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1 Introduction

In recent years, there has been a strong rise of interest in the study of various mathematical

problems with variable exponent p(x), which arises from eletrorheological fluids (see [1]) and

elastic mechanics (see [2]). The application backgrounds also be traced in the book of Diening

[3] and in the papers of Acerbi and Mingione [4, 5] and Mihăilescu, Rădulescu [6].

In this paper, we deal with the following nonlinear elliptic boundary value problem:







−div(a(x)|∇u|p(x)−2∇u) + b(x)|u|p(x)−2u = f1(x, u) − sgn(u)h1(x), in Ω,

a(x)|∇u|p(x)−2 ∂u

∂ν
= c(x)|u|q(x)−2u+ f2(x, u) − sgn(u)h2(x), on ∂Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, ∂

∂ν
is outer normal derivative,

p(x) ∈ C(Ω), q(x) ∈ C(∂Ω), p(x), q(x) > 1 and p(x) 6= q(y), ∀x ∈ Ω, y ∈ ∂Ω, f1 : Ω × R → R

and f2 : ∂Ω × R → R are Carathèodory functions, and the perturbations h1(x) ∈ Lp′(x)(Ω) ∩

L∞(Ω), h2(x) ∈ Lp′(x)(∂Ω) ∩ L∞(∂Ω) with p′(x) = p(x)
p(x)−1 . Throughout this paper, we assume

that a(x), b(x) and c(x) satisfy 0 < a1 ≤ a(x) ≤ a2, 0 < b1 ≤ b(x) ≤ b2, 0 < c1 ≤ c(x) ≤ c2,

∀x ∈ Ω.

In the past decade, many people studied the nonlinear boundary value problems involving

p-Laplacian. For example, if a(x) = b(x) = c(x) ≡ 1, p(x) ≡ p, q(x) ≡ q (a constant) and
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h1(x) = h2(x) ≡ 0, then problem (1.1) becomes






−div(|∇u|p−2∇u) + |u|p−2u = f1(x, u), in Ω,

|∇u|p−2 ∂u

∂ν
= |u|q−2u+ f2(x, u), on ∂Ω.

(1.2)

Bonder and Rossi [7] considered the existence of nontrivial solutions of problem (1.2) when

f1(x, u) ≡ 0, and discussed different cases when f2(x, u) is subcritical, critical and supercritical

with respect to u. We also mention that Martinez and Rossi [8] studied the existence of solutions

when p = q and the perturbation terms f1(x, u) and f2(x, u) satisfy the Landesman-Lazer type

conditions. Recently, Zhao and Zhao [9] studied the nonlinear boundary value problem, assumed

that f1(x, u) satisfies the Ambrosetti-Rabinowitz type condition and got the multiple results.

For other results involving problem (1.2), we refer readers to the references [10, 11].

When p(x) ≡ p, q(x) ≡ q (a constant) and h1(x) = h2(x) ≡ 0, problem (1.1) becomes






−div(a(x)|∇u|p−2∇u) + b(x)|u|p−2u = f1(x, u), in Ω,

a(x)|∇u|p−2 ∂u

∂ν
= c(x)|u|q−2u+ f2(x, u), on ∂Ω.

(1.3)

There are also many people who studied the p-Laplacian nonlinear boundary value problems

involving (1.3). For example, Cı̂rstea and Rǎdulescu [12] used the weighted Sobolev space to

discuss the existence and non-existence results, assuming that f1(x, u) is a special case in the

problem (1.3), where Ω is an unbounded domain. Pflüger [13], by using the same technique,

considered the existence and multiplicity of solutions when b(x) ≡ 0. The author showed

the existence result when f1(x, u) and f2(x, u) are superlinear and satisfy the Ambrosetti-

Rabinowitz type condition, and got the multiplicity of solutions when one of f1(x, u) and

f2(x, u) is sublinear and the other one is superlinear. For other relative results to the problem

(1.3), we refer to [14–17] and the references therein.

More recently, the study on the nonlinear boundary value problems with variable expo-

nent has received considerable attention. For example, Deng [18] studied the eigenvalue of

p(x)-Laplacian Steklov problem, and discussed the properties of the eigenvalue sequence under

different conditions. Fan [19] discussed the boundary trace embedding theorems for variable

exponent Sobolev spaces and some applications. Yao [20] constrained the two nonlinear per-

turbation terms f1(x, u) and f2(x, u) in appropriate conditions and got a number of results on

existence and multiplicity of solutions. Motivated by Yao and problem (1.3), we consider the

more general form of variable exponent boundary value problem (1.1). In this paper, we assume

that the two nonlinear perturbation terms f1(x, u) and f2(x, u) do not satisfy the Ambrosetti-

Rabinowitz type condition, and by using the “mountain pass lemma” and “fountain theorem”,

respectively, we get the existence and multiplicity of solutions of (1.1). These results extend

some of the results in [19] and the classical results for the p-Laplacian in [7, 8, 10, 11].

