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1 Introduction and Preliminaries

Throughtout this work, G will denote a non-compact and non-discrete locally compact

Abelian group with Haar measure µ. Also, we will use Beurling’s weight function, i.e., a

measurable, locally bounded function on G satisfying w(x) ≥ 1 and w(x+y) ≤ w(x)w(y) for all

x, y ∈ G. For two weight functions w1 and w2, we write w1 ≺ w2 if there exists C > 0, such that

w1(x) ≤ Cw2(x) for all x ∈ G. We write w1 ≈ w2 if and only if w1 ≺ w2 and w2 ≺ w1. Certain

well-known terms such as Banach module, Banach ideal, translation and character invariance,

compact embedding will be used frequently in the sequel; their definitions may be found, e.g.,

in [3, 4, 10, 12]. For 1 ≤ r < ∞, we set weighted Lebesgue spaces as

Lr
w(G) = {f | fw ∈ Lr(G)},

which are Banach spaces under the naturel norm

‖f‖r,w =
{∫

G

|f(x)|rwr(x)dµ(x)
} 1

r

.

Recall that one has Lr
w1

(G) ⊂ Lr
w2

(G) if and only if w2 ≺ w1 (see [6, 8]). The Lorentz

spaces over weighted measure spaces L(p, q, wdµ) are defined and discussed in [5, 13]. Instead

of Haar measure µ, let us take the measure as wdµ. Then the distribution function of f which

is considered complex-valued measurable and defined on the measure space (G, wdµ) is

λf,w(y) = w{x ∈ G : |f(x)| > y} =

∫

{x∈G:|f(x)|>y}

w(x)dµ(x), y ≥ 0.

The nonnegative rearrangement of f is given by

f∗
w(t) = inf{y > 0 : λf,w(y) ≤ t} = sup{y > 0 : λf,w(y) > t}, t ≥ 0,
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where we assume that inf φ = ∞ and supφ = 0. Also the average function of f on (0,∞) is

given by

f∗∗
w (t) =

1

t

∫ t

0

f∗
w(s)ds.

Note that λf,w( · ), f∗
w( · ) and f∗∗

w ( · ) are nonincreasing and right continuous functions.

The weighted Lorentz space L(p, q, wdµ) is the collection of all the functions f such that

‖f‖∗p,q,w < ∞, where

‖f‖∗p,q,w =
( q

p

∫ ∞

0

t
q
p
−1[f∗

w(t)]qdt
) 1

q

, 0 < p, q < ∞,

‖f‖∗p,∞,w = sup
t>0

t
1

p f∗
w(t), 0 < p < q = ∞.

In general, however, ‖ · ‖∗p,q,w is not a norm since the Minkowski inequality may fail. But

by replacing f∗
w with f∗∗

w in the above definition, we get that L(p, q, wdµ) is a Banach space,

with the norm ‖ · ‖p,q,w defined by

‖f‖p,q,w =
(q

p

∫ ∞

0

t
q

p
−1[f∗∗

w (t)]qdt
) 1

q

, 0 < p, q < ∞,

‖f‖p,∞,w = sup
t>0

t
1

p f∗∗
w (t), 0 < p < q = ∞.

If 1 < p ≤ ∞ and 1 ≤ q ≤ ∞, then

‖f‖∗p,q,w ≤ ‖f‖p,q,w ≤
p

p − 1
‖f‖∗p,q,w,

where the first inequality is an immediate consequence of the fact that f∗
w ≤ f∗∗

w . The second

follows from the Hardy inequality.

The plan of the paper is as follows. In Section 2, we will define the intersection of weighted

Lebesgue and weighted Lorentz spaces and give some unmentioned properties of these spaces.

Then the compact embedding of this intersected spaces will be discussed in Section 3.

2 Some Results in Lr
w1

(G) ∩ L(p, q, w2dµ)(G)

For 1 ≤ r ≤ ∞ and 0 < p, q ≤ ∞, we will write the intersection of weighted Lebesgue and

weighted Lorentz spaces Lr
w1

(G) ∩ L(p, q, w2dµ)(G) as Bw1,w2

r,p,q (G). If we equip this space with

the sum norm

‖ · ‖w1,w2

r,p,q = ‖ · ‖r,w1
+ ‖ · ‖p,q,w2

, (2.1)

then it is easy to see that (Bw1,w2

r,p,q (G), ‖ · ‖w1,w2

r,p,q ) is a normed space. Now we will give some

properties of these spaces without their complete proofs.

