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1 Introduction

In this paper, we consider the following one-dimensional multivalued stochastic differential

equation (MSDE in short):

{
dXt + A(Xt)dt ∋ b(Xt)dt + σ(Xt)dWt,

X0 = x ∈ D(A),
(1.1)

where A is a multivalued maximal monotone operator, Wt is a one-dimensional standard Brown-

ian motion defined on some canonical probability space (Ω,F , P ), σ and b are continuous maps.

Except for the multivalued ordinary differential equations (see [1] or [2]), the multivalued

stochastic differential equations (MSDEs) with Lipschitz coefficients have been considered re-

cently (see [6, 3] among others). The MSDEs have a great deal of applications in many areas

(see, e.g., [4]).

In practice, we often need to deal with equations with non-Lipschitz coefficients. But un-

fortunately, there are few papers to deal with the MSDEs with non-Lipschitz coefficients. In

this paper, we prove the existence and uniqueness of the solution to equation (1.1) in the non-

Lipschitz case. The existence of weak solution is obtained as [3]. For the uniqueness, we use

the Tanaka’s formula and Le Gall’s method (see [5]). Moreover, we can have a bicontinuous

modification for the solution. But since we are dealing with multivalued operators, the biconti-

nuity can not be obtained simply as in the case of SDEs. However, we can get the result under

some conditions which are suggested in [7].
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The organization of this paper is as follows. In Section 2, we introduce notions and nota-

tions. In Section 3, we prove the existence and uniqueness. Finally, in Section 4, we give the

bicontinuous modification.

2 Preliminaries

Given a multivalued operator A from R to R, we define

D(A) := {x ∈ R : A(x) 6= ∅},
Im(A) :=

⋃

x∈D(A)

A(x),

Gr(A) := {(x, y) ∈ R
2 : x ∈ R, y ∈ A(x)}.

A−1 is defined by: y ∈ A−1(x) ⇔ x ∈ A(y).

Definition 2.1 (see [1]) (1) A multivalued operator A is called monotone if

〈y1 − y2, x1 − x2〉 ≥ 0, ∀ (x1, y1), (x2, y2) ∈ Gr(A).

(2) A monotone operator A is called maximal monotone if and only if

(x1, y1) ∈ Gr(A) ⇔ {〈y1 − y2, x1 − x2〉 ≥ 0, ∀ (x2, y2) ∈ Gr(A)}.

We will need the following definition due to [3].

Definition 2.2 A pair of continuous and Ft-adapted processes (X, K) is called a strong

solution of equation (1.1) if

( i ) X = {Xt,Ft; 0 ≤ t < ∞} with X0 = x and Xt ∈ D(A), a.s.,

( ii ) K = {Kt,Ft; 0 ≤ t < ∞} is of finite variation and K0 = 0, a.s.,

(iii) dXt = b(Xt)dt + σ(Xt)dWt − dKt, 0 ≤ t < ∞, a.s.,

(iv) for any continuous and Ft-adapted functions (α, β), where α = {αt,Ft; 0 ≤ t < ∞}
and β = {βt,Ft; 0 ≤ t < ∞}, satisfying

(αt, βt) ∈ Gr(A), ∀ t ∈ [0, +∞),

the measure

〈Xt − αt, dKt − βtdt〉 ≥ 0, a.s.

We collect here some facts about the maximal monotone operator which will be needed in

the sequel. For proofs we refer to [2].

Proposition 2.1 (1) For each x ∈ D(A), A(x) is a closed and convex subset of R. In

particular, there is a unique y ∈ A(x) such that |y| = inf{|z| : z ∈ Ax}. A◦(x) := y is called

the minimal section of A, and we have

x ∈ D(A) ⇔ |A◦(x)| < +∞.
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(2) The resolvent operator Jλ := (1 + λA)−1 is single-valued and Lipschitz continuous with

Lipschitz constant 1. Moreover, lim
λ↓0

Jλx = x for any x ∈ D(A).

(3) The Yosida approximation Aλ := λ−1(1 − Jλ) is monotone and Lipschitz continuous

with Lipschitz constant 1
λ
. Moreover, as λ ↓ 0,

Aλ(x) → A◦(x) and |Aλ(x)| ↑
{

|A◦(x)|, if x ∈ D(A),

+∞, if x 6∈ D(A).

The following important proposition is taken from [3].

