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1 Introduction

Let f be a smooth function on an open domain Ω ⊂ R
n. If f satisfies the minimal surface

equation, it defines a minimal hypersurface M in R
n+1. If f is an entire solution to the

equation, f must be an affine linear function for n ≤ 7 whose graph is a hyperplane. Those

are the classical Bernstein theorem (see [2]) and its higher dimensional generalization which

was finally proved by Simons [20]. Counterexamples to the theorems for n ≥ 8 were given by

Bombeiri-De Gorge-Guisti [1].

Heinze [10] considered the minimal graph defined over a disc DR ⊂ R
2 and gave curvature

estimates. The classical Bernstein theorem can be obtained by letting R → +∞ in his curvature

estimates.

For general minimal surfaces in Euclidean space, so-called parametric case, the Bernstein

type results are closely related to the value distribution of the Gauss image. The question of

the value of Gauss map for complete minimal surfaces in R
3 is settled in [7, 17, 24].

A minimal graph is area-minimizing. In particular, it is stable in the sense that its second

variation of the volume is non-negative on any compact subset of M . Any stable minimal

surface in R
3 is a plane (see [4, 6]).

For stable minimal hypersurfaces, Schoen-Simon-Yau gave curvature estimates, which not

only gave us a direct proof for Bernstein type theorems for n ≤ 5 dimensional minimal graphs,

but also gave us a new method to obtain curvature estimates.

For any n ≥ 2, there is a weak version of the Bernstein type theorem. It was Moser [15]

who proved that the entire solution f to the minimal surface equation is affine linear, provided
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|∇f | is uniformly bounded. There is no dimension limitation. By a geometric approach, Ecker-

Huisken [9] obtained the curvature estimates. As a conclusion, Moser’s result has been improved

for the controlled growth of |∇f |.
For area-minimizing hypersurfaces with vanishing first Betti number, Solomom [22] was able

to give curvature estimates under the hypotheses of Gauss map.

Higher codimensional Bernstein problem becomes more complicated. There are counter-

examples given by Lawson-Osserman [13]. On the other hand, Hildebrandt-Jost-Widman [11]

generalized Moser’s result to higher codimension as follows.

Theorem 1.1 Let zα = fα(x), α = 1, · · · , m, x = (x1, · · · , xn) ∈ R
n, be the C2 solution

to the system of minimal surface equations. Suppose that there exists β, where

β < cos−p
( π

2
√

pK

)
, K =

{
1, if p = 1,

2, if p ≥ 2,
p = min(m, n),

such that for any x ∈ R
n,

∆f (x) = {det(δij + fs
xi(x)fs

xj (x))} 1
2 ≤ β.

Then f1, · · · , fm are affine linear functions on R
n, whose graph is an affine n-plane in R

m+n.

The geometric meaning of the condition in the above theorem is that the image under the

Gauss map lies in a closed subset of an open geodesic ball of the radius
√

2
4 π. Later in a

joint work of the first author of this paper with Jost [12], we found larger geodesic convex set

BJX(P0), where P0 denotes a fixed n-plane, and then improved the above theorem. Our bound

of slope is 2, larger than cos−p( π
2
√

2p
). It should be noted that although BJX(P0) ⊃ B√

2

4
π
(P0),

they have some common boundary points.

Recently, the first author of this paper and his collaborators studied complete minimal

submanifolds with flat normal bundle and positive w-function (see [21, 27]). In this special

situation, the Schoen-Simon-Yau type curvature estimates and the Ecker-Huisken type curva-

ture estimates can be carried out. Then the corresponding Bernstein type theorems follow

immediately.

In this paper, we study a complete minimal submanifold M in R
m+n with the codimension

m ≥ 2. We have a Bochner type formula for the squared norm of the second fundamental

form B. As in the codimension one case, we need a Kato type inequality for |∇B|2 in terms of

|∇|B||2. We derive it for any codimension in Section 2.

For the curved normal bundle, the curvature estimates would be more delicate. We can

define Gauss map from M to the Grassmannian manifold Gn,m. From the counterexamples

of Lawson-Osserman, some additional conditions are needed to study higher codimensional

Bernstein problem. The adequate conditions would confine the image of the Gauss map, as in

the previous work of Osserman-Xavier-Fujimoto in dimension 2 and in the work of Solomon

in higher dimension. Now, in general dimension and codimension, we assume that the image

under the Gauss map lies in an open geodesic ball of radius
√

2
4 π in Gn,m which is the largest

convex geodesic ball in Grassmannian. We find two auxiliary functions h1 and h2 on M via

Gauss map. Their precise definitions and their properties can be found in Section 3. This

technique can also be used in mean curvature flow in higher codimension (see [28]).
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(3.4) shows that h1 can be viewed as a generalized support function. With the aid of the

function h1, we can derive a “strong stability inequality” which enables us to carry out the

curvature estimates of Schoen-Simon-Yau type.

Using the function h2, we can find subharmonic functions on M and carry out the curvature

estimates of Ecker-Huisken type in terms of h2.

By those curvature estimates, we can obtain the following Bernstein type theorems.