Theorem 2.1 (Bw1,w2

r,p,q (G), ‖ · ‖w1,w2

r,p,q ) is a Banach space for 1 ≤ r ≤ ∞ and p = q = 1,

p = q = ∞ or 1 < p < ∞, 1 ≤ q ≤ ∞.

Proof Let (fn) be a (Bw1,w2

r,p,q (G), ‖ · ‖w1,w2

r,p,q ) Cauchy sequence. Clearly (fn) is a Cauchy

sequence in both Lr
w1

(G) and L(p, q, w2dµ)(G). Therefore, (fn) converges to some f ∈ Lr
w1

(G)

and g ∈ L(p, q, w2dµ)(G). To prove the theorem, we need to show that f = g(µ − a.e.). Since

the convergence in both Lr
w1

(G) and L(p, q, w2dµ)(G) implies the convergence in measure, we

get f = g(µ − a.e.) (see [10, 16]).
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Theorem 2.2 The space (Bw1,w2

r,p,q (G), ‖ · ‖w1,w2

r,p,q ) is translation invariant and the function

f → Lxf is continuous from Bw1,w2

r,p,q (G) to Bw1,w2

r,p,q (G) for all x ∈ G, where Lxf( · ) = f( · − x).

Proof Let us take any x ∈ G and f ∈ Bw1,w2

r,p,q (G). Since λLxf,w2
(y) ≤ w2(x)λf,w2

(y) for

all y ≥ 0, we have ‖Lxf‖p,q,w2
≤ (w2(x))

1

p ‖f‖p,q,w2
(see [5]). With the inequality ‖Lxf‖r,w1

≤

w1(x)‖f‖r,w1
, we get

‖Lxf‖w1,w2

r,p,q = ‖Lxf‖r,w1
+ ‖Lxf‖p,q,w2

≤ w1(x)‖f‖r,w1
+ (w2(x))

1

p ‖f‖p,q,w2

≤ max{w1(x), (w2(x))
1

p }‖f‖w1,w2

r,p,q .

Also, the continuity from Bw1,w2

r,p,q (G) to Bw1,w2

r,p,q (G) follows from the linearity of Lx for all x ∈ G.

Theorem 2.3 The space (Bw1,w2

r,p,q (G), ‖ · ‖w1,w2

r,p,q ) is strongly character invariant and the

function f → Mtf is continuous from Bw1,w2

r,p,q (G) to Bw1,w2

r,p,q (G) for all t ∈ Ĝ.

Proof Let us take any t ∈ Ĝ and f ∈ Bw1,w2

r,p,q (G). Since

λMtf,w2
(y) = w2{x ∈ G : |Mtf(x)| > y}

= w2{x ∈ G : |〈x, t〉f(x)| > y}

= w2{x ∈ G : |f(x)| > y} = λf,w2
(y),

we get (Mtf)∗w2
= f∗

w2
and (Mtf)∗∗w2

= f∗∗
w2

, so ‖Mtf‖p,q,w2
= ‖f‖p,q,w2

. By the equality

‖Mtf‖r,w1
= ‖f‖r,w1

, we have ‖Mtf‖
w1,w2

r,p,q = ‖f‖w1,w2

r,p,q .

Theorem 2.4 For every f ∈ Bw1,w2

r,p,q (G), the function x → Lxf , G → Bw1,w2

r,p,q (G) is con-

tinuous where 1 < p < ∞, 1 ≤ q < ∞ and 1 ≤ r < ∞.

Proof We know that, for 1 ≤ r < ∞, x → Lxf is continuous in Lr
w1

(G) (see [8]). Also the

continuity of x → Lxf in L(p, q, w2dµ)(G) was shown for 1 < p < ∞, 1 ≤ q < ∞ in [5]. Thus

the proof is easily completed by combining the two results mentioned above.

Theorem 2.5 If the weight functions are constant, then (Bw1,w2

r,p,q (G), ‖ · ‖w1,w2

r,p,q ) is a homo-

geneous Banach space.

Proof Let the weight functions w1 and w2 be constant. Therefore, the spaces Lr
w1

(G) and

L(p, q, w2dµ)(G) become strongly translation invariant spaces. Then by Theorem 2.4, we get

the result.

Theorem 2.6 If w0 ≻ w1 and w0 ≻ w2, then (Bw1,w2

r,p,q (G), ‖ · ‖w1,w2

r,p,q ) is a Banach L1
w0

(G)-

module.