Proposition 2.2 Let A be a multivalued maximal monotone operator, t 7→ (X(t), K(t))

and t 7→ (X ′(t), K ′(t)) be continuous functions with X(t), X ′(t) ∈ D(A), and t 7→ K(t), K ′(t)

be of finite variation. Let (α, β) be continuous functions which satisfy

(αt, βt) ∈ Gr(A), ∀ t ≥ 0.

If

〈Xt − αt, dKt − βtdt〉 ≥ 0, 〈X ′
t − αt, dK ′

t − βtdt〉 ≥ 0,

then

〈Xt − X ′
t, dKt − dK ′

t〉 ≥ 0.

The following example and three lemmas which will be needed are taken from [7].

Lemma 2.1 Let ρ : R
+ 7→ R

+ be a continuous and non-decreasing function. If g(s) and

q(s) are two strictly positive functions on R
+ such that

g(t) ≤ g(0) +

∫ t

0

q(s)ρ(g(s))ds, t ≥ 0,

then

g(t) ≤ f−1
(
f(g(0)) +

∫ t

0

q(s)ds
)
, (2.1)

where f(x) :=
∫ x

x0

1
ρ(y)dy is well-defined for some x0 > 0.

Example 2.1 For 0 < η < 1
e , define a concave function as

ρη(x) :=

{
x log x−1, x ≤ η,

η log η−1 + (log η−1 − 1)(x − η), x > η.

Choosing x0 = η, we have

f(x) = log
( log η

log x

)
, 0 < x < η,

f−1(x) = exp{log η · exp{−x}}, x < 0.

If g(0) < η, substituting these into (2.1), we obtain

g(t) ≤ (g(0))exp{−
R

t

0
q(s)ds}. (2.2)
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For 0 < η < 1
e , let ρ1,η, ρ2,η be two concave functions defined by

ρj,η(x) :=






x[log x−1]
1
j , x ≤ η,

(
[log η−1]

1
j − 1

j
[log η−1]

1
j
−1

)
x +

1

j
[log η−1]

1
j
−1η, x > η,

where j = 1, 2.

Lemma 2.2 (1) For j = 1, 2, ρj,η is decreasing in η, i.e., ρj,η1 ≤ ρj,η2 if 1 > η1 > η2.

(2) For any p ≥ 0 and η sufficiently small, we have

xpρ
j
j,η(x) ≤ 1

j + p
ρ1,ηj+p(xj+p), j = 1, 2.

Lemma 2.3 Let I1, I2 ⊂ R be two closed intervals and X(s, t), (s, t) ∈ I1×I2 a stochastically

continuous process. For n ∈ N, let

Xn(s, t) := X(s, t) ∧ n ∨ (−n).

If for every n there exist pn, Cn, αn > 0 such that

E

[
sup
s∈I1

|Xn(s, t) − Xn(s, t′)|pn

]
≤ Cn|t − t′|1+αn , ∀ t, t′ ∈ I2,

then X has a bicontinuous modification X̃. In particular, if p = pn > 1 and α = αn > 0 are

independent of n, then the paths I1 ∋ t → X̃( · , t) ∈ C(I1) are β-Hölder continuous for every

β < αp−1.

Theorem 2.1 (Tanaka Formula) If X is a continuous semimartingale, then for any real

number a there exists an increasing continuous process La
t (X), called the local time of X in a,

such that

|Xt − a| = |X0 − a| +
∫ t

0

sgn (Xs − a)dXs + La
t (X),

(Xt − a)+ = (Xt − a)+ +

∫ t

0

1(Xs>a)dXs +
1

2
La

t (X),

(Xt − a)− = (Xt − a)− −
∫ t

0

1(Xs≤a)dXs +
1

2
La

t (X).

In particular, |X − a|, (X − a)+ and (X − a)− are semimartingales.

3 Existence and Uniqueness

Assumption 3.1 σ and b are continuous and bounded and satisfy

( i ) there exists a strictly positive increasing continuous function ρ on R+, ρ(0) = 0 and∫
0+ ρ−1(u)du = ∞, such that

|σ(x) − σ(y)|2 ≤ ρ(|x − y|), ∀x, y ∈ R,

(ii) there exists a concave non-decreasing continuous function γ on R+, γ(0) = 0 and∫
0+ γ−1(u)du = ∞, such that

|b(x) − b(y)| ≤ γ(|x − y|), ∀x, y ∈ R.
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Lemma 3.1 (see [5]) If X is a continuous semimartingale such that for every t,

∫ t

0

d〈X〉s
ρ(Xs)

1(Xs>0) < ∞, a.s.,

then L0
t (X) = 0, a.s.