This paper is organized as follows. In Section 2, we introduce some basic properties of

the generalized Lebesgue spaces Lp(x)(Ω), Lp(x)(∂Ω) and generalized Lebesgue-Sobolev space

W 1,p(x)(Ω) which are needed in the paper. In Section 3, we give the assumptions on f1(x, u)

and f2(x, u), and state the main results of this paper. In Section 4, we prove the main results

— Theorems 3.1 and 3.2.
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2 Mathematical Preliminaries

In order to discuss problem (1.1), we need to state some properties of the space W 1,p(x)(Ω)

which we call generalized Lebesgue-Sobolev spaces. Let Ω be a bounded domain of R
N and

denote

C+(Ω) = {p(x) | p(x) ∈ C(Ω), p(x) > 1, ∀x ∈ Ω}.

For p(x) ∈ C+(Ω), we write

p− = min{p(x);x ∈ Ω}, p+ = max{p(x);x ∈ Ω}.

We can also denote C+(∂Ω) and q−, q+ for any q(x) ∈ C(∂Ω), and define

Lp(x)(Ω) =
{

u
∣

∣

∣
u is a measureable real-valued function,

∫

Ω

|u(x)|p(x)dx <∞
}

,

Lp(x)(∂Ω) =
{

u
∣

∣

∣
u : ∂Ω → R is measureable,

∫

∂Ω

|u(x)|p(x)dσx <∞
}

,

with norms on Lp(x)(Ω) and Lp(x)(∂Ω) defined by

|u|Lp(x)(Ω) = inf
{

λ > 0 :

∫

Ω

∣

∣

∣

u(x)

λ

∣

∣

∣

p(x)

dx ≤ 1
}

,

|u|Lp(x)(∂Ω) = inf
{

τ > 0 :

∫

∂Ω

∣

∣

∣

u(x)

τ

∣

∣

∣

p(x)

dσx ≤ 1
}

,

where dσx is the surface measure on ∂Ω. Therefore, (Lp(x)(Ω), | · |Lp(x)(Ω)) and (Lp(x)(∂Ω),

| · |Lp(x)(∂Ω)) become Banach spaces.

The generalized Lebesgue-Sobolev space W 1,p(x)(Ω) is defined as

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)},

equipped with norm

‖u‖ = inf
{

λ > 0
∣

∣

∣

∫

Ω

(∣

∣

∣

∇u(x)

λ

∣

∣

∣

p(x)

+
∣

∣

∣

u(x)

λ

∣

∣

∣

p(x))

dx ≤ 1
}

.

For u ∈ W 1,p(x)(Ω), if we define

‖u‖′ = inf
{

λ > 0 :

∫

Ω

(

a(x)
∣

∣

∣

∇u(x)

λ

∣

∣

∣

p(x)

+ b(x)
∣

∣

∣

u(x)

λ

∣

∣

∣

p(x))

dx ≤ 1
}

,

then from the assumptions of a(x) and b(x) it is easy to check that ‖ · ‖′ is an equivalent norm

on W 1,p(x)(Ω). For simplicity, we denote

Φ(u) =

∫

Ω

(a(x)|∇u|p(x) + b(x)|u|p(x))dx.

Hence we have (see [21])

( i ) if Φ(u) ≥ 1, then ξ1‖u‖
p−

≤ Φ(u) ≤ ξ2‖u‖
p+

,

(ii) if Φ(u) ≤ 1, then ζ1‖u‖p+

≤ Φ(u) ≤ ζ2‖u‖p−

,

where ξ1, ξ2 and ζ1, ζ2 are positive constants independent of u.
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Proposition 2.1 (see [20]) (1) The space (Lp(x)(Ω), | · |p(x)) is a separable, uniform convex

Banach space, and its conjugate space is Lq(x)(Ω) where 1
q(x) + 1

p(x) = 1. For any u ∈ Lp(x)(Ω)

and v ∈ Lp(x)(Ω), we have

∣

∣

∣

∫

Ω

uvdx
∣

∣

∣
≤

( 1

p−
+

1

q−

)

|u|Lp(x)(Ω)|v|Lq(x)(Ω).