Proof Let w0 ≻ w1 and w0 ≻ w2. Then we know that L1
w0

(G) ⊂ L1
w1

(G) and L1
w0

(G) ⊂

L1
w2

(G). Therefore for any f ∈ L1
w0

(G), there exist c1, c2 > 0 such that ‖f‖1,w1
≤ c1‖f‖1,w0

and ‖f‖1,w2
≤ c2‖f‖1,w0

. Since L(p, q, w2dµ)(G) is a Banach L1
w2

(G)-module for 1 < p < ∞,

q 6= ∞ (see [5]) and Lr
w1

(G) is a Banach L1
w1

(G)-module for 1 ≤ r < ∞, we have

‖f ∗ g‖w1,w2

r,p,q = ‖f ∗ g‖r,w1
+ ‖f ∗ g‖p,q,w2

≤ ‖f‖r,w1
‖g‖1,w1

+ ‖f‖p,q,w2
‖g‖1,w2

≤ ‖f‖r,w1
c1‖g‖1,w0

+ ‖f‖p,q,w2
c2‖g‖1,w0

≤ ‖f‖w1,w2

r,p,q max{c1, c2}‖g‖1,w0
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for any f ∈ Bw1,w2

r,p,q (G) and g ∈ L1
w0

(G). If we define a new norm |‖ · ‖| on L1
w0

(G) such that

|‖ · ‖| = max{c1, c2}‖ · ‖1,w0
, then this norm is equivalent to the norm ‖ · ‖1,w0

on L1
w0

(G). So

(Bw1,w2

r,p,q (G), ‖ · ‖w1,w2

r,p,q ) is a Banach (L1
w0

(G), |‖ · ‖|)-module.

Theorem 2.7 If 1 < p < ∞, q 6= ∞ and w2 ≻ w1 or w1 ≻ w2, then the space B
w1,w2

1,p,q (G)

is a Banach algebra.

Proof Assume that w1 ≻ w2. Then we know that L1
w1

(G) ⊂ L1
w2

(G) and for any f ∈

L1
w1

(G), there exists c > 0 such that ‖f‖1,w2
≤ c‖f‖1,w1

. If we define a new function on

B
w1,w2

1,p,q (G) such that |‖·‖|w1,w2

1,p,q = max{1, c}‖·‖w1,w2

1,p,q , then it is easy to see that it is a norm. Also,

these two norms on B
w1,w2

1,p,q (G) are equivalent and the identity map i : (Bw1,w2

1,p,q (G), ‖ ·‖w1,w2

1,p,q ) →

(Bw1,w2

1,p,q (G), |‖ · ‖|w1,w2

1,p,q ) is a homeomorphism on B
w1,w2

1,p,q (G). Now take any f, g ∈ B
w1,w2

1,p,q (G).

Since L1
w1

(G) is a Beurling algebra and the space L(p, q, w2dµ)(G) is a Banach L1
w2

(G)-module

for 1 < p < ∞, q 6= ∞, we get

|‖f ∗ g‖|w1,w2

r,p,q = max{1, c}‖f ∗ g‖w1,w2

r,p,q

= max{1, c}(‖f ∗ g‖1,w1
+ ‖f ∗ g‖p,q,w2

)

≤ max{1, c}(‖f‖1,w1
‖g‖1,w1

+ ‖f‖1,w2
‖g‖p,q,w2

)

≤ max{1, c}(max{1, c}‖f‖1,w1
{‖g‖1,w1

+ ‖g‖p,q,w2
})

≤ max{1, c}‖f‖1,w1
max{1, c}‖g‖w1,w2

r,p,q ≤ |‖f‖|w1,w2

r,p,q |‖g‖|w1,w2

r,p,q .

Similarly, if w2 ≻ w1, then the same way may be followed.

Theorem 2.8 The space Bw1,w2

r,p,q (G) has a bounded approximate identity with compact sup-

port for 1 < p < ∞, 1 ≤ q < ∞.

Proof Let K be a compact neighbourhood of the identity of G. Then wi(y) ≤ A for all

y ∈ K and i = 1, 2. Let F be the family of all neighbourhoods of the identity contained in K.

For U, V ∈ F , define V ≺ U if U ⊂ V . Then, clearly (F,≺) is a directed set. For every U ∈ F ,

there exists a positive continuous function hU on G such that
∫

G
hU (x)dλ(x) = 1 and the

support of hU is contained in U . If we consider the net {hU}U∈F , then we have ‖hU‖1,wi
≤ A

for each U ∈ F. Therefore we find a bounded approximate identity for L1
wi

(G) for i = 1, 2. It is

shown in [14] that this bounded approximate identity is also a bounded approximate identity

for Lr
w1

(G). In [5], it was showed that this bounded approximate identity is also a bounded

approximate identity for L(p, q, w2dµ)(G) for 1 < p < ∞, 1 ≤ q < ∞. So Bw1,w2

r,p,q (G) possesses

a bounded approximate identity.