We now have

Proposition 3.1 Equation (1.1) has a unique solution under Assumption 3.1.

Proof (Uniqueness) Let X1 and X2 be two solutions for equation (1.1) on the same

probability space and with the same Brownian motion and initial value x. Then X1 and X2

are continuous semimartingales. By Theorem 2.1, we have

|X1
t − X2

t | = L0
t (X

1 − X2) +

∫ t

0

sgn (X1
s − X2

s )(σ(X1
s ) − σ(X2

s ))dWs

+

∫ t

0

sgn (X1
s − X2

s )(b(X1
s ) − b(X2

s ))ds −
∫ t

0

sgn (X1
s − X2

s )(dK1
s − dK2

s ).

Set X := X1 − X2. Then

∫ t

0

d〈X〉s
ρ(Xs)

1(Xs>0) =

∫ t

0

(σ(X1
s ) − σ(X2

s ))2

ρ(X1
s − X2

s )
1(X1

s >X2
s )ds ≤ t.

By Lemma 3.1,

L0
t (X

1 − X2) = 0.

By Proposition 2.2, ∫ t

0

sgn (X1
s − X2

s )(dK1
s − dK2

s ) ≥ 0.

Hence

E|X1
t − X2

t | ≤ E

[ ∫ t

0

|b(X1
s ) − b(X2

s )|ds
]
≤ E

[ ∫ t

0

γ(|X1
s − X2

s |)ds
]
≤

∫ t

0

γ(E|X1
s − X2

s |)ds.

Since γ(0) = 0 and
∫
0+ γ−1(u)du = ∞, the equation y′ = γ(y), y(0) = 0 has a unique

solution y ≡ 0. Let v(t) :=
∫ t

0
γ(E|X1

s − X2
s |)ds. The last inequality can be rewritten as

E|X1
t − X2

t | ≤ v(t). So v′(t) = γ(E|X1
t − X2

t |) ≤ γ(v(t)). By v(0) = 0 and the comparison

theorem, v(t) ≤ y(t) = 0. That is

E|X1
t − X2

t | ≡ 0, ∀ t ≥ 0.

(Existence) Consider the following equation

dXn
t = b(Xn

t )dt − An(Xn
t )dt + σ(Xn

t )dWt, Xn
0 = x. (3.1)

Under Assumption 3.1, equation (3.1) has a unique solution Xn
t on (Ω,F , {Ft}, P ). Since σ

and b are bounded, the rest proof of the existence is straightforward as [3].

By Yamada-Watanabe’s theorem, equation (1.1) admits a unique strong solution.
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4 Bicontinuous Modification of the Solution

In the sequel, Xx
t denotes the unique solution of equation (1.1) with initial value x and Cp

denotes a constant depending on p.

Assumption 4.1 Suppose that σ and b are bounded and satisfy

|σ(x) − σ(y)|2 ≤ ρ2
2,η(|x − y|) and |b(x) − b(y)| ≤ ρ1,η(|x − y|).

Lemma 4.1 Under Assumption 4.1, equation (1.1) has a unique solution Xx
t . Moreover,

x > y implies P (Xx
t ≥ X

y
t , 0 < t < ∞) = 1. (4.1)

Proof Obviously, σ and b satisfy Assumption 3.1, so there exists a unique solution Xx
t .

Let x > y. By [8], the solution of the following equation

{
dX(n)(t, x) = b(X(n)(t, x))dt − An(X(n)(t, x))dt + σ(X(n)(t, x))dWt,

X(n)(0, x) = x

has the property

P (X(n)(t, x) > X(n)(t, y), 0 < t < ∞) = 1, ∀n.

Since X(n)(t, x) → Xx
t as n → ∞, (4.1) holds.