Theorem 1.2 Let M be a complete minimal n-submanifold in R
n+m (n ≤ 6). If the Gauss

image of M is contained in an open geodesic ball of Gn,m centered at P0 and of radius
√

2
4 π,

then M has to be an affine linear subspace.

Theorem 1.3 Let M be a complete minimal n-submanifold in R
n+m. If the Gauss image

of M is contained in an open geodesic ball of Gn,m centered at P0 and of radius
√

2
4 π, and(√

2
4 π − ρ ◦ γ

)−1
has growth

(√
2

4
π − ρ ◦ γ

)−1

= o(R), (1.1)

where ρ denotes the distance on Gn,m from P0 and R is the Euclidean distance from any point

in M , then M has to be an affine linear subspace.

Theorems 1.2 and 1.3 are closely related to Theorem 1.1. Our results are higher codimen-

sional generalizations of Schoen-Simon-Yau’s results and Ecker-Huisken’s results, and improve

Hildebrandt-Jost-Widman’s theorem.

It is worth to note that our method is also suitable for codimension one case. We only need

to modify the auxiliary functions h1 and h2 in order to recover the known results for minimal

hypersurfaces.

2 Preliminaries

Let M → M be an isometric immersion with the second fundamental form B, which can

be viewed as a cross-section of the vector bundle Hom(⊙2TM, NM) over M , where TM and

NM denote the tangent bundle and the normal bundle along M , respectively. A connection on

Hom(⊙2TM, NM) can be induced from those of TM and NM naturally.

For ν ∈ Γ(NM), the shape operator Aν : TM → TM satisfies

〈BXY , ν〉 = 〈Aν(X), Y 〉.

We define the mean curvature H to be the trace of the second fundamental form. It is a

normal vector field on M in M .

The second fundamental form, curvature tensor of the submanifold, curvature tensor of

the normal bundle and that of the ambient manifold satisfy the Gauss equations, the Codazzi

equations and the Ricci equations as follows:

〈RXY Z, W 〉 = 〈RXY Z, W 〉 − 〈BXW , BY Z〉 + 〈BXZ , BY W 〉,
(∇XB)Y Z − (∇Y B)XZ = −(RXY Z)N ,

〈RXY µ, ν〉 = 〈RXY µ, ν〉 + 〈BXei
, µ〉〈BY ei

, ν〉 − 〈BXei
, ν〉〈BY ei

, µ〉,
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where {ei} is a local orthonormal frame field of M ; X , Y and Z are tangent vector fields; µ, ν

are normal vector fields in M . Here and in the sequel, we use the summation convention and

agree the range of indices,

1 ≤ i, j, s, t ≤ n, 1 ≤ α, β, γ ≤ m, 1 ≤ a, b, c ≤ m + n.

There is the trace-Laplace operator ∇2 acting on any cross-section of a Riemannian vector

bundle E over M .

Now, we consider a minimal submanifold M of dimension n in Euclidean (m + n)-space

R
m+n with m ≥ 2. We have (see [20])

∇2B = −B̃ − B. (2.1)

We recall the following notations:

B̃ , B ◦ Bt ◦ B,

where Bt is the conjugate map of B;

BXY ,

m∑

α=1

(BAναAνα (X)Y + BXAναAνα (Y ) − 2BAνα(X)Aνα(Y )),

where να are basis vectors of normal space. It is obvious that BXY is symmetric in X and Y ,

which is a cross-section of the bundle Hom(⊙2TM, NM). Simons [20] also gave an estimate

〈B̃ + B, B〉 ≤
(
2 − 1

m

)
|B|4.

It is optimal for the codimension m = 1.

In the case when m ≥ 2, there is a refined estimate (see [5, 14])

〈B̃ + B, B〉 ≤ 3

2
|B|4.

Substituting it into (2.1) gives

〈∇2B, B〉 ≥ −3

2
|B|4.

It follows that

∆|B|2 ≥ −3|B|4 + 2|∇B|2. (2.2)

We need a Kato-type inequality in order to use the formula (2.2). Namely, we would estimate

|∇B|2 in terms of |∇|B||2. Schoen-Simon-Yau [19] did such an estimate for codimension m = 1.

For any m with flat normal bundle, their technique is also applicable (see [27]). The following

lemma is a generalized version of their estimate for any codimension m.

Lemma 2.1

|∇B|2 ≥
(
1 +

2

mn

)
|∇|B||2. (2.3)

Proof It is sufficient for us to prove the inequality at the points where |B|2 6= 0. Choose a

local orthonormal tangent frame field {e1, · · · , en} and a local orthonormal normal frame field

{ν1, · · · , νm} of M near the considered point x, such that

∇ei
ej(x) = 0, ∇ei

να(x) = 0. (2.4)
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Denote the shape operator Aα = Aνα . Then obviously |B|2 =
∑
α

|Aα|2 and

∇|B|2 =
∑

α

∇|Aα|2,

|∇|B|2|2 =
∑

α,β

∇|Aα|2 · ∇|Aβ |2 ≤ 1

2

∑

α,β

(|∇|Aα|2|2 + |∇|Aβ |2|2) ≤ m
∑

α

|∇|Aα|2|2.