The next theorem follows from Theorems 2.6 and 2.8.

Theorem 2.9 The space Bw1,w2

r,p,q (G) is an essential Banach L1
w0

(G)-module, if w0 ≻ w1,

w0 ≻ w2 and 1 < p < ∞, 1 ≤ q < ∞.

Theorem 2.10 Let w1, w2, w3 and w4 be weight functions on G and 1 ≤ r ≤ ∞, 0 <

p, q < ∞. Then

(1) Bw1,w2

r,p,q (G) ⊂ Bw3,w4

r,p,q (G) if and only if there exists a constant c > 0 such that ‖f‖w3,w4

r,p,q ≤

c‖f‖w1,w2

r,p,q for all f ∈ Bw1,w2

r,p,q (G),

(2) Bw1,w2

r,p,q1
(G) ⊂ Bw3,w2

r,p,q2
(G) if w1 ≻ w3 and 0 < q1 ≤ q2 ≤ ∞.

Proof (1) Let Bw1,w2

r,p,q (G) ⊂ Bw3,w4

r,p,q (G). We define a norm ‖ · ‖ on Bw1,w2

r,p,q (G) such that
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‖f‖ = ‖f‖w1,w2

r,p,q + ‖f‖w3,w4

r,p,q . It is easy to show that (Bw1,w2

r,p,q (G), ‖ · ‖) is a Banach space. Since

the unit function i from (Bw1,w2

r,p,q (G), ‖ · ‖w1,w2

r,p,q ) onto (Bw1,w2

r,p,q (G), ‖ · ‖) is continuous, i is a

homeomorphism by the closed graph theorem. This shows that the norms ‖ ·‖ and ‖ ·‖w1,w2

r,p,q are

equivalent. Then there is a constant c > 0 such that ‖f‖ ≤ c‖f‖w1,w2

r,p,q . This gives the inequality

‖f‖w3,w4

r,p,q ≤ ‖f‖ ≤ c‖f‖w1,w2

r,p,q .

Conversely, if ‖f‖w3,w4

r,p,q ≤ c‖f‖w1,w2

r,p,q for all f ∈ Bw1,w2

r,p,q (G), then the inclusion Bw1,w2

r,p,q (G) ⊂

Bw3,w4

r,p,q (G) is easy to see.

(2) It is known that L(p, q1, w2dµ)(G) ⊂ L(p, q2, w2dµ)(G), where 0 < q1 ≤ q2 ≤ ∞ (see

[11]). Also, since Lr
w1

(G) ⊂ Lr
w3

(G) if w1 ≻ w3, the proof is completed.

Theorem 2.11 Let p = 1, 0 < q ≤ 1 and 1 ≤ r < ∞. Then for any f ∈ B
w1,w2

r,1,q (G), the

function x → ‖Lxf‖w1,w2

r,1,q is equivalent to the weight function w′ = w1 + w2, i.e., there exist

c1(f), c2(f) > 0 such that

c1(f)w′(x) ≤ ‖Lxf‖w1,w2

r,1,q ≤ c2(f)w′(x). (2.2)

Proof Let f ∈ B
w1,w2

r,1,q (G). Then it is known that the function x → ‖Lxf‖r,w is equivalent

to the weight function w, i.e., there exist k1(f), k2(f) > 0 such that

k1(f)w(x) ≤ ‖Lxf‖r,w ≤ k2(f)w(x) (2.3)

for all x ∈ G (see [8]). Also by Theorem 2.2, we write

‖Lxf‖1,q,w2
≤ w2(x)‖f‖1,q,w2

(2.4)

and

‖Lxf‖1,q,w2
≥ ‖Lxf‖∗1,q,w2

≥ ‖Lxf‖∗1,1,w2
= ‖Lxf‖1,w2

, (2.5)

where q ≤ 1 (see [11]). By using (2.3)–(2.5), there are s1(f), s2(f) > 0 such that

s1(f)w2(x) ≤ ‖Lxf‖1,w2
≤ ‖Lxf‖1,q,w2

≤ w2(x)‖f‖1,q,w2
, (2.6)

where s2(f) = ‖f‖1,q,w2
. If we combine (2.3) with (2.6), then we have

s1(f)w2(x) + k1(f)w1(x) ≤ ‖Lxf‖w1,w2

r,1,q ≤ k2(f)w1(x) + s2(f)w2(x).

Therefore

c1(f)w′(x) ≤ ‖Lxf‖w1,w2

r,1,q ≤ c2(f)w′(x)

for all x ∈ G.