Lemma 4.2 Under Assumption 4.1, for any p ≥ 2 and t ≥ 0, we have

E

[
sup

0≤s≤t

|Xx
s − Xy

s |p
]
≤ Cp|x − y|p·exp{−Cpt}. (4.2)

Proof Let Zs := Xx
s − Xy

s , x > y. By Lemma 4.1, Zs ≥ 0. Since

Zs = x − y +

∫ s

0

[b(Xx
u) − b(Xy

u)]du +

∫ s

0

[σ(Xx
u ) − σ(Xy

u)]dWu −
∫ s

0

[dKx
u − dKy

u],

applying Itô’s formula to Zp
s , we have

Zp
s = Z

p
0 + p

∫ s

0

Zp−1
u [b(Xx

u) − b(Xy
u)]du + p

∫ s

0

Zp−1
u [σ(Xx

u ) − σ(Xy
u)]dWu

− p

∫ s

0

Zp−1
u [dKx

u − dKy
u] +

1

2
p(p − 1)

∫ s

0

Zp−2
u |σ(Xx

u ) − σ(Xy
u)|2du.

By Zu ≥ 0 and Proposition 2.2,

〈Zp−1
u , dKx

u − dKy
u〉 ≥ 0.

Using Assumption 4.1, Burkholder-Davis-Gundy’s inequality and Young’s inequality, we get

E

[
sup

0≤s≤t

Zp
s

]
≤Z

p
0 + CpE

[ ∫ t

0

Zp−1
u ρ1,η(Zu)du

]
+ CpE

[ ∫ t

0

Zp−2
u ρ2

2,η(Zu)du
]

+ CpE

[
sup

0≤s≤t

∣∣∣
∫ s

0

Zp−1
u [σ(Xx

u ) − σ(Xy
u)]dWu

∣∣∣
]
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≤Z
p
0 + CpE

[ ∫ t

0

Zp−1
u ρ1,η(Zu)du

]
+ CpE

[ ∫ t

0

Zp−2
u ρ2

2,η(Zu)du
]

+ CpE

( ∫ t

0

Z2p−2
u |σ(Xx

u ) − σ(Xy
u)|2du

) 1
2

≤Z
p
0 + CpE

[ ∫ t

0

Zp−1
u ρ1,η(Zu)du

]
+ CpE

[ ∫ t

0

Zp−2
u ρ2

2,η(Zu)du
]

+ CpE

(
sup

0≤s≤t

Zp
s

∫ t

0

Zp−2
u ρ2

2,η(Zu)du
) 1

2

≤Z
p
0 + CpE

[ ∫ t

0

Zp−1
u ρ1,η(Zu)du

]
+ CpE

[ ∫ t

0

Zp−2
u ρ2

2,η(Zu)du
]

+
1

2
E

[
sup

0≤s≤t

Zp
s

]
+ CpE

[ ∫ t

0

Zp−2
u ρ2

2,η(Zu)du
]
.

By Lemma 2.2,

E

[
sup

0≤s≤t

Zp
s

]
≤ 2Z

p
0 + CpE

[ ∫ t

0

ρ1,ηp(Zp
u)du

]
≤ 2Z

p
0 + Cp

∫ t

0

ρ1,ηp

(
E

[
sup

0≤u≤s

Zp
u

])
ds.

Finally, by (2.2), we can get

E

[
sup

0≤s≤t

Zp
s

]
≤ CpZ

p·exp{−Cpt}
0 .

Since Xx
t is continuous with respect to t, by the above lemma we obtain

Theorem 4.1 Let p ≥ 2. For every t ∈ [0, log p
Cp

), the mapping x 7→ Xx
t has a β-Hölder

continuous modification for β < e−Cpt − 1
p
. Moreover, if T < log p

Cp
, then Xx

t has a bicontinuous

modification in (t, x) ∈ [0, T ]× D(A).

In order to get a bicontinuous modification of the solution on the whole space (t, x) ∈
R+ × D(A), we make the following assumption.

Assumption 4.2 Let η ∈ (0, e−1) and γ be a continuous function of the form

γ(x) = xg(x),

where g is a positive continuous function on R
+, bounded in [1,∞), such that

lim
x↓0

g(x)

log x
= 0.

Besides, σ and b are bounded and satisfy

|σ(x) − σ(y)|2 ≤ Cρ2
2,η(|x − y|),

|b(x) − b(y)| ≤ C1γ(|x − y|).