Therefore

|∇|B||2 =
|∇|B|2|2

4|B|2 ≤
m

∑
α

|∇|Aα|2|2

4
∑
α

|Aα|2 . (2.5)

Since |B|2 6= 0, there exist γ, k, l such that hγkl 6= 0, where hαij = 〈Beiej
, να〉 for arbitrary

α, i, j, then

(h1kl, · · · , hmkl) ∈ R
m − {0}.

Obviously, there exists an m × m orthogonal matrix U and z = (z1, · · · , zm) ∈ R
m, such that

zα 6= 0 for every 1 ≤ α ≤ m

and

zα = Uβ
αhβkl.

Now we define ν̃α = Uβ
ανβ. Then {ν̃1, · · · , ν̃m} is also a local orthogonal normal frame field

satisfying (2.4), and moreover,

h̃αkl = 〈Bekel
, ν̃α〉 = Uβ

αhβkl = zα 6= 0.

Define the shape operator Ãα corresponding to ν̃α. Then

|Ãα|2 =
∑

i,j

h̃2
αij ≥ h̃2

αkl > 0.

Hence we can assume |Aα|2 > 0 for arbitrary α without loss of generality.

Let 1 ≤ γ ≤ m be such that

|∇|Aγ |2|2
|Aγ |2 = max

α

{ |∇|Aα|2|2
|Aα|2

}
< +∞.

Then from (2.5),

|∇|B||2 ≤ m|∇|Aγ |2|2
4|Aγ |2 . (2.6)

Since |Aγ |2 and ∇|Aγ |2 are independent of the choice of {e1, · · · , en}, without loss of generality

we can assume hγij = 0 whenever i 6= j. Then

∇|Aγ |2 = 2
∑

k

∑

i,j

hγijhγijkek = 2
∑

k

∑

i

hγiihγiikek,

|∇|Aγ |2|2 = 4
∑

k

(∑

i

hγiihγiik

)2

≤ 4
∑

k

(∑

i

h2
γii

)(∑

i

h2
γiik

)

= 4
(∑

i

h2
γii

)( ∑

i,k

h2
γiik

)
= 4|Aγ |2

∑

i,k

h2
γiik
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and

|∇|B||2 ≤ m|∇|Aγ |2|2
4|Aγ |2 ≤ m

∑

i,k

h2
γiik

= m
∑

i6=k

h2
γiik + m

∑

i

h2
γiii

= m
∑

i6=k

h2
γiki + m

∑

i

( ∑

j 6=i

hγjji

)2

≤ m
∑

i6=k

h2
γiki + (n − 1)m

∑

i6=j

h2
γjji

= nm
∑

i6=k

h2
γiki, (2.7)

where we used the Codazzi equations and the vanishing mean curvature condition H = 0.

Please note that hαijk = 〈(∇ek
B)ei,ej

, να〉 for arbitrary α, i, j, k.

On the other hand, a direct calculation shows

|∇|B|2|2 =
∣∣∣2

∑

k

∑

α,i,j

hαijhαijkek

∣∣∣
2

= 4
∑

α,β,i,j,s,t,k

hαijhαijkhβsthβstk,

|∇B|2 − |∇|B||2 = |∇B|2 − |∇|B|2|2
4|B|2

=
∑

α,i,j,k

h2
αijk −

∑
α,β,i,j,s,t,k

hαijhαijkhβsthβstk

∑
β,s,t

h2
βst

=

∑
α,i,j,s,t,k

(hαijkhβst − hβstkhαij)
2

2|B|2

≥

∑
β,i6=j,s,t,k

h2
γijkh2

βst +
∑

α,s6=t,i,j,k

h2
γstkh2

αij

2|B|2

=
∑

i6=j,k

h2
γijk ≥

∑

i6=k

(h2
γiki + h2

γikk)

= 2
∑

i6=k

h2
γiki. (2.8)

In conjunction with (2.7), we finally arrive at (2.3).

Hence it follows from (2.2) and (2.3) that

∆|B|2 ≥ 2
(
1 +

2

mn

)
|∇|B||2 − 3|B|4. (2.9)

3 Auxiliary Functions via Gauss Maps

Let R
m+n be an (m + n)-dimensional Euclidean space. All oriented n-subspaces constitute

the Grassmannian manifold Gn,m, which is an irreducible symmetric space of compact type.

The canonical Riemannian metric on Gn,m can be expressed in the following way.
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Let {ei, en+α} be a local orthonormal frame field in R
m+n. Let {ωi, ωn+α} be the dual

frame field so that the Euclidean metric is

g =
∑

i

ω2
i +

∑

α

ω2
n+α.

The Levi-Civita connection forms ωab of R
m+n are uniquely determined by the equations

dωa = ωab ∧ ωb, ωab + ωba = 0.