Theorem 2.12 Let w1, w2, w3 and w4 be weight functions on G and w′ = w1 + w2,

w′′ = w3 + w4. If B
w1,w2

r,1,q (G) ⊂ B
w3,w4

r,1,q (G), then w′ ≻ w′′ for p = 1, 0 < q ≤ 1. Conversely,

B
w1,w2

r,1,q (G) ⊂ B
w3,w4

r,1,q (G), if w1 ≻ w3 and w2 ≻ w4.

Proof Assume that B
w1,w2

r,1,q (G) ⊂ B
w3,w4

r,1,q (G). By Theorem 2.11, there are k, l > 0 such

that

k−1w′(x) ≤ ‖Lxf‖w1,w2

r,1,q ≤ kw′(x) (2.7)

and

l−1w′′(x) ≤ ‖Lxf‖w3,w4

r,1,q ≤ lw′′(x), (2.8)
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where w′ = w1 + w2 and w′′ = w3 + w4. Since B
w1,w2

r,1,q (G) ⊂ B
w3,w4

r,1,q (G) implies that there is a

constant C > 0 such that ‖Lxf‖w3,w4

r,1,q ≤ C‖Lxf‖w1,w2

r,1,q , we have

l−1w′′(x) ≤ ‖Lxf‖w3,w4

r,1,q ≤ C‖Lxf‖w1,w2

r,1,q ≤ Ckw′(x) (2.9)

and w′′(x) ≤ Cklw′(x). This shows that w′ ≻ w′′. The second part is seen from [5, Proposition

2.7].

Theorem 2.13 Let w1, w2, w3 and w4 be weight functions on G and 1 ≤ r ≤ ∞, 1 ≤

p, q < ∞. Then B
w1,w

p
2

r,p,q (G) ⊂ B
w3,w

p
4

r,p,q (G), if and only if there exists c > 0 such that ‖f‖
w3,w

p
4

r,p,q ≤

c‖f‖
w1,w

p
2

r,p,q for all f ∈ B
w1,w

p
2

r,p,q (G).

Proof The proof is similar to that of Theorem 2.10.

Theorem 2.14 Let 1 ≤ q ≤ p < ∞. Then for any f ∈ B
w1,w

p
2

r,p,q (G), the function x →

‖Lxf‖
w1,w

p
2

r,p,q is equivalent to the weight function w′ = w1 + w2, i.e., there exist c1(f), c2(f) > 0

such that

c1(f)w′(x) ≤ ‖Lxf‖
w1,w

p
2

r,p,q ≤ c2(f)w′(x). (2.10)

Proof Let f ∈ B
w1,w

p
2

r,p,q (G). Since the function x → ‖Lxf‖r,w is equivalent to the weight

function w, there exist k1(f), k2(f) > 0 such that

k1(f)w(x) ≤ ‖Lxf‖r,w ≤ k2(f)w(x) (2.11)

for all x ∈ G (see [8]). Also by Theorem 2.2 , we write

‖Lxf‖p,q,w
p
2
≤ w2(x)‖f‖p,q,w

p
2

(2.12)

and

‖Lxf‖p,q,w
p

2
≥ ‖Lxf‖∗p,q,w

p
2

≥ ‖Lxf‖∗p,p,w
p
2

= ‖Lxf‖p,w2
, (2.13)

where q ≤ p (see [11]). By (2.11)–(2.13), there are s1(f), s2(f) > 0 such that

s1(f)w2(x) ≤ ‖Lxf‖p,w2
≤ ‖Lxf‖p,q,w

p
2
≤ w2(x)‖f‖p,q,w

p
2
, (2.14)

where s2(f) = ‖f‖p,q,w
p

2
. If we combine (2.11) with (2.14), then we have

s1(f)w2(x) + k1(f)w1(x) ≤ ‖Lxf‖
w1,w

p
2

r,p,q ≤ k2(f)w1(x) + s2(f)w2(x).

Therefore

c1(f)w′(x) ≤ ‖Lxf‖
w1,w

p
2

r,p,q ≤ c2(f)w′(x) (2.15)

for all x ∈ G.

Theorem 2.15 Let w1, w2, w3 and w4 be weight functions on G and w′ = w1 + w2,

w′′ = w3 + w4. If B
w1,w

p
2

r,p,q (G) ⊂ B
w3,w

p
4

r,p,q (G), then w′ ≻ w′′ for 1 ≤ q ≤ p < ∞. Conversely,

B
w1,w

p
2

r,p,q (G) ⊂ B
w3,w

p
4

r,p,q (G), if w1 ≻ w3 and w2 ≻ w4.