Theorem 4.2 Under Assumption 4.2, there exists a modification Xx
t such that for every

t > 0, x 7→ Xx
. ∈ C[0, t] is β-Hölder continuous for every β <

1−
√

1−exp{−C
2 t}

1+
√

1−exp{−C
2 t}

.
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Proof For ε ∈ (0, 1), we let

Tε := −2 log(1 − ε)

Cε
.

Then

lim
ε→1

Tε = ∞.

Set

ε′ := (1 − ε)
C

2C1
.

Take δε ∈ (0, 1
2e ) such that g(x) ≤ ε′ log x−1 for x ∈ (0, δε). Then there exists Cε > 0 such that

|b(x) − b(y)| ≤
{

ε′C1|x − y| log |x − y|−1, |x − y| < δε,

Cε|x − y|, |x − y| ≥ δε.
(4.3)

For every T < Tε, set

pT (t) := ε
(
1 − exp

{
− εC

2
(T − t)

})−1

, t ∈ [0, T ).

Then t 7→ pT (t) is increasing and

pT (0) > ε
(
1 − exp

{
− −εCTε

2

})−1

= 1.

Moreover, a direct calculus gives

p′T (t) =
C

2
pT (t)(pT (t) − ε) =

C

2
pT (t)(pT (t) − 1) + ε′C1pT (t). (4.4)

Let fn be a smooth function from R
+ to R

+ satisfying

fn(x) = x, x < n, fn(x) = n + 1, x > n + 1, f ′
n ≥ 0, f ′′

n ≤ 0. (4.5)

Set

Zt := Xx
t − X

y
t + ε0, 0 < ε0 <

1

2e
.

Again let x > y. Then we obtain Zt > 0 by Lemma 4.1. Applying Itô’s formula to fn(Zt)
pT (t),

we have

fn(Zt)
pT (t) = fn(Z0)

pT (0) + a martingale +

∫ t

0

p′T (s)fn(Zs)
pT (s) log fn(Zs)ds

+

∫ t

0

pT (s)fn(Zs)
pT (s)−1f ′

n(Zs)[b(X
x
s ) − b(Xy

s )]ds

+
1

2

∫ t

0

pT (s)fn(Zs)
pT (s)−1f ′′

n (Zs)|σ(Xx
s ) − σ(Xy

s )|2ds

+
1

2

∫ t

0

pT (s)(pT (s) − 1)fn(Zs)
pT (s)−2f ′

n(Zs)
2|σ(Xx

s ) − σ(Xy
s )|2ds

−
∫ t

0

pT (s)fn(Zs)
pT (s)−1f ′

n(Zs)[dKx
s − dKy

s ]

=: fn(Z0)
pT (0) + a martingale +

4∑

i=1

∫ t

0

ξi(s)ds − g(t).
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If |Xx
s − Xy

s | < δε, then 0 < Zs < 1
e and ξ3(s) = 0.

By (4.3) and Assumption 4.2, we have

|b(Xx
s ) − b(Xy

s )| ≤ −ε′C1|Xx
s − Xy

s | log |Xx
s − Xy

s | ≤ −ε′C1Zs log Zs,

|σ(Xx
s ) − σ(Xy

s )|2 ≤ −C|Xx
s − Xy

s |2 log |Xx
s − Xy

s | ≤ −CZ2
s log Zs.

So ξ1(s) + ξ2(s) + ξ4(s) ≤ 0 since (4.4).

If |Xx
s − Xy

s | ≥ δε, by (4.5), it is easy to see that there exist constants Cn,ε such that

4∑

i=1

ξi(s) ≤ Cn,εh(s)fn(Zs)
pT (s),

where

h(s) := pT (s)(pT (s) − 1) + pT (s) + p′T (s) > 0.

Hence

fn(Zt)
pT (t) ≤ fn(Z0)

pT (0) + a martingale + Cn,ε

∫ t

0

h(s)fn(Zs)
pT (s)ds

−
∫ t

0

pT (s)fn(Zs)
pT (s)−1f ′

n(Zs)[dKx
s − dKy

s ].

Taking expectation on both sides, we have

E[fn(Zt)
pT (t)] ≤ fn(Z0)

pT (0) + Cn,εE

[ ∫ t

0

h(s)fn(Zs)
pT (s)ds

]

− E

[ ∫ t

0

pT (s)fn(Zs)
pT (s)−1f ′

n(Zs)(dKx
s − dKy

s )
]
.