Let P ∈ Gn,m be any point which is spanned by {e1, · · · , en}. Then the canonical Riemannian

metric on Gn,m can be written as

ds2 =
∑

i,α

ω2
n+α i. (3.1)

The sectional curvature of the above canonical metric varies in the interval [0, 2] in the case of

min{n, m} ≥ 2. By the standard Hessian comparison theorem, we have

Hess(ρ) ≥
√

2 cot(
√

2 ρ)(g − dρ ⊗ dρ), (3.2)

where ρ is the distance function from a fixed point in Gn,m and g is the metric tensor on Gn,m.

Let 0 be the origin of R
m+n, SO(m + n) be the Lie group consisting of all the orthonormal

frames (0; ei, en+α), P = {(x; e1, · · · , en) : x ∈ M, ei ∈ TxM} be the principal bundle of

orthonormal tangent frames over M , and Q = {(x; en+1, · · · , en+m) : x ∈ M, en+α ∈ NxM}
be the principal bundle of orthonormal normal frames over M . Then π : P ⊕ Q → M is the

projection with fiber SO(m) × SO(n) and i : P ⊕ Q →֒ SO(m + n) is the natural inclusion.

The Gauss map γ : M → Gn,m is defined by

γ(x) = TxM ∈ Gn,m

via the parallel translation in R
m+n for any x ∈ M . Thus, the following commutative diagram

holds:
P ⊕ Q

i−−−−→ SO(m + n)

π

y
yπ

M
γ−−−−→ Gn,m

From the above diagram we know the energy density of the Gauss map (see [25, Chapter 3,

§3.1])

e(γ) =
1

2
〈γ∗ei, γ∗ei〉 =

1

2
|B|2.

Ruh-Vilms proved that the mean curvature vector of M is parallel if and only if its Gauss map

is a harmonic map (see [18]).

We consider smooth functions on an open geodesic ball B√

2

4
π
(P0) ⊂ Gn,m of radius

√
2

4 π

and centered at P0. Those are useful for our curvature estimates later. Let

u = cos(
√

2 ρ),

where ρ is the distance function from P0 in Gn,m. We have

u′ = −
√

2 sin(
√

2 ρ), u′′ = −2 cos(
√

2 ρ).
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Then

Hess(u) = u′Hess(ρ) + u′′dρ ⊗ dρ

≤ −2 cos(
√

2 ρ)(g − dρ ⊗ dρ) − 2 cos(
√

2 ρ)dρ ⊗ dρ = −2ug. (3.3)

The composition function h1 = u ◦ γ of u with the Gauss map γ defines a function on M .

Using the composition formula, we have

∆h1 = Hess(u)(γ∗ei, γ∗ei) + du(τ(γ)) ≤ −2|B|2h1, (3.4)

where τ(γ) is the tension field of the Gauss map, which is zero, provided M has parallel mean

curvature by the Ruh-Vilms theorem mentioned above.

Let

h = sec2(
√

2 ρ),

where ρ is the distance function from P0 in Gn,m. We have

h′ = 2
√

2 sec2(
√

2 ρ) tan(
√

2 ρ),

h′′ = 12 sec2(
√

2 ρ) tan2(
√

2 ρ) + 4 sec2(
√

2 ρ).

Hence

Hess(h) = h′Hess(ρ) + h′′dρ ⊗ dρ

≥ 4 sec2(
√

2 ρ)(g − dρ ⊗ dρ) + (12 sec2(
√

2 ρ) tan2(
√

2 ρ) + 4 sec2(
√

2 ρ))dρ ⊗ dρ

= 4hg +
3

2
h−1dh ⊗ dh.

The composition function h2 = h ◦ γ of h with the Gauss map γ defines a function on M .

Using the composition formula, we have

∆h2 = Hess(h)(γ∗ei, γ∗ei) + dh(τ(γ)) ≥ 4h2|B|2 +
3

2
h−1

2 |∇h2|2, (3.5)

where τ(γ) is the tension field of the Gauss map, which is zero in our consideration.

With the aid of h1, we immediately have the following lemma.

Lemma 3.1 Let M be an n-dimensional minimal submanifold of R
n+m (M need not be

complete). If the Gauss image of M is contained in an open geodesic ball of radius
√

2
4 π in

Gn,m, then we have ∫

M

|∇φ|2 ∗ 1 ≥ 2

∫

M

|B|2φ2 ∗ 1 (3.6)

for any function φ with compact support D ⊂ M .

Proof Let

Lφ = −∆φ − 2|B|2φ.

Its first eigenvalue with the Dirichlet boundary condition in D is λ1 and the corresponding

eigenfunction is v. Without loss of generality, we assume that v achieves the positive maximum.

Consider a C2 function

f =
v

h1
.
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Since f |∂D = 0, it achieves the positive maximum at a point x ∈ D. Therefore, at x,

∇f = 0, ∆f ≤ 0.

It follows that

∆v = ∆(fh1) = ∆f · h1 + f∆h1 + 2∇f · ∇h1 ≤ f∆h1 =
v∆h1

h1
.