(2) If p1, p2 ∈ C+(Ω) and p1(x) ≤ p2(x) for any x ∈ Ω, then Lp2(x)(Ω) →֒ Lp1(x)(Ω) and

the embedding is continuous.

(3) If q(x) ∈ C+(Ω) and q(x) < p∗(x), ∀x ∈ Ω, then the embedding from W 1,p(x)(Ω) into

Lq(x)(Ω) is compact and continuous, where

p∗(x) :=







Np(x)

N − p(x)
, if p(x) < N,

∞, if p(x) ≥ N.

Proposition 2.2 (see [20]) If we denote

p∗(x) :=







(N − 1)p(x)

N − p(x)
, if p(x) < N,

∞, if p(x) ≥ N,

then the embedding from W 1,p(x)(Ω) into Lq(x)(∂Ω) is compact and continuous, where q(x) ∈

C+(∂Ω) and q(x) < p∗(x), ∀x ∈ ∂Ω.

Proposition 2.3 (see [22]) Suppose that f : Ω × R → R is a Carathèodory function and

satisfies

|f(x, s)| ≤ a(x) + b|s|
p1(x)

p2(x) , ∀x ∈ Ω, s ∈ R,

where p1, p2 ∈ C+(Ω), a(x) ∈ Lp2(x)(Ω), a(x) ≥ 0 and b ≥ 0 is a constant. Denote Nf , the

Nemytsky operator, by

Nf(u)(x) = f(x, u(x)).

Then Nf is a continuous and bounded map from Lp1(x)(Ω) to Lp2(x)(Ω).

Proposition 2.4 (see [20]) If we denote

ρ(u) =

∫

Ω

|u(x)|p(x)dx, ∀u ∈ Lp(x)(Ω),

then

(1) |u|Lp(x)(Ω) < 1(= 1;> 1) ⇔ ρ(u) < 1(= 1;> 1);

(2) |u|Lp(x)(Ω) > 1 ⇒ |u|p
−

Lp(x)(Ω)
≤ ρ(u) ≤ |u|p

+

Lp(x)(Ω)
;

(3) |u|Lp(x)(Ω) < 1 ⇒ |u|p
+

Lp(x)(Ω)
≤ ρ(u) ≤ |u|p

−

Lp(x)(Ω)
.

Proposition 2.5 (see [18]) If we denote

ρ(u) =

∫

∂Ω

|u(x)|p(x)dσx, ∀u ∈ Lp(x)(∂Ω),

then

(1) |u|Lp(x)(∂Ω) > 1 ⇒ |u|p
−

Lp(x)(∂Ω)
≤ ρ(u) ≤ |u|p

+

Lp(x)(∂Ω)
;

(2) |u|Lp(x)(∂Ω) < 1 ⇒ |u|p
+

Lp(x)(∂Ω)
≤ ρ(u) ≤ |u|p

−

Lp(x)(∂Ω)
.
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In this paper, we denote X := W 1,p(x)(Ω), X∗ := (W 1,p(x)(Ω))∗ the dual space, 〈 · , · 〉 the

dual pair, and let “⇀” represent weak convergence. By the assumptions on a(x), b(x) and c(x)

in Section 1, it is easy to check that the following assertions are true.

Proposition 2.6 (see [23]) If we denote

I(u) =

∫

Ω

1

p(x)
(a(x)|∇u|p(x) + b(x)|u|p(x))dx, ∀u ∈ X,

then I ∈ C1(X,R) and the derivative operator of I, denoted by L, is

〈L(u), v〉 =

∫

Ω

(a(x)|∇u|p(x)−2∇u∇v + b(x)|u|p(x)−2uv)dx, ∀u, v ∈ X,

and we have

( i ) L : X → X∗ is a continuous, bounded and strictly monotone operator;

( ii ) L is a mapping of type (S+), i.e., if un ⇀ u in X and lim sup
n→∞

(L(un)−L(u), un−u) ≤ 0,

then un → u in X;

(iii) L : X → X∗ is a homeomorphism.

Proposition 2.7 (see [18]) If we denote

φ(u) =

∫

∂Ω

1

q(x)
(c(x)|u|q(x))dσx, ∀u ∈ X,

where q(x) ∈ C+(Ω) and q(x) < p∗(x), ∀x ∈ Ω, then φ ∈ C1(X,R) and the derivative operator

J of φ is

〈J(u), v〉 =

∫

∂Ω

c(x)|u|q(x)−2uvdσx, ∀u, v ∈ X,

and we have that φ : X → R and J : X → X∗ are sequentially weakly-strongly continuous,

namely, un ⇀ u0 in X implies J(un) → J(u0).