Proof The proof is similar to that of Theorem 2.12.
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3 Compact Embeddings of the Spaces Bw1,w2

r,p,q
(Rd)

In this section, we will work on Rd with Lebesgue measure dx. We denote by Cc(R
d) the

space of complex-valued, continuous functions with compact support.

Theorem 3.1 Let (fn)n∈N be a sequence in Bw1,w2

r,p,q (Rd). If (fn)n∈N converges to zero in

Bw1,w2

r,p,q (Rd), then (fn)n∈N also converges to zero in the vague topology (see [3]), i.e., for n → ∞,

∫

Rd

fn(x)k(x)dx → 0

for all k ∈ Cc(R
d).

Proof Let k ∈ Cc(R
d). We write

∣∣∣
∫

Rd

fn(x)k(x)dx
∣∣∣ ≤ ‖k‖r′‖fn‖r ≤ ‖k‖r′‖fn‖

w1,w2

r,p,q (3.1)

by Hölder’s inequality where 1
r

+ 1
r′

= 1. Hence the sequence (fn)n∈N converges to zero in the

vague topology by (3.1).

Theorem 3.2 Let w1, w2 and υ be Beurling weight functions on Rd. If w1 ≻ w2, w1 ≻ υ

and
υ(x)

w1(x) does not tend to zero in Rd for x → ∞, then the embedding of the space Bw1,w2

r,p,q (Rd)

into Lr
υ(Rd) is never compact.

Proof First of all, since w1 ≻ υ, there is a constant C > 0 such that υ(x) ≤ Cw1(x).

This implies that Bw1,w2

r,p,q (Rd) ⊂ Lr
υ(Rd). Let (tn)n∈N be a sequence in Rd such that tn → ∞

as n → ∞. Since υ(x)
w1(x) does not tend to zero in Rd as x → ∞, there exists δ > 0 such that

υ(x)
w1(x) ≥ δ > 0 for x → ∞. To proof that the embedding of the space Bw1,w2

r,p,q (Rd) into Lr
υ(Rd)

is never compact, let us take any fixed f ∈ Bw1,w2

r,p,q (Rd) and define a sequence (fn)n∈N, where

fn = w−1
1 (tn)Ltn

(f). Since w1 ≻ w2, there exists C′ > 0 such that w2(x) ≤ C′w1(x) and so

the sequence (fn)n∈N is bounded in Bw1,w2

r,p,q (Rd). Indeed, we have

‖fn‖
w1,w2

r,p,q = ‖w−1
1 (tn)Ltn

(f)‖w1,w2

r,p,q = w−1
1 (tn)‖Ltn

(f)‖w1,w2

r,p,q

≤ w−1
1 (tn)max{w1(tn), w2(tn)}‖f‖w1,w2

r,p,q

≤ w−1
1 (tn)max{w1(tn), C′w1(tn)}‖f‖w1,w2

r,p,q

= max{1, C′}‖f‖w1,w2

r,p,q .

Now, we will prove that there would not exist a subsequence of (fn)n∈N which is convergent in

Lr
υ(Rd). The sequence in the above certainly converges in the vague topology. Indeed, for all

k ∈ Cc(R
d), we get

∣∣∣
∫

Rd

fn(x)k(x)dx
∣∣∣ =

∣∣∣
∫

Rd

w−1
1 (tn)Ltn

f(x)k(x)dx
∣∣∣

=
1

w1(tn)

∣∣∣
∫

Rd

Ltn
f(x)k(x)dx

∣∣∣

≤
1

w1(tn)
‖k‖r′‖fn‖r ≤

1

w1(tn)
‖k‖r′‖fn‖

w1,w2

r,p,q . (3.2)

Since the right-hand side of (3.2) tends to zero as n → ∞, we have
∫

Rd

fn(x)k(x)dx → 0.



318 İ. Eryilmaz and C. Duyar

Finally by Theorem 3.1, the only possible limit of (fn) in Lr
υ(Rd) is zero. It is known that the

function x → ‖Lxf‖r,υ is equivalent to the weight function υ, i.e., there exist c1(f), c2(f) > 0

depending on f such that

c1υ(x) ≤ ‖Lxf‖r,υ ≤ c2υ(x)

for all x ∈ G. Therefore

‖fn‖r,υ = w−1
1 (tn)‖Ltn

(f)‖r,υ ≥ c1w
−1
1 (tn)υ(x). (3.3)

Since υ(tn)
w1(tn) ≥ δ > 0 for all tn, by using (3.3) we write

‖fn‖r,υ ≥ c1w
−1
1 (tn)υ(x) ≥ c1δ.