Namely, at x,

∆v

v
≤ ∆h1

h1
,

∆v + 2|B|2v
v

≤ ∆h1 + 2|B|2h1

h1
≤ 0. (3.7)

On the other hand,
∆v + 2|B|2v

v
= −λ1. (3.8)

(3.7) and (3.8) implies λ1 ≥ 0. Hence we have

0 ≤ λ1 = inf

∫
D

φLφ ∗ 1∫
D

φ2 ∗ 1
≤

∫
D

φLφ ∗ 1∫
D

φ2 ∗ 1
,

which shows that (3.6) holds true.

Remark 3.1 For a stable minimal hypersurface there is the stability inequality, which is

one of the main ingredients for Schoen-Simon-Yau’s curvature estimates for stable minimal

hypersurfaces. For minimal submanifolds with the Gauss image restriction, we have stronger

inequality as shown in (3.6).

4 Curvature Estimates of Schoen-Simon-Yau Type

Replacing φ by |B|1+qφ in (3.6) gives
∫

M

|B|4+2qφ2 ∗ 1 ≤ 1

2

∫

M

|∇(|B|1+qφ)|2 ∗ 1

=
1

2
(1 + q)2

∫

M

|B|2q|∇|B||2φ2 ∗ 1 +
1

2

∫

M

|B|2+2q|∇φ|2 ∗ 1

+ (1 + q)

∫

M

|B|1+2q∇|B| · φ∇φ ∗ 1. (4.1)

From (2.9), we can derive
2

mn
|∇|B||2 ≤ |B|∆|B| + 3

2
|B|4. (4.2)

Multiplying both sides of (4.2) by |B|2qφ2 and integrating by parts, we have

2

mn

∫

M

|B|2q|∇|B||2φ2 ∗ 1 ≤
∫

M

|B|1+2q∆|B|φ2 ∗ 1 +
3

2

∫

M

|B|4+2qφ2 ∗ 1

= −
∫

M

∇|B| · ∇(|B|1+2qφ2) ∗ 1 +
3

2

∫

M

|B|4+2qφ2 ∗ 1

= − (1 + 2q)

∫

M

|B|2q|∇|B||2φ2 ∗ 1

− 2

∫

M

|B|1+2q∇|B| · φ∇φ ∗ 1 +
3

2

∫

M

|B|4+2qφ2 ∗ 1. (4.3)
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Multiplying both sides of (4.1) by 3
2 and then adding up both sides of it and (4.3), we have

( 2

mn
+ 1 + 2q − 3

4
(1 + q)2

) ∫

M

|B|2q|∇|B||2φ2 ∗ 1

≤ 3

4

∫

M

|B|2+2q|∇φ|2 ∗ 1 +
(3

2
(1 + q) − 2

)∫

M

|B|1+2q∇|B| · φ∇φ ∗ 1. (4.4)

By using Young’s inequality, we have

(3

2
(1+q)−2

)∫

M

|B|1+2q∇|B| ·φ∇φ∗1 ≤ ε

∫

M

|B|2q|∇|B||2φ2∗1+C1(ε, q)

∫

M

|B|2+2q|∇φ|2∗1.

Then (4.4) becomes

( 2

mn
+ 1 + 2q − 3

4
(1 + q)2 − ε

)∫

M

|B|2q |∇|B||2φ2 ∗ 1 ≤ C2(ε, q)

∫

M

|B|2+2q|∇φ|2 ∗ 1. (4.5)

When

q ∈
[
0,

1

3
+

2

3

√
1 +

6

mn

)
, (4.6)

we have
2

mn
+ 1 + 2q − 3

4
(1 + q)2 > 0.

Then we can choose ε sufficiently small, such that

∫

M

|B|2q|∇|B||2φ2 ∗ 1 ≤ C3

∫

M

|B|2+2q|∇φ|2 ∗ 1, (4.7)

where C3 only depends on n, m and q.

Using Young’s inequality again yields

|B|1+2q∇|B| · φ∇φ ≤ 1

2
(|B|2q |∇|B||2φ2 + |B|2+2q|∇φ|2). (4.8)

Substituting (4.7) and (4.8) into (4.1) gives

∫

M

|B|4+2qφ2 ∗ 1 ≤ C4(n, m, q)

∫

M

|B|2+2q|∇φ|2 ∗ 1. (4.9)

Replacing φ by φ2+q in (4.9) gives

∫

M

|B|4+2qφ4+2q ∗ 1 ≤ C4(2 + q)2
∫

M

|B|2+2qφ2+2q|∇φ|2 ∗ 1.

By Hölder’s inequality, we have

∫

M

|B|2+2qφ2+2q |∇φ|2 ∗ 1 ≤
( ∫

M

|B|4+2qφ4+2q ∗ 1
) 1+q

2+q
( ∫

M

|∇φ|4+2q ∗ 1
) 1

2+q

.

Therefore ∫

M

|B|4+2qφ4+2q ∗ 1 ≤ C

∫

M

|∇φ|4+2q ∗ 1, (4.10)

where C is a constant only depending on n, m and q.
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Replacing φ by φ1+q in (4.9) gives

∫

M

|B|4+2qφ2+2q ∗ 1 ≤ C4(1 + q)2
∫

M

|B|2+2qφ2q|∇φ|2 ∗ 1.