Obviously, h(s) ≤ h(t), pT (s) ≤ pT (t) and fn is bounded. Letting ε0 ↓ 0, by dominated

convergence theorem, and 〈Xx
s − Xy

s , dKx
s − dKy

s 〉 ≥ 0, pT (s) > 0, f ′
n ≥ 0, we obtain

E[fn(Xx
t − X

y
t )pT (t)] ≤ fn(Xx

0 − X
y
0 )pT (0) + Cn,εE

[ ∫ t

0

h(s)fn(Xx
s − Xy

s )pT (s)ds
]
.

Trivially by Gronwall’s inequality, we get

E[fn(Xx
t − X

y
t )pT (t)] ≤ fn(x − y)pT (0) exp

{
Cn,ε

∫ t

0

h(s)ds
}

, t ∈ [0, T ).

When n is sufficiently large,

E[fn(Xx
t − X

y
t )pT (t)] ≤ (x − y)pT (0) exp{Cn,ε,t}, t ∈ [0, T ), (4.6)

where

Cn,ε,t := Cn,ε

∫ t

0

h(s)ds.

Now we look for the T (t, ε) ∈ (t, Tε) such that

pT (t,ε)(0) − 1

pT (t,ε)(t)
= sup

t<T<Tε

pT (0) − 1

pT (t)
.
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We find that

T (t, ε) = − 2

εC
log

(
1 −

√
ε
(
1 − exp

{
− εCt

2

}) )
.

Fix t ∈ (0, Tε). For any s ∈ (0, t), let Ss := T (t, ε) − t + s. Then pT (t,ε)(t) = pSs
(s). Applying

Itô’s formula, we have

fn(Zs)
pT (t,ε)(t) = fn(Z0)

pT (t,ε)(t) +

∫ s

0

pT (t,ε)(t)fn(Zu)pT (t,ε)(t)−1f ′
n(Zu)[b(Xx

u) − b(Xy
u)]du

+
1

2

∫ s

0

pT (t,ε)(t)fn(Zu)pT (t,ε)(t)−1f ′′
n (Zu)|σ(Xx

u ) − σ(Xy
u)|2du

+
1

2

∫ s

0

pT (t,ε)(t)(pT (t,ε)(t) − 1)fn(Zu)pT (t,ε)(t)−2f ′
n(Zu)2|σ(Xx

u ) − σ(Xy
u)|2du

+

∫ s

0

pT (t,ε)(t)fn(Zu)pT (t,ε)(t)−1f ′
n(Zu)[σ(Xx

u ) − σ(Xy
u)]dWu

−
∫ s

0

pT (t,ε)(t)fn(Zu)pT (t,ε)(t)−1f ′
n(Zu)[dKx

u − dKy
u]

:= fn(Z0)
pT (t,ε)(t) +

3∑

i=1

∫ s

0

ηi(u)du +

∫ s

0

η4(u)dWu − m(t).

When x is sufficiently small, xpT (t,ε)(t) log x−1 < CαxpT (t,ε)+α(t) since pT (t,ε)+α(t) < pT (t,ε)(t)

for every α > 0.

If |Xx
s − Xy

s | < δε, then fn(Zu)pT (t,ε)(t) log fn(Zu)−1 < Cα,ε,tfn(Zu)pT (t,ε)+α(t). By (4.5),

3∑

i=1

∫ s

0

ηi(u)du ≤ Cα,ε,t

∫ s

0

fn(Zu)
pT (t,ε)+α(t)

du.

If |Xx
s − Xy

s | ≥ δε, there exist Cα,n,ε,t such that

3∑

i=1

∫ s

0

ηi(u)du ≤ Cα,n,ε,t

∫ s

0

fn(Zu)
pT (t,ε)+α(t)

du.