This means that it is not possible to find a norm convergent subsequence of (fn)n∈N in Lr
υ(Rd).

Theorem 3.3 For 1 ≤ q ≤ p < ∞, let w1, w2 and w3 be Beurling weight functions on Rd.

If

(1) w1 ≻ w2 ≻ w3 and
w3(x)
w1(x) does not tend to zero in Rd as x → ∞, or

(2) w1 ≺ w2, w3 ≺ w2 and
w3(x)
w2(x) does not tend to zero in Rd as x → ∞,

then the embedding of the space B
w1,w

p
2

r,p,q (Rd) into L(p, q, w
p
3dµ)(Rd) is never compact.

Proof (1) First of all, since w1 ≻ w2 ≻ w3, there are constants C1, C2 > 0 such that

w3(x) ≤ C2w2(x) and w2(x) ≤ C1w1(x). This implies that B
w1,w

p
2

r,p,q (Rd) ⊂ L(p, q, w
p
3dµ)(Rd).

Let (tn)n∈N be a sequence such that tn → ∞ as n → ∞. Since w3(x)
w1(x) does not tend to zero

in Rd as x → ∞, there exists δ > 0 such that w3(x)
w1(x) ≥ δ > 0 for x → ∞. To proof that

the embedding of the space B
w1,w

p
2

r,p,q (Rd) into L(p, q, w
p
3dµ)(Rd) is never compact, let us take

any fixed f ∈ B
w1,w

p
2

r,p,q (Rd) and define a sequence (fn)n∈N, where fn = w−1
1 (tn)Ltn

(f). This

sequence is bounded in B
w1,w

p
2

r,p,q (Rd). Indeed, we write

‖fn‖
w1,w

p
2

r,p,q = ‖w−1
1 (tn)Ltn

(f)‖
w1,w

p
2

r,p,q = w−1
1 (tn)‖Ltn

(f)‖
w1,w

p
2

r,p,q

≤ w−1
1 (tn)max{w1(tn), w2(tn)}‖f‖

w1,w
p
2

r,p,q

≤ w−1
1 (tn)max{w1(tn), C1w1(tn)}‖f‖

w1,w
p
2

r,p,q

= max{1, C1}‖f‖
w1,w

p
2

r,p,q .

Now, we will prove that there would not exist a subsequence of (fn)n∈N which is convergent

in L(p, q, w
p
3dµ)(Rd). The sequence in the above certainly converges in the vague topology.

Indeed, for all k ∈ Cc(R
d), we get

∣∣∣
∫

Rd

fn(x)k(x)dx
∣∣∣ =

∣∣∣
∫

Rd

w−1
1 (tn)Ltn

f(x)k(x)dx
∣∣∣

=
1

w1(tn)

∣∣∣
∫

Rd

Ltn
f(x)k(x)dx

∣∣∣

≤
1

w1(tn)
‖k‖r′‖fn‖r ≤

1

w1(tn)
‖k‖r′‖fn‖

w1,w
p
2

r,p,q . (3.4)

Since the right-hand side of (3.4) tends to zero as n → ∞, we have
∫

Rd

fn(x)k(x)dx → 0.



Some Aspects of Lr
w1

(G) ∩ L(p, q, w2dµ)(G) 319

Finally by Theorem 3.1, the only possible limit of (fn) in L(p, q, w
p
3dµ)(Rd) is zero. By Theorem

2.14, it is known that the function x → ‖Lxf‖p,q,w
p
3

is equivalent to the weight function w3,

i.e., there exist c1(f), c2(f) > 0 such that

c1w3(x) ≤ ‖Lxf‖p,q,w
p
3
≤ c2w3(x)

for all x ∈ G. Therefore

‖fn‖p,q,w
p
3

= w−1
1 (tn)‖Ltn

(f)‖p,q,w
p
3
≥ c1w

−1
1 (tn)w3(x). (3.5)

Since w3(x)
w1(x) ≥ δ > 0 for all tn, by using (3.5) we write

‖fn‖p,q,w
p
3
≥ c1w

−1
1 (tn)w3(x) ≥ c1δ.

This means that it is not possible to find a norm convergent subsequence of (fn)n∈N in Lr
υ(Rd).

(2) This part is similar to part (1). Briefly, the sequence will be formed as fn = w−1
2 (tn)

·Ltn
(f) and the rest.

Now, we will introduce a proposition whose proof is easy.

Theorem 3.4 Let w1 ≈ w2, w3 and w4 be Beurling weight functions on Rd and 1 ≤ q ≤

p < ∞. Then the embedding B
w1,w

p
2

r,p,q (Rd) into B
w3,w

p
4

r,p,q (Rd) is continuous if and only if w3 ≺ w1,

w4 ≺ w2.