By Hölder’s inequality, we have

∫

M

|B|2+2qφ2q|∇φ|2 ∗ 1 ≤
( ∫

M

|B|4+2qφ2+2q ∗ 1
) q

1+q
(∫

M

|B|2|∇φ|2+2q ∗ 1
) 1

1+q

.

Therefore ∫

M

|B|4+2qφ2+2q ∗ 1 ≤ C′
∫

M

|B|2|∇φ|2+2q ∗ 1, (4.11)

where C′ is a constant only depending on n, m and q.

Let r be a function on M with |∇r| ≤ 1. For any R ∈ [0, R0], where R0 = sup
M

r, suppose

that

MR = {x ∈ M, r ≤ R}

is compact.

(4.10) enables us to prove the following results.

Theorem 4.1 Let M be an n-dimensional minimal submanifolds of R
n+m. If the Gauss

image of MR is contained in an open geodesic ball of radius
√

2
4 π in Gn,m, then we have the

Lp-estimate

‖|B|‖Lp(MθR) ≤ C(n, m, p)(1 − θ)−1R−1Vol(MR)
1
p (4.12)

for arbitrary θ ∈ (0, 1) and

p ∈
[
4, 4 +

2

3
+

4

3

√
1 +

6

mn

)
.

Proof Take φ ∈ C∞
c (MR) to be the standard cut-off function such that φ ≡ 1 in MθR and

|∇φ| ≤ C(1 − θ)−1R−1. Then (4.10) yields

∫

MθR

|B|p ∗ 1 ≤ C(1 − θ)−pR−pVol(MR),

where p = 4 + 2q. Thus the conclusion immediately follows from (4.10).

5 Curvature Estimates of Ecker-Huisken Type

From (2.9) and (3.5), we compute

∆(|B|2ph
q
2) =∆|B|2p · hq

2 + |B|2p∆h
q
2 + 2∇|B|2p · ∇h

q
2

=(p|B|2p−2∆|B|2 + p(p − 1)|B|2p−4|∇|B|2|2)hq
2

+ |B|2p(qhq−1
2 ∆h2 + q(q − 1)hq−2

2 |∇h2|2) + 4pq|B|2p−1∇|B| · hq−1
2 ∇h2

≥ (4q − 3p)|B|2p+2h
q
2 + 2p

(
2p − 1 +

2

mn

)
|B|2p−2|∇|B||2hq

2

+ q
(
q +

1

2

)
|B|2ph

q−2
2 |∇h2|2 + 4pq|B|2p−1∇|B| · hq−1

2 ∇h2.
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By Young’s inequality, when 2p
(
2p− 1 + 2

mn

)
· q

(
q + 1

2

)
≥ (2pq)2, i.e.,

p ≥ 1

2
− 1

mn
+

(
1 − 2

mn

)
q, (5.1)

the inequality

∆(|B|2ph
q
2) ≥ (4q − 3p)|B|2p+2h

q
2 (5.2)

holds. Especially,

∆(|B|p−1h
p
2

2 ) ≥ 3

2
|B|p+1h

p
2

2 (5.3)

whenever

p ≥ mn − 1. (5.4)

Let η be a smooth function with compact support. Integrating by parts in conjunction with

Young’s inequality leads to
∫

M

|B|2ph
p
2η

2p ∗ 1 ≤ 2

3

∫

M

|B|p−1h
p
2

2 η2p∆(|B|p−1h
p
2

2 ) ∗ 1

= − 2

3

∫

M

∇(|B|p−1h
p
2

2 η2p) · ∇(|B|p−1h
p
2

2 ) ∗ 1

= − 2

3

∫

M

|∇(|B|p−1h
p
2

2 )|2η2p ∗ 1

− 2

3

∫

M

|B|p−1h
p
2

2 · 2pη2p−1∇η · ∇(|B|p−1h
p
2

2 ) ∗ 1

≤ − 2

3

∫

M

|∇(|B|p−1h
p
2

2 )|2η2p ∗ 1 +
2

3

∫

M

|∇(|B|p−1h
p
2

2 )|2η2p ∗ 1

+
2

3

∫

M

p2|B|2p−2h
p
2η

2p−2|∇η|2 ∗ 1

=
2

3
p2

∫

M

|B|2p−2h
p
2η

2p−2|∇η|2 ∗ 1. (5.5)

By Hölder’s inequality, we have
∫

M

|B|2p−2h
p
2η

2p−2|∇η|2 ∗ 1 =

∫

M

|B|2p−2h
p−1
2 η2p−2 · h2|∇η|2 ∗ 1

≤
(∫

M

|B|2ph
p
2η

2p ∗ 1
) p−1

p
(∫

M

h
p
2|∇η|2p ∗ 1

) 1
p

. (5.6)

By (5.5) and (5.6), we finally arrive at

( ∫

M

|B|2ph
p
2η

2p ∗ 1
) 1

p ≤ 2

3
p2

( ∫

M

h
p
2|∇η|2p ∗ 1

) 1
p

. (5.7)

Take η ∈ C∞
c (MR) to be the standard cut-off function such that η ≡ 1 in MθR and |∇η| ≤

C(1 − θ)−1R−1. Then, from (5.7), we have the following estimate.