Let X be a reflexive and separable Banach space. Then there are ej ⊂ X and e∗j ⊂ X∗ such

that

X = span{ej | j = 1, 2, · · · }, X∗ = span{e∗j | j = 1, 2, · · · },

and

〈e∗i , ej〉 =

{

1, i = j,

0, i 6= j.

For convenience, we write

Xj = span{ej}, Yk =

k
⊕

j=1

Xj , Zk =

∞
⊕

j=k

Xj . (2.1)

Theorem 2.1 (Fountain Theorem) (see [24]) Assume

(A1) X is a Banach space, ϕ ∈ C1(X,R) is an even functional and the subspaces Xk, Yk

and Zk are defined by (2.1).

Suppose that, for every k ∈ N, there exists ρk > γk > 0 such that

(A2) inf{ϕ(u);u ∈ Zk, ‖u‖ = γk} → ∞, as k → ∞;
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(A3) max{ϕ(u);u ∈ Yk, ‖u‖ = ρk} ≤ 0;

(A4) ϕ satisfies (PS)c condition for every c > 0.

Then ϕ has a sequence of critical values tending to +∞.

Theorem 2.2 (Dual Fountain Theorem) (see [24]) Assume that (A1) is satisfied and there

is a k0 > 0 such that, for each k ≥ k0, there exists ρk > γk > 0 such that

(B1) inf{ϕ(u);u ∈ Zk, ‖u‖ = ρk} ≥ 0;

(B2) bk := max{ϕ(u);u ∈ Yk, ‖u‖ = γk} < 0;

(B3) dk := inf{ϕ(u);u ∈ Zk, ‖u‖ ≤ ρk} → 0, as k → ∞;

(B4) ϕ satisfies (PS)
∗
c condition for every c ∈ [dk0 , 0).

Then ϕ has a sequence of negative critical values converging to 0.

Remark 2.1 That ϕ satisfies (PS)
∗
c condition means that any sequence {unj

} ⊂ X such

that nj → ∞, unj
∈ Ynj

, ϕ(unj
) → c and (ϕ|Ynj

)′(unj
) → 0 contains a subsequence converging

to a critical point of ϕ.

3 Assumptions and Statement of Main Results

For a variational approach, the functional associated to problem (1.1) is

ϕ(u) =

∫

Ω

1

p(x)
(a(x)|∇u|p(x) + b(x)|u|p(x))dx−

∫

∂Ω

1

q(x)
(c(x)|u|q(x))dσx

−

∫

Ω

F1(x, u)dx−

∫

∂Ω

F2(x, u)dσx +

∫

Ω

h1(x)|u|dx +

∫

∂Ω

h2(x)|u|dσx.

Then ϕ : X → R, where F1 and F2 denote the primitive functions of f1 and f2, i.e., Fi(x, u) =
∫ u

0 fi(x, s)ds, i = 1, 2. Obviously, we can give some appropriate assumptions on f1 and f2 such

that ϕ(u) ∈ C1(X,R), and

〈ϕ′(u), v〉 =

∫

Ω

(a(x)|∇u|p(x)−2∇u∇v + b(x)|u|p(x)−2uv)dx−

∫

∂Ω

(c(x)|u|q(x)−2uv)dσx

−

∫

Ω

f1(x, u)vdx −

∫

∂Ω

f2(x, u)vdσx +

∫

Ω

sgn(u)h1(x)vdx +

∫

∂Ω

sgn(u)h2(x)vdσx

for any u, v ∈ X . Then we know that the weak solution of (1.1) corresponds to the critical

point of the functional ϕ.

Now we state below the assumptions for problem (1.1), and let ℧1 = Ω, ℧2 = ∂Ω.

