bounded symbols.
In [2], Sarason posed the problem for which f and g in H?(T) the densely defined operator
T+T; is bounded on H?(T), and he conjectured that a necessary condition founded by S. Treil,
namely,

Slé%<|f|2Ew7Ew><|g|2EwaEw> < 09,

where ky, = (1 — |w[?)? —L denotes the normalized reproducing kernels of H?(T), is also
sufficient. This question turned out to have close links with the question of boundedness of
the two-weight Hilbert transform on L?(T) (see [3]). In [4], Cruz-Uribe characterized the outer
functions f and g for which the Toeplitz product TyTy is bounded and invertible on H?(T),
providing support for Sarason’s conjecture. In [5], Zheng obtained a partial answer to Sarason’s
problem by showing that a condition slightly stronger than the one in Sarason’s conjecture
is sufficient for boundedness of these Toeplitz products on the Hardy space. Unfortunately,
Sarason’s conjecture on the Hardy space was answered in the negative by Nazarov [6].

On the Bergman space of the unit disk, there are unbounded symbols that induce bounded
Toeplitz operators. A Toeplitz operator with analytic symbol is, however, bounded if and only
if its symbol is bounded on the unit disk. In [2], Sarason also asked for which analytic functions
f and g the densely defined product T?Tg is bounded on A3(D). In [7], Stroethoff and Zheng
found necessary conditions on the unit disk D and they also proved that the necessary condition
is very close to being sufficient, as shown for Toeplitz products on the Hardy space of the unit
circle in [5]:

(1) If f,g € A§(D) and T7T) is bounded, then

sup (| f1*kG) kG ) o(lg Pk, kD)o = sup Bo(|f1*)Bo(lg]*) < oo;
weD weD
(2) If f,g € A3(D) and there exists an € > 0 such that

sup Bo(| %) Bo(|g***) < e,
weD
then T?Tg is bounded.
Stroethoff and Zheng showed the analogous result on the Bergman space of the polydisk in
[8] and on the weighted Bergman space of the unit disk in [9] and the unit ball in [10]. In [11],
Park gave the analogous result for Toeplitz products on the Bergman space of the unit ball. In
[12], Pott and Strouse also obtained a sufficient and a necessary condition for boundedness of
the Toeplitz products on the weighted Bergman space of the unit disk. But Sarason’s problem
is still open on various settings.
On the Bergman space, little is known concerning the products H}Hg or HyHj for f,g €
L?(D,dA). Many interesting questions concerning Hankel products still remain open. In [7],

Stroethoff and Zheng obtained a necessary condition on boundedness of Hankel products HyHj
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and proved that the necessary condition is very close to being sufficient, as shown for Toeplitz
products on the Bergman space of the unit disk. In [15], Lu and Shang proved a similar result
for Hankel products on the Bergman space of the polydisk.

In this paper, we continue to investigate conditions for boundedness of the Toeplitz prod-
ucts on the weighted Bergman space of the unit ball and obtain new necessary conditions to
guarantee the boundedness of the Toeplitz products on the weighted Bergman space of the unit
ball. Meanwhile, we study Hankel products HyHj on the weighted Bergman space of the unit
ball and prove results analogous to those Stroethoff and Zheng [7] obtained in the setting of
unit disk.

2 Some Lemmas and Basic Inequalities

For w € B, let ¢, be the automorphism of B,,, which is described in [13, Section 2.2]. Tt

has real Jacobian equal to
o ()
Y L= (zw) e

and it also has properties as follows:

1~ {pu(z)w) = —— Y

= m and kv(ﬂa)(@w(z)) = o, <

for z,w € B,,. Thus we have the following change-of-variable formula

/ h o u(2)dva(z) = / h(2) K (2) Pdvg (2) (2.1)

n n

for every h € LY(B,,,dv,) (see [14] for the proof).
For w € B,,, the operator U&a) on A2 is defined by

Uh = (ho pu )kl
It is easy to see that Uls,o‘) is a unitary operator and (Uls,o‘))_1 = U&,O‘). In particular,
Tf,, U = Ul Ty (2.2)

holds for f € L*(B,,) (see [10] for the proof).
For a function u € L*(B,,, dv,), the Berezin transform B,[u] is the function on B,, defined
by

1 — |w 2\n+a+1
Balultw) = [ w0 ),

n

Suppose f,g € A2. Consider the operator f @ g on A2 defined by

(f ® g)h = <hvg>af

for h € A%. Tt is easily proved that f ® g is bounded on A% with norm equal to ||f ® g| =
1 lla2llglla,2-
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We observe that the Taylor expansion of the function (1 — 2)"*2*! around 0, i.e.,
(1 _ n+a+1 chakz

(—1)k("+a+1)("+a) (ntat2=h) p—1.9...., Ch,a,0 = 1, is absolutely conver-

where Cp, o1 =
gent on the closed unit disk in C for av > —1.