Theorem 5.1 Let M be an n-dimensional minimal submanifolds of R
n+m. If the Gauss

image of MR is contained in an open geodesic ball of radius
√

2
4 π in Gn,m, then there exists

C1 = C1(n, m), such that

‖|B|2h2‖Lp(MθR) ≤ C2(p)(1 − θ)−2R−2‖h2‖Lp(MR) (5.8)

whenever p ≥ C1 and θ ∈ (0, 1).
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Furthermore, the mean value inequality for any subharmonic function on minimal subman-

ifolds in R
m+n (see [3, 16]) can be used to yield an estimate of the upper bound of |B|2.

Let BR(x) ⊂ R
m+n be a ball of radius R and centered at x ∈ M . Its restriction on M is

denoted by

DR(x) = BR(x) ∩ M.

Theorem 5.2 Let x ∈ M , R > 0 such that the image of DR(x) under the Gauss map lies

in an open geodesic ball of radius
√

2
4 π in Gn,m. Then there exists C1 = C1(n, m), such that

|B|2p(x) ≤ C(n, p)R−(n+2p)
(

sup
DR(x)

h2

)p

Vol(DR(x)) (5.9)

for arbitrary p ≥ C1.

Proof Choose q = p ≥ mn − 1 which satisfies (5.1). The inequality (5.2) means that

|B|2ph
p
2 is a subharmonic function on the minimal submanifold M . By Theorem 5.1 and the

mean value inequality, we have

|B|2ph
p
2(x) ≤ C(n)

(R
2 )n

∫

D R
2

(x)

|B|2ph
p
2 ∗ 1

=
C(n)

(R
2 )n

‖|B|2h2‖p

Lp(D R
2

(x))

≤ C(n)C2(p)p

(R
2 )n+2p

‖h2‖p

Lp(DR(x))

≤ C(n)C2(p)p

(R
2 )n+2p

(
sup

DR(x)

h2

)p

Vol(DR(x)), (5.10)

whenever p ≥ C1(n, m).

6 Geometric Conclusions

Let P0 ∈ Gn,m be a fixed point which is described by

P0 = ε1 ∧ · · · ∧ εn,

where ε1, · · · , εn are orthonormal vectors in R
m+n. Choose complementary orthonormal vectors

εn+1, · · · , εn+m, such that {ε1, · · · , εn, εn+1, · · · , εn+m} is an orhtonormal base in R
m+n.

Let p : R
m+n → R

n be the natural projection defined by

p(x1, · · · , xn; xn+1, · · · , xm+n) = (x1, · · · , xn),

which induces a map from M to R
n. It is a smooth map from a complete manifold to R

n.

For any point x ∈ M , choose a local orthonormal tangent frame field {e1, · · · , en} near x.

Let v = viei ∈ TM . Its projection is

p∗v = 〈viei, εj〉εj = vi〈ei, εj〉εj .

For any P ∈ γ(M),

w , 〈P, P0〉 = 〈e1 ∧ · · · ∧ en, ε1 ∧ · · · ∧ εn〉 = detW,
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where W = (〈ei, εj〉). It is well-known that

WT W = OT ΛO,

where O is an orthogonal matrix and

Λ =




λ2
1 0

. . .

0 λ2
r


 , r = min(m, n),

where each 0 ≤ λ2
i ≤ 1.

We now compare the length of any tangent vector v to M with its projection p∗v. Since

|p∗v|2 =

n∑

j=1

(vi〈ei, εj〉)2 = (WV )T WV,

where V = (v1, · · · , vn)T, it follows that

|p∗v|2 ≥ (λ′)2|v|2 ≥ w2|v|2 ≥ w2
0 |v|2, (6.1)

where λ′ = min
i
{λi} and w0 = inf

M
w. The induced metric ds2 on M from R

m+n is complete, so

is the homothetic metric d̃s2 = w2
0ds2 whenever w0 > 0. (6.1) implies that

p : (M, d̃s2) → (Rn, canonical metric)

increases the distance. It follows that p is a covering map from a complete manifold into R
n

and a diffeomorphism, since R
n is simply connected. Hence, the induced Riemannian metric

on M can be expressed as (Rn, ds2) with

ds2 = gijdxidxj .

Furthermore, the immersion F : M → R
m+n is realized by a graph (x, f(x)) with f : R

n → R
m

and

gij = δij +
∂fα

∂xi

∂fα

∂xj
.

At each point in M , its image n-plane P under the Gauss map is spanned by

fi = εi +
∂fα

∂xi
εα.

It follows that

|f1 ∧ · · · ∧ fn|2 = det
(
δij +

∑

α

∂fα

∂xi

∂fα

∂xj

)

and √
g = |f1 ∧ · · · ∧ fn|.

The n-plane P is also spanned by

pi = g−
1
2n fi.