By Burkholder-Davie-Gundy’s inequality and Young’s inequality, we have

E

[
sup

0≤s≤t

fn(Zs)
pT (t,ε)(t)

]

≤ fn(Z0)
pT (t,ε)(t) + Cα,n,ε,tE

[ ∫ t

0

fn(Zu)pT (t,ε)+α(t)du
]

+ Cε,tE

[
sup

0≤s≤t

∣∣∣
∫ s

0

fn(Zu)pT (t,ε)(t)−1f ′
n(Zu)[σ(Xx

u ) − σ(Xy
u)]dWu

∣∣∣
]

− E

[
sup

0≤s≤t

∫ s

0

pT (t,ε)(t)fn(Zu)pT (t,ε)(t)−1f ′
n(Zu)(dKx

u − dKy
u)

]

≤ fn(Z0)
pT (t,ε)(t) + Cα,n,ε,tE

[ ∫ t

0

fn(Zu)pT (t,ε)+α(t)du
]

+ Cα,n,ε,tE

(
sup

0≤u≤t

fn(Zu)pT (t,ε)(t)

∫ t

0

fn(Zu)pT (t,ε)+α(t)du
) 1

2

− E

[
sup

0≤s≤t

∫ s

0

pT (t,ε)(t)fn(Zu)pT (t,ε)(t)−1f ′
n(Zu)(dKx

u − dKy
u)

]
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≤ fn(Z0)
pT (t,ε)(t) + Cα,n,ε,tE

[ ∫ t

0

fn(Zu)pT (t,ε)+α(t)du
]

+
1

2
E

[
sup

0≤u≤t

fn(Zu)pT (t,ε)(t)
]

+ Cα,n,ε,tE

[ ∫ t

0

fn(Zu)pT (t,ε)+α(t)du
]

− E

[
sup

0≤s≤t

∫ s

0

pT (t,ε)(t)fn(Zu)pT (t,ε)(t)−1f ′
n(Zu)(dKx

u − dKy
u)

]
.

So

E

[
sup

0≤s≤t

fn(Zs)
pT (t,ε)(t)

]
≤ 2fn(Z0)

pT (t,ε)(t) + Cα,n,ε,tE

[ ∫ t

0

fn(Zu)pT (t,ε)+α(t)du
]

− 2E

[
sup

0≤s≤t

∫ s

0

pT (t,ε)(t)fn(Zu)pT (t,ε)(t)−1f ′
n(Zu)(dKx

u − dKy
u)

]
.

Letting ε0 ↓ 0, by Proposition 2.2 and (4.6), we get

E

[
sup

0≤s≤t

fn(Xx
s − Xy

s )pT (t,ε)(t)
]
≤ 2fn(x − y)pT (t,ε)(t)

+ Cα,n,ε,tE

[ ∫ t

0

fn(Xx
u − Xy

u)pT (t,ε)+α(t)du
]

= 2fn(x − y)pT (t,ε)(t) + Cα,n,ε,tE

[ ∫ t

0

fn(Xx
u − Xy

u)pSu+α
(u)du

]

≤ 2fn(x − y)pT (t,ε)(t) + Cα,n,ε,t

∫ t

0

fn(x − y)pSu+α(0)du

= 2fn(x − y)pT (t,ε)(t) + Cα,n,ε,t

∫ t

0

fn(x − y)pT (t,ε)+α(t−u)du

≤ Cα,n,ε,t|x − y|pT(t,ε)+α(0).

Consequently,

E

[
sup

0≤s≤t

|Xn(s, x) − Xn(s, y)|pT (t,ε)(t)
]
≤ Cα,n,ε,t|x − y|pT (t,ε)+α(0),

where

Xn(s, x) := (−n) ∨ Xx
s ∧ n.

Since

lim
α→0

pT (t,ε)+α(0) = pT (t,ε)(0),

by [9, Theorem 2.1], Xn has a modification such that for every β ∈ (0, (pT (t,ε)(0)−1)p−1
T (t,ε)(t)),

x 7→ Xn( · , x) ∈ C[0, t] are β-Hölder continuous.

Furthermore, letting ε → 1, we have lim
ε→1

pT (t,ε)(0) = pT (t,1)(0). Set

βt := (pT (t,1)(0) − 1)p−1
T (t,1)(t) =

1 −
√

1 − exp{−C
2 t}

1 +
√

1 − exp{−C
2 t}

.

By Lemma 2.3, x 7→ Xx
. ∈ C[0, t] is β-Hölder continuous for β < βt.



332 S. Y. Xu

References

[1] Aubin, J. P. and Cellina, A., Differential Inclusions, Grund. Math. Wiss., 264, Springer-Verlag, Berlin,
1984.
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[4] Lamarque, C.-H., Bernardin, F. and Bastien, J., Study of a rheological model with a friction term and a
cubic team: deterministic and stochastic cases, Eur. J. Mech. A Solids, 24(4), 2004, 572–592.
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