The term multi-index refers to an ordered n-tuple
m = (mlu"' 7mn)
of nonnegative integer m,;. The following abbreviated notations will be used:

_ . m m _ _
2t =2t ml=ma 4 my, ml=mg!-omy L

We have the multinomial formula

|

|m|=N
In this paper, the letter C' denotes a positive constant, possibly different on each occurrence.
Lemma 2.1 On A%, we have
kL @ k() = Z Crn,ok Z Tnggw (2.3)
7= k!

forw e B,.

Proof For f € A%, by the mean value property, we have

10)= o) = [ fadvaw) = [ (@)K (v (w),

n

By the multinomial formula, we have

(K (2)) 7 = (1= (z,w)" ot = chak > —w”ﬂ

lvI= k7

Since the series Y |Ch a,k| is convergent and T2, f(z) = [, T K (2) f(w)dve (w), we have
k=0 "

fO)=0e)f= [ flw)dva(w)

By
=S Cor —zv/ T K () f(w)dv, (w)
k=0 lvI=k

—chak > 'TgTa

lvI= K
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Then it follows that

1@1_Zcmk > ,TgTa

lvI= k7

(e

For w € B,,, we use the unitary operator Uy ) to obtain

kY @ k) = (U1) @ (UW1) =00 e 1)Ul
(chakz 'TgToz) O¢)
lvI= k!
= Z Cn,a,k Z_ ?Ul(ua)TgWT% UvS)a)
k=0 lv|=k

_ZC”akZ A 15, Tg -

lvI= K

The following inner product formula in A2 will play an important role in this paper, which

was proved in [10].

Lemma 2.2 (see [10]) Let —1 < o < oo, and m be a positive integer. Then there exist

constants ay,az,- - ,a2m_1 and by, ba, -+ by, such that, for any F,G € A2,
MNa+1)
— o] v _ 2\2m
(RO = o Ty & [ DEEDIEE( - v ()
2m—1
# 3 a 3 [ DEEDGE - ) )
=1 =

’ Z;bj /B F(2)G(2)(1 = |2[*)*™ 7 dva(2). (2.4)

The following lemma will be frequently used in the following calculations (see [14]).

Lemma 2.3 (see [14]) Fiz two real parameters a and b, and define two integral operators
Top and Qqp as follows:

— |lwl?)
Tt ()= 1= 1Py [ o)

and

_ lwl2)?
Quaf ()= (1= 1Py [ B )

Then, for —1 <t < oo and 1 < p < 00, the following conditions are equivalent:
(a) Tup is bounded on LP(By,,dv),
(b) Qa.p is bounded on LP(B,,dv;),
(c) —pa<t+1<pb+1).

Lemma 2.4 Let —1 <y < a < oo. For f € L*(B,,,dv,) and h € H*(B,,), we have

allfP)(w)?

T<h)(w <—
(T2h)( >|_(1_| P
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and

S[1/17](w) 2

Wﬂhﬂaz

(TR (w)| < ©
for all w € B,,.

Proof Suppose h € H>*(B,,). Using Holder’s inequality, we have

(Tgh) ()] = [(Fh, K)ol = [(hy FEG)al <

a,2-

Since

Oc) 2
Ball P)w) = |1 | = (= Py R,
1K o2

we see that

[Ifl]()
(1 —fw]?)=="

Since v < « implies ||A||a,2 < ||h],2, the first inequality follows. Since

(1 _ |w|2)n+a+1

BallfPlw) = | R e ()
_ ’LU2 n+vy+1 _ w2 a—vy _ 22 a—y
- [ e |1| B w)r (1 = |2

— (2, 0P 2L — (z,w) [P

(T2 h)w)] <

duy(z)

(1 — Jwf?)m o+t

S 4477 /Bn |f|2(z) |1 _ <ij>|2n+gv+2 d’U,Y(Z)
= C*B, [|f*)(w),

the second inequality follows.