( i ) For any η ∈ [q−, q+] and almost all x ∈ ℧i, we have

lim
|u|→∞

ηFi(x, u) − fi(x, u)u

|u|µ(x)
= 0

with µ(x) ∈ C+(Ω) and µ+ < p−;

( ii ) There exist ϑi > 0, i = 1, 2, such that for almost all x ∈ ℧i and all u ∈ R, we have

|fi(x, u) − sgn(u)hi(x)| ≤ ϑi|u|
βi(x)−1

with β1(x) ∈ C+(Ω), β1(x) < p∗(x), ∀x ∈ Ω, and β2(x) ∈ C+(∂Ω), β2(x) < p∗(x), ∀x ∈ ∂Ω;
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(iii) For almost all x ∈ ℧i, i = 1, 2, we have

lim inf
|u|→∞

Fi(x, u)

|u|βi(x)
> 0;

(iv) fi(x,−u) = −fi(x, u), ∀x ∈ ℧i, u ∈ R, i = 1, 2.

Since h1(x) ∈ Lp′(x)(Ω) ∩ L∞(Ω) and h2(x) ∈ Lp′(x)(∂Ω) ∩ L∞(∂Ω), the functional we

defined above is of class C1(X,R) under condition (ii); moreover, ϕ is even if (iv) holds. Our

main results are as follows.

Theorem 3.1 Suppose that hypotheses (i)–(iii) hold. We have

(1) if p+ < q−, β−
i , i = 1, 2, then problem (1.1) has at least one nontrivial solution;

(2) if q+, β+
i < p−, i = 1, 2, then problem (1.1) has at least one solution.

Theorem 3.2 Suppose that hypotheses (i)–(iii) hold. We have

(1) if β+
i < q− and p(x) < βi(x), ∀x ∈ ℧i, i = 1, 2, then problem (1.1) has a sequence of

solutions uk such that ϕ(uk) → +∞, as k → +∞;

(2) if q+ < β−
i and βi(x) < p(x), ∀x ∈ ℧i, i = 1, 2, then problem (1.1) has a sequence of

solutions vk such that ϕ(vk) < 0, ϕ(vk) → 0, as k → +∞.

4 Proof of Theorems 3.1 and 3.2

Before proving Theorem 3.1, we will prove the following two lemmas. Thereafter, for sim-

plicity, we will denote by C the positive constants, and they may be different despite the same

appearance.

Lemma 4.1 If the assumptions in Theorem 3.1(1) hold, then ϕ satisfies (PS)c condition

with c > 0.

Proof Suppose {un}n≥1 ⊂ X , and for every c > 0,

ϕ(un) → c, ϕ′(un) → 0, in X∗, as n→ ∞.

Then for n large enough, we can find M1 > 0 such that

|ϕ(un)| ≤M1. (4.1)

By assumption (ii), we know that the Carathèodory functions fi(x, u) (i = 1, 2) are in the

subcritical growth. So, through Propositions 2.1–2.3, we know that if we denote

H(u) =

∫

Ω

F1(x, u)dx+

∫

∂Ω

F2(x, u)dσx −

∫

Ω

h1(x)|u|dx −

∫

∂Ω

h2(x)|u|dσx

=

∫

Ω

(F1(x, u) − h1(x)|u|)dx +

∫

∂Ω

(F2(x, u) − h2(x)|u|)dσx,

then H(u) is weakly continuous and has a derivative operator, denoted by ψ, and we see that

〈ψ(u), v〉 =

∫

Ω

f1(x, u)vdx+

∫

∂Ω

f2(x, u)vdσx −

∫

Ω

sgn(u)h1(x)vdx −

∫

∂Ω

sgn(u)h2(x)vdσx
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is compact (see [11]). By Propositions 2.6 and 2.7, we deduce that ϕ′ = L − J − ψ is also

of type (S+). Since ϕ′(un) → 0, we have 〈ϕ′(un), un〉 → 0. In particular, the sequence

{〈ϕ′(un), un〉}n≥1 is bounded. Thus there exists M2 > 0 such that

|〈ϕ′(un), un〉| ≤M2. (4.2)

We claim that the sequence {un}n≥1 is bounded. If it is not true, by passing a subsequence

if necessary, we may assume ‖un‖ → +∞. Without loss of generality, we assume ‖un‖ ≥ 1 and

|un| → +∞ as n→ +∞ for any x ∈ Ω.