Theorem 3.5 Let w1, w2, w3 and w4 be Beurling weight functions on Rd and 1 ≤ q ≤ p <

∞. If

(1) w4 ≺ w2 ≺ w1, w3 ≺ w1 and
w3(x)
w1(x) does not tend to zero in Rd as x → ∞, or

(2) w3 ≺ w1 ≺ w2, w4 ≺ w2 and
w3(x)
w2(x) does not tend to zero in Rd as x → ∞, or

(3) w4 ≺ w2, w3 ≺ w1 ≺ w2 and
w4(x)
w2(x) does not tend to zero in Rd as x → ∞, or

(4) w4 ≺ w2 ≺ w1, w3 ≺ w1 and
w4(x)
w1(x) does not tend to zero in Rd as x → ∞,

then the embedding of the space B
w1,w

p

2

r,p,q (Rd) into B
w3,w

p

4

r,p,q (Rd) is never compact.

Proof (1) Let us assume that w4 ≺ w2 ≺ w1, w3 ≺ w1. Then there are constants

C1, C2 > 0 such that w4(x) ≤ C1w2(x) and w3(x) ≤ C2w1(x). By Theorem 2.15, this implies

that B
w1,w

p

2

r,p,q (Rd) ⊂ B
w3,w

p

4

r,p,q (Rd) and the unit function i from B
w1,w

p

2

r,p,q (Rd) into B
w3,w

p

4

r,p,q (Rd) is

continuous. Now assume that w3(x)
w1(x) does not tend to zero in Rd as x → ∞ and (fn)n∈N is a

bounded sequence in B
w1,w

p
2

r,p,q (Rd). If any subsequence of (fn)n∈N is convergent in B
w3,w

p
4

r,p,q (Rd),

then this subsequence is also convergent in Lr
w3

(Rd). However, this is not possible by Theorem

3.2, since the embedding of the space B
w1,w

p
2

r,p,q (Rd) into Lr
w3

(Rd) is never compact.

(2) This part is similar to part (1).

(3) Let us assume that w4 ≺ w2, w3 ≺ w1 ≺ w2. Then there are constants C1, C2 > 0 such

that w4(x) ≤ C1w2(x) and w3(x) ≤ C2w1(x). By Theorem 2.15, this implies that B
w1,w

p
2

r,p,q (Rd) ⊂

B
w3,w

p
4

r,p,q (Rd) and the unit function i from B
w1,w

p
2

r,p,q (Rd) into B
w3,w

p
4

r,p,q (Rd) is continuous. Now

assume that w4(x)
w2(x) does not tend to zero in Rd as x → ∞ and (fn)n∈N is a bounded sequence in

B
w1,w

p

2

r,p,q (Rd). If any subsequence of (fn)n∈N is convergent in B
w3,w

p

4

r,p,q (Rd), then this subsequence

is also convergent in L(p, q, w
p
4dµ)(Rd). However this is not possible by Theorem 3.3, since the

embedding of the space B
w1,w

p
2

r,p,q (Rd) into L(p, q, w
p
4dµ)(Rd) is never compact.

(4) This part is similar to part (3).
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Theorem 3.6 For 0 < q ≤ 1, let w1, w2 and w3 be Beurling weight functions on Rd. If

w1 ≻ w2 ≻ w3 and
w3(x)
w1(x) does not tend to zero in Rd as x → ∞, then the embedding of the

space B
w1,w2

r,1,q (Rd) into L(1, q, w3dµ)(Rd) is never compact.

Theorem 3.7 Let w1, w2, w3 and w4 be Beurling weight functions on Rd and 0 < q ≤ 1.

If

(1) w4 ≺ w2 ≺ w1, w3 ≺ w1 and
w3(x)
w1(x) does not tend to zero in Rd as x → ∞, or

(2) w3 ≺ w1 ≺ w2, w4 ≺ w2 and
w3(x)
w2(x) does not tend to zero in Rd as x → ∞, or

(3) w4 ≺ w2, w3 ≺ w1 ≺ w2 and
w4(x)
w2(x) does not tend to zero in Rd as x → ∞, or

(4) w4 ≺ w2 ≺ w1, w3 ≺ w1 and
w4(x)
w1(x) does not tend to zero in Rd as x → ∞,

then the embedding of the space B
w1,w2

r,1,q (Rd) into B
w3,w4

r,1,q (Rd) is never compact.

The proofs of Theorem 3.6 and 3.7 can be derived from Theorems 3.3–3.5.
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