Lemma 2.5 Let —1 <y < a < co. For f € L*(B,,dv,), h € H*(B,,) and multi-indez s

with |s| = m > 2L e have

B, | f1?)(w)*
(1= Jw[)m

Proof For f € L?*(B,,dv,) and h € H*(B,), we have

(D*T2h)(w)] < C (Qo.20— () (w))?.

(T5h)(w) = (TR, K)o :/n a Jz( 2)h(z) dvg ().

w >)n+a+1
Thus
Fn+a+m+1) 25 f(2)h(z)
D*T%h = dvg
DT = Ty, T et
for every multi-index s with |s| = m. Applying Holder’s inequality, we get

fEIRE)

11— <w z>|"+a+m+1 a(2)

()] = [2*)*7
_C/ |1— w, z |n+’y+1 11— (w, 2)[nra— dv,(z)

], o) B

(D TSh)(w)| < C /

B
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_ o BallfPIw)E o p@PA PR
R <1—|w|2>”+;+1(/ 1= Gy ()

Since 2m >n+a+1 and |1 — (w,2)| > 271(1 — |w|?), we have

(f, o) < e, F o)

e S (= Jwp?

Hence

2 1 m— Tyl 2(1 _ |4]2)20—7
P2 / MAPL P )

(DTRG0l < C(1 — Jw]2)™F (1 — jw|2)m 11— (2, w)|rt2a—7+1
By[If[?)(w)? Ih(2)]*(1 = |2[*)**~ "4 3
= - Twp)y (/Bn =, prmd0()
= CW(QO,MMW}(@)%.

This completes the proof.
Lemma 2.6 Suppose 3 > —1. For f € L*(B,,dvg), h € H*®(B,,) and multi-indezx s with

S :mz%ﬁﬂ,wehave

1
2

(DT ) (w)| < C%(Qo,mhm(m»%

). We proceed as the proof of Lemma 2.5 to see that

|(D* Tﬁh)( )| < C/ T ufz)yﬁiﬁlmﬂdvﬁ(@

Proof Suppose h € H>*(B,,

for every multi-index s with |s| = m. Applying Holder’s inequality, we get

: B[ 72w (o)L %
) < o2 (f T Z>|2mdva<z>)
:

(1= Jwf2) =5
2)(w) 2
L Ly
(1= |wP)™ \Jp, 1 = (w,2
Bsl|f B 1
= 2L Qo )
since 2m >n + B+ 1 and |1 — (w, 2)| > 2711 — |w|?).
This proves the stated inequality.

Lemma 2.7 Let —1 < a < oo and f € L*(B,,dv,). Then

1
nratl Ilf o ww — Palfo ‘Pw)Ha-,ZHuHa-,Q

Hiu)(w)| < ——r
(H0) )] < g

for all u € (A2)+ and w € B,,.
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Proof It is easy to see that ka(a) (f = Pa(fopw)o gpw)k( *) . We have

1 (67 1 «
Wwaﬂfkfﬂ N = WW (f = Palf 0 0w) © 0u)kS ) a.

By change-of-variable formula (2.1), we have

Hiu(w) =

H(f_Pa(fO(Pw)oﬁpw) w 2= |‘f°<Pw_Pa(f°<Pw)|a,2

Therefore, applying Cauchy-Schwartz’s inequality, we get

[(u, (f = Pa(f © ¢uw) o¢w)kvg;a)>a| < HuHa,ZHfO@w - Pa(foww)”a&

Lemma 2.8 Let —1 < a < oo ande > 0. For g € L*(B,,dv,), u € (A2)* and multi-index

n+a+1
2

v with |y] =m > , we have

(D Hy)w)] £ €l o 0w = Palg o pu)lose Qo (7))}

_2
for allw € By, where § = $££.
Proof For u € (A2)*, we have

() 0) = (B K)o = (0 o = [ Dy ),

Thus

(i) () = et [ o

Tn+a+1) w, 2))rretmtl

for every multi-index v with |y| =m

Let G, denote P,(g o ¢y) © ¢y. The function z — Mﬁ% is in A2

u € (A2)L) we get

and since

(o2l

w(2)27Gy (2)
/n (1- <(w? Z>)"+El-2m+1 dva(2) = 0.
Thus

(D7 H;u) (w) = Fn+a+m+1) / u(2)27(g(z) — Gu(2))