Furthermore, we have

|p1 ∧ · · · ∧ pn| = 1.
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Then we have

〈P, P0〉 = det(〈εi, pj〉) =




g−
1
2n 0

. . .

0 g−
1
2n


 =

1√
g
≥ w0

and
√

g ≤ 1

w0
. (6.2)

Now, set

DR(x) = {(x̃, f(x̃)) : x̃ ∈ Ω, f1, · · · , fm are smooth functions on Ω},

where Ω ⊂ BR ⊂ R
n. Then (6.2) implies

Vol(DR(x)) ≤ 1

w0
· Vol(Ω) ≤ 1

w0
C(n)Rn. (6.3)

The previous arguments show the following result.

Proposition 6.1 Let M be a complete submanifold in R
m+n. If the w-function is bounded

below by a positive constant w0, then M is an entire graph with Euclidean volume growth. In

particular, if the Gauss image of M is contained in a geodesic ball of radius
√

2
4 π, then M is

an entire graph with Euclidean volume growth.

Proof Now we consider the case that the image under the Gauss map γ is contained in an

open geodesic ball of radius
√

2
4 π and centered at P0. The Jordan angles between P and P0 are

θi = cos−1(λi),

where λ2
i are eigenvalues of the symmetric matrix WT W (see [23]). We know

w =
∏

cos θi.

On the other hand, the distance between P0 and P (see [26, pp. 188–194])

d(P0, P ) =
√∑

θ2
i

is less than
√

2
4 π by the assumption. It follows that

w > w0 =
(

cos

√
2

4
π
)r

.

Theorem 4.1, Schoen-Simon-Yau’s type estimates and Proposition 6.1 give us the following

Bernstein type theorem.

Theorem 6.1 Let M be a complete minimal n-dimensional submanifold in R
n+m with

n ≤ 6 and m ≥ 2. If the Gauss image of M is contained in an open geodesic ball of Gn,m

centered at P0 and of radius
√

2
4 π, then M has to be an affine linear subspace.
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Proof Now we choose

p = 4 +
2

3
+

4

3

√
1 +

6

mn
> 6.

Fix x ∈ M and let r be the Euclidean distance function from x and MR = DR(x). Hence,

letting R → +∞ in (4.12) yields

‖|B|‖Lp(M) = 0,

i.e., |B|2 = 0. Thus M has to be an affine linear subspace.

Theorem 5.2 and Proposition 6.1 yield a Bernstein type result as follows.

Theorem 6.2 Let M be a complete minimal n-dimensional submanifold in R
n+m. If the

Gauss image of M is contained in an open geodesic ball of Gn,m centered at P0 and of radius√
2

4 π, and
(√

2
4 π − ρ ◦ γ

)−1
has growth

(√
2

4
π − ρ ◦ γ

)−1

= o(R), (6.4)

where ρ denotes the distance on Gn,m from P0 and R is the Euclidean distance from any point

in M , then M has to be an affine linear subspace.

Proof Now we claim

sec(
√

2 ρ) ≤ C
(√

2

4
π − ρ

)−1

(6.5)

for a positive constant C. It is sufficient to prove that the function

t ∈
[
0,

√
2

4
π
)
7→ sec(

√
2 t)

(√
2

4
π − t

)

is bounded, which follows from

lim
t→(

√

2

4
π)−

sec(
√

2 t)
(√

2

4
π − t

)
= lim

t→(
√

2

4
π)−

√
2

4 π − t

cos(
√

2 t)
= lim

t→(
√

2

4
π)−

−1

−
√

2 sin(
√

2 t)
=

√
2

2
.

Hence we arrive at the inequality

h2 ≤ C
(√

2

4
π − ρ ◦ γ

)−2

. (6.6)

Thus, for any point x ∈ M , by Theorem 5.2 and Proposition 6.1, we have

|B|2p(x) ≤ C(n, p)R−2p
(√

2

4
π − ρ ◦ γ

)−2p

.

Letting R → +∞ in the above inequality forces |B(x)| = 0.

From (4.11), it is easy to obtain the following result.

Theorem 6.3 Let M be an n-dimensional complete minimal submanifolds of R
n+m. If

the Gauss image of M is contained in an open geodesic ball in Gn,m of radius
√

2
4 π and M has

finite total curvature, then M has to be an affine linear subspace.
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For a minimal n-submanifold in R
m+n, if its Gauss image is contained in an open geodesic

ball on Gn,m of radius
√

2
4 π, there is a positive function h1 = cos(

√
2 ρ ◦ γ). Then the strong

stability inequality (3.6) follows. Besides, its key role in Schoen-Simon-Yau’s estimates, there

are other applications. We state the following results, whose detailed proof can be found in the

previous paper of the first author [27].

Theorem 6.4 Let M be a complete minimal n-submanifold in R
m+n. If the image under

the Gauss map is contained in an open geodesic ball in Gn,m of radius
√

2
4 π, then any L2-

harmonic 1-form vanishes.

Theorem 6.5 Let M be one as in Theorem 6.4, and N be a manifold with non-positive

sectional curvature. Then any harmonic map f : M → N with finite energy has to be constant.
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