dva(2).
Tnta+1) Jp (1—(w,z)nretmit < (2)
e 1—|w]? (1 — Jw[?)rrott
— |w — |w
1 — (Vuw I d |k ()2 =
<S0 (Z)’w> 1 _ <Z,’LU> an | w (Z)| |1 _ <Z,w>|2("+0‘+1)’

applying change-of-variable formula (2.1) and Hélder’s inequality, we have

(D7) |<C/| o) ~Gul)ly

1_ ’LU 2 n+a+m+1

)|

_ w0 puw()llg 0 Pu(z) = Palg o ew) ()12, (-
_C/B 11— (w, pu(2)) [ rotmtl ke () dva(2)
_ ! [0 u(2)llg © Pu(2) = Palg 0 uw)(2)]

= C(l ~w[H)m /n 11— (z,w)|(nFotD-m

n

dvs(2)
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1

o,2+e [u o @u(2)]° )
e e O)

(@) (N2
a,2+e |U(2)|‘5|kw (2)|
(/Bn 11— (pw(2), w>|[(n+a+1)7m]5dva(2))

=7 LT L

e O | A

302

SO”gOSDw _Pa(gz(pwﬂ
(1= Jwf?)™

1
5

_ OHQOSDw —Pa(gocpw”
(1 — |w]?)™

_ CHQOSDw —Pa(gocpw”
(1 — fw]2)m

where 3 =md + (n+ a+1)(1 —9). Sincem2%‘Mamdézf—iz,wehaveﬁ>0and

1= {z,w)|HFDHE > 1 — (2 w) " (L~ fw])”
> 277(1 = [w*)7[1 — {2, w)" et

Thus
(f Do) <2t ([ M an)

1= (2, w)[(ntetns 8

Hence
lg 00w — Palgopuw)llazie, / |U(Z)|5 5
DYH* < ’ 2 dv,,
(Bl = C Ty U, T tee)
19 © Pw = Pal(g 0 puw)lla2+e / ()| s
< ’ dv,,
<C (1 — |w|2)m ( B, |1 _ <Z,w>|n+a+1 v (Z))

_ ||9090w _Pa(gospw)”aﬂ-i-a Py w %
=C (1—|w|?)™ (Qo,a(|h| )( )) :

This proves the stated inequality.

3 Bounded Toeplitz Products and Hankel Products

We now prove our main results on boundedness of Toeplitz products.

Theorem 3.1 Let —1 <~ < oo and f,g € A2. If

wsélg Bv[|f|2](w)Bv[|g|2](w) < o0,

then for each oo >y, T{T3 determines a bounded linear operator A% — A2,

Proof Assume that M is a positive constant such that

By [ f)(w) By [|g|*)(w) < M?

for all w € B,.
Let h and k£ be bounded analytic functions on B,,. It follows from Lemma 2.4 that
C

(T (w) (T k) (w)] < Wllhllazl k|

a,2-.

Thus
/ (T3 h) (w)(T k) (w) (1 — w]*)?dva (w) < Cllhllaz]klla.2

n
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for all g > n+ a + 1. So if we choose a large m such that 2m > n + «a + 1, then we have

/ (T5 ) (w) (T k) (w)[ (1 = [w]*)*™ ™ dva (w) < Ollla2]|k]la.2
forj=1,---,m.

By Lemma 2.5 for a multi-index s with |s| =m > 22l we get

¢
(1 = Jw]2)2m

|(D* T k) (w) (D> T2 ) (w)| < (Qo.20— 1 (1)) 2 (Qo,20— K| (w)) =

for all w € B,,. Since Qo 24—~ is bounded on L!(B,,,dv,) by Lemma 2.3, we have

/(Qo,za—v|h|2)(w)dva(w)§||Q0,2a—7”/B A (w)dva (w) = [|Qo2a—~ I3 2.

n
and, likewise,

/ (Qo.20k12) (w)dva (1) < [ Qo.20— |[[£]2.5-

n

By Cauchy-Schwartz’s inequality, we have

/ (Qo,20—~ |1 (w)) 2 (Qo,20—~ K[> (w)) 2 dva (w) < [|Qo20—[[||A]la,2llk]|a-

n

We conclude that

k|

a,2| a,2

|| DTk DTERE) (1~ 22" dva(2)]| < ClQo a1
B’Vl X

for j = 0,1,---,2m — 1. Using the inner product formula (2.4) in Lemma 2.2 with F' = Tk
and G = T?O‘h, we see that there is a finite constant C' such that

(TETSk, h)al < Cl|h|a2|

k|

a,2

for all bounded analytic functions h and k& on B,. Hence, the operator T713 is bounded on
A2,
Theorem 3.2 Let —1 <~ < oo and f,g € A2. If

;gg BW[|f|2](w)By[|g|2](w) < 00,

then T}YT; : A2 — A2 is a bounded operator for —1 < o < .

Proof Let

M= sup By[|f*)(w)B, ) (w) < oc.

Precisely as in the proof of Theorem 3.1, it suffices to show that there exists a positive constant
C, such that for any h, k € H*(B,,), we have

(TPTIh, K)ol < CllAflazlkla.2-
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By Lemma 2.4, we see that if we choose a large m, such that 2m > n + v+ 1, then

| I )@@ - ) e ) < 33 A

g

a2|Ella,2

n

forj=1,---,m.

Applying Lemma 2.6 and Hoélder’s inequality, we obtain, for j = 0,1, - ,2m — 1,
‘ / DT (w) DI T2 h(w) (1 — |w|2)2m+jdva(w)‘
DT
<C /B (Qon k()% (Qo (1)) dua ()
<0( [ Qualhtw)dua()” ([ QosliP(wldva(w)’
B, By
<o( [ wPwdn@) ([ P w)’

n n

=ClEklla2llla2,

since Qo is bounded on L'(B,,,dv,) by Lemma 2.3. By the inner product formula (2.4) in

Lemma 2.2, we see that there exists a constant C', such that

(T{Tgh, k)o| < ClR]

a2|Ella,2

for all bounded analytic functions i and k on B,,. Hence T)T] is bounded on A7

Remark 3.1 Suppose that f,g € A?v satisfy the conditions in the above theorem. Since for
any h € A2 and 8 > «, [T} T hlls2 < | T} T hlla,2, it follows that T} T : A% — A2 is also a
bounded operator for —1 < a < 7.

Using exactly the same argument as in the proof of Lemma 3.3 in [10], we have the following

lemma.

Lemma 3.1 Let —1 < a < oo. If S is a bounded linear operator on (A2)L, then

H |Z %S@;SSWU
y|=m

< [IS]]

for every positive integer m and w € B, .

The following Theorems 3.3 and 3.4 are analogous to those Stroethoff and Zheng [7] obtained
in the setting of unit disk. While our method is partially adapted from [7], a substantial amount

of extra work is necessary for the setting of the unit ball.

Theorem 3.3 Let —1 <« < o0 and f,g € L*(By,dvy). If HyH} is bounded, then

Sug HfOSDw _Pa(fo‘)ow)HaﬁHgO‘Pw - Pa(gocpw)|
we n

a,2 < 00.
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Proof Using identities (1.1), (1.2) and (2.3), we have

Hf(k,l(ua)@)k(a Hf(zcnak Z ' pr pr) ;

lvI= K
=> sz HfT"‘TO‘H*
k=0 =k |
—chakz S HfHS‘Y’
lvI= k!

and since H (kfﬂa) ® k:l(,f‘))H_(}k = (kafva)) ® (Hgkfﬁ)), we have

I(H k) @ (Hoki))| = 1HpkS) a2l HokS) a2

= HfOQPw _Pa(fo‘Pw)HaﬂHgO‘Pw - Pa(gocpw)| a,2

Thus, by Lemma 3.1, we have

Ilf o ow — Palfo ‘Pw)Ha-,ZHgO ow — Palgo ‘Pw)Ha-,Z

_HZCnak Z o %HfH Sy

I\k

< Z|Onak|H Z S«pwaH 553

lvI= K

< Z |Cro k|| H g H |
k=0

<C|HfH|| < oo,
o0
since Y |Ch.a.k| is convergent.
k=0
Theorem 3.4 Let —1 < a < co and f,g € L*(B,,dvy,). If there exists a positive constant
e > 0 such that

sup ||f o @w — Pua(fo Sﬁw)”a,2+s|‘g 0w — Pa(go ‘Pw)Ha.,ZJrs < 09,

weB,

then the operator HyHj is bounded.

Proof Let u,v € C.(B,) N (A2)*. Using the definitions of H}u and Hjv and Fubini’s

theorem, we have

(Hyju, Hjv)o = /Bn {/ = (1(1)) >(>n)+a+1dv (2)}{/Bn a —{E\T\L@JFO‘“ dva()\)}dva(w)

= f()\)H;u()\)v()\)dva()\) = (fHyu,v)o = (HpHju,v)q.

Bn

Thus, by Lemma 2.2, we have

(HyHju,v)o = (Hyu, Hjv)o = 14+ 11+ 111
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, where

for m > ntotl
= 2

1-—§jb [ ) TG 2 v o),

n

B Ma+1 H —— Ly,
ILWHMH_/DH DT — )" dva(2),
2m—1
M—ZXM | D H;wEDTHOE - =) dva (2)
J=1 |v|=

It follows from Lemma 2.7 that

|I| <G Sug ”fO‘Pw - Pa(fosﬂw)||a,2||9090w —Pa(gocpw)
we n

Note p = % > 1. Using Lemma 2.8 and since Qo is bounded on LP(B,,, dv,) by Lemma 2.3,

we have

|H| < (3 sup HfOQPw — Po(f o pw)

webB,

90 Yw — Palg 0 vw)lla2+e

The estimate of III is similar to that of II, and combining the estimates, we get

|<HfH;u7U>a| <M sup |fopw— Palfoww)l

webB,

HQOSDw - Pa(gocpw)|

for some constant M > 0. So the product HyH is bounded as desired.

4 Compact Hankel Products

In this section, we discuss the condition for compactness of the Hankel products.

Lemma 4.1 For any z € B,, and multi-index v, we have w¥ — ¢} — 0 as w € B,, tends to

£ € 0B,.

Proof By definition,
w— Pyuz—sQuz
1—{z,w)

where Pz = ﬁfﬁ?w, Quz= (I — Py)z, s = (1 —|w?)z. Hence we have

ouw(z) =

o=tz 1 pw) s s
Pu(z) = 1—{(z,w) |w|? +1—<z,w>|w|2 1—{(z,w)""

Set w= (w1, ,wn), 2= (21, ,2n), v= (Y1, ,Vn), and let

Py(w) = 1£Z,<:j>w>ﬁ’ Ps(w) = 71_<ij>-

Then

Puw(z) = ((P1(w) + P2(w))wr — P3(w)z1, (Pr(w) + P2(w))wz — P3(w)za,
s (Pr(w) + Po(w))wy — Py(w)zy,).
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Hence

Pu(2) = (P1(w) + P2 (w))wr — P3(w)z1)" ((Pr(w) + Pa(w))ws — P3(w)22)7
X - X ((Pr(w) + Pa(w))wy, — P3(w)z,) ™.

Ifwe B, = &= (&, ,&) € 0By, then w; — &, i =1,2,--- n. Clearly, if w € B, — &,
then P (w) — 1, Py(w) — 0, P3(w) — 0. We get

pu(2) = & =&
The following lemma gives a necessary condition for compactness of operators on (A2 )=.

Lemma 4.2 Let T be a compact operator on (A2)*. Then

o0
lim HE Cn,a,k
k=0

k!
> %S%Tsm =0. (4.1)

|w|—1~
[v[=k

Proof If H; and Hy are Hilbert spaces and T : H; — Hs is a compact operator, since
operators of finite rank are dense in the set of compact operators, given € > 0, there exist
fi, -+ fn € Hy and g1, -+, gn € Hy, such that

HT - Zfi @ gi
i=1

Thus the lemma follows, once we show (4.1) for operators of rank one.

< €.

If f € L*(Bn,dvs) as |w| — 17, then for every z € B, and multi-index v, we have

wY — ] (2) — 0 by Lemma 4.1. So by Lebesgue’s dominated convergence theorem, we get

[wf = @3, f]

2a= [ W77 - e Pdoa(a) 0
as |w| — 17. It follows that ||£7f — ¢} flla,2 — 0, as w € B,, tends to & € IB,,.
Suppose f € (A2)+. Then
(I-P)&f)=¢"F,
and consequently
1€7F = S fllave = 11 = PYEf = @3, fllae = O,
as w € By, tends to £ € B,,. If f,g € (A2)+, then

1€7(f © 9)&" = Sy, (f ® 9) S | = €7 F) @ (€79) = (Sp1, /) @ (S9)]
SHES = Sep /) @ (€PN + 1(Sey /) @ (€79 = Sy 9)
<€ f = Sy fllazlgllaz + [1flla2llE"g = Spylla2-

We get
I1€7(f @ 9)E = S,pp,(f ® 9)S |l = 0,

as w € B, tends to £ € 0B,,.
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Hence, for any nonnegative integer k, we get

| ¥ Sevae - st e9sm)] o
hlk
as w € B, tends to £ € dB,,. Since
HZCWZ L(f @ 9)S vat 32 5185799055, - € 097
k=0 |y|=k k=0 [vI=k
<Z|cmk|HZ (@ 9E ~ S, (f @ 9)S:)|

lvI= k)

o0
and the series > |Cp o,x| is convergent, by Lemma 3.1, we have
k=0

HZCM 3 —S% (f ©9)S,

k=0 |v|=Ek

as w € B, tends to £ € 0B,,.

Theorem 4.1 Let [ and g be in L*°(By,dvy). Then HyHj is compact if and only if

lim || fo @y — Palf O‘PUJ)”QQHQO Yw — Pa(go ‘Pw)Ha-,Z =0.

Jw|—1—

Proof First, we show the “if” part. If HyHj is compact, then by Lemma 4.2, we have

hm ||fo ow — Pu(f O‘Pw)”a,?Hgo Pw — Pa(go (Pw)| a2 =0,

|w|—
since
£ 0w — Pa(f 0 w)llazllgo vw — Palg o uw)llaz = [(Hikl?) @ (HgkiM))|
and

Hp(k{ @ k) H; = (Hpk) @ (Hyk{) chk Z S - HpH} S
lvI= k!

Now we turn to the “only if” part. For u,v € Co(By) N (A2)*+ and m > 22+l we have

(HyHju,v)o = (Hyju, Hjv)o = [+ 11+ 111,

where I, IT and III are as those in the proof of Theorem 3.4. For 0 < s < 1, we write [ = I+ 1.,
I = 1L, + I, and IIT = III, + 11T, where

S—Zb | ETTGE0 P v o)

<|z|<1

_P(a——i_l) ¥ *u 277*’(1,2 _ m v 5
e ot 1D, 2,y D7D = | 2,

2m—1

M, = > Z / DY(Hyu)(2)DY (Hju)(2)(1 — |2[*)*™ dva (2).

1
=1 = <l=l<
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It is easy to see that there exists a compact operator Cs such that ((HyH; — Cs)u,v)q =
I + 11 4 III5. By Lemma 2.7, we get

s <C S‘u]‘? . Ilf 0w — Pua(fo Spw)”a,?Hg 0w — Pua(go Spw)”a,?”u”a,?”w
s<|w|<

a,2-
Using Lemma 2.8 and since Qo is bounded on LP(B,,,dv,) by Lemma 2.3, we have

;| < C SIU]IE’ If 0w — Palf o puw)llas2tellg © 0w — Pa(g © @uw)lla,2relltlla2llv]a.2-
s<|w|<1
The estimate of III is similar to that of II;. Then we obtain
|<(HJ"H_; = Co)u,v)a| <C S|UI|3 [1f 00w — Palf © puw)lla2+e
s<|w|<1

X [|g 0w — Pa(g 0 ow)lla2telltlazllv]az

for some constant C' > 0. Since P, is bounded on L?72¢(B,,, dv,,), there exists a constant C
such that

l+te 1
[1f 0w = Palf opuw)lla2+e S ClfIISTNf 0w — Palfo Spw)”g:;'

A similar inequality holds for [|g o @ — Pa(g© ¢w)l||a,2+e- Thus there exists a constant C' such
that

|<(HJ"H; = Cou,v)al <C SIUII) 1(Hf 0w — Po(f o puw)lla,2
s<|w|<

1
X g 0w = Palg o puw)lla,2) 7= [ulla2|v]la,2,

from which we conclude that

* 1
”Hqu -G <C S‘UI‘) (I1f o pw = Pa(f 0 puw)lla,2llg © o — Palg o puw)lla2) 7=
s<|w|<1
So if
1im7 1 f 0w = Pal(f o puw)llazllg o vw = Palg o w)llaz =0,

lw|—1
it follows from the above inequality that Cs converges to HyH in operator norm as s — 17,

and since each of the Cy is compact, we conclude that the operator HyH; is compact.
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