From (4.1) and (4.2), we have

M1 ≥ ϕ(un) = I(un) − φ(un) −H(un)

≥
1

p+
Φ(un) −

1

q−

∫

∂Ω

(c(x)|un|
q(x))dσx −H(un), (4.3)

M2 ≥ −〈ϕ′(un), un〉 = −Φ(un) +

∫

∂Ω

(c(x)|un|
q(x))dσx + 〈ψ(un), un〉. (4.4)

Combining (4.3) and (4.4), we have

q−M1 +M2 ≥
(q−

p+
− 1

)

Φ(un) − q−H(un) + 〈ψ(un), un〉

≥
(q−

p+
− 1

)

ξ1‖un‖
p−

−

∫

Ω

(q−F1(x, un) − f1(x, un)un)dx

−

∫

∂Ω

(q−F2(x, un) − f2(x, un)un)dσx

+ (q− − 1)
(

∫

Ω

h1(x)|un|dx+

∫

∂Ω

h2(x)|un|dσx

)

. (4.5)

By virtue of assumption (i), let η = q− and n be large enough. Then for almost all x ∈ ℧i, we

have q−Fi(x, un) − fi(x, un)un ≤ ε|un|µ(x). Thus by Hölder’s inequality, (4.5) becomes

q−M1 +M2 ≥
(q−

p+
− 1

)

ξ1‖un‖
p−

− ε
(

∫

Ω

|un|
µ(x)dx+

∫

∂Ω

|un|
µ(x)dσx

)

− 2(q− − 1)(|h1|Lp′(x)(Ω)|un|Lp(x)(Ω) + |h2|Lp′(x)(∂Ω)|un|Lp(x)(∂Ω))

≥
(q−

p+
− 1

)

ξ1‖un‖
p−

− Cε‖un‖
µ+

− 2(q− − 1)C(|h1|Lp′(x)(Ω) + |h2|Lp′(x)(∂Ω))‖un‖.

The last inequality follows from the compact embedding in Propositions 2.1 and 2.2. Since

q− > p+, we have q−

p+ − 1 > 0 and p− > µ+, which implies that the sequence {un}n≥1 ⊂ X is

bounded. It is a contradiction to the supposition. Therefore, we have proved that {un}n≥1 ⊂ X

is bounded. We may assume un ⇀ u0 in X as n→ +∞. Note ϕ′ = L− J − ψ. Then we have

ϕ′(un) = L(un) − J(un) − ψ(un) → 0.

From Proposition 2.6, we know that L is a homeomorphism. Besides, by Proposition 2.7 and

the fact that ψ is compact, we have

un → L−1(J(u0) + ψ(u0)), in X, as n→ +∞.
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Thus un → u0 in X . Therefore, ϕ satisfies (PS)c condition.

Lemma 4.2 Under the assumptions in Theorem 3.1(1), there exists γ0 > 0 such that for

all 0 < γ < γ0 we have inf{ϕ(u) : ‖u‖ = γ} > 0.

Proof By hypothesis (ii), for almost all x ∈ ℧i and all u ∈ R, we have

fi(x, u) ≤ sgn(u)hi(x) + ϑi|u|
βi(x)−1,

which implies

Fi(x, u) ≤ hi(x)|u| +
ϑi

βi(x)
|u|βi(x), i = 1, 2.

So, if we assume ‖u‖ < 1 small enough such that ξ1‖u‖
p−

> ζ1‖u‖
p+

, we have

ϕ(u) = I(u) − φ(u) −H(u)

≥
1

p+
Φ(u) −

c2

q−

∫

∂Ω

|u|q(x)dσx −H(u)

≥
1

p+
min{ξ1‖u‖

p−

, ζ1‖u‖
p+

} −
Cc2

q−
‖u‖q−

−
Cϑ1

β−
1

‖u‖β
−

1 −
Cϑ2

β−
2

‖u‖β
−

2

≥
ζ1

p+
‖u‖p+

−
Cc2

q−
‖u‖q−

−
Cϑ1

β−
1

‖u‖β
−

1 −
Cϑ2

β−
2

‖u‖β
−

2 .

Since p+ < q− and p+ < β−
i , i = 1, 2, there exists γ0 > 0 small enough, such that for all

0 < γ < γ0 we have inf{ϕ(u) : ‖u‖ = γ} > 0.

Proof of Theorem 3.1(1) We claim that there exists h ∈ X such that ϕ(h) < 0. By

virtue of hypothesis (iii), there exists an M3 > 0 such that, for all x ∈ ℧i, i = 1, 2 and |u| > M3,

we have Fi(x, u) > C|u|βi(x). We choose w ∈ X \ {0} and let t > 1 large enough such that

|tw| > M3. Then we have Fi(x, tw) > C|tw|βi(x), i = 1, 2. Therefore

ϕ(tw) = I(tw) − φ(tw) −H(tw)

≤
tp

+

p−
Φ(w) −

∫

∂Ω

1

q(x)
(c(x)|tw|q(x))dσx − C

∫

Ω

|tw|β1(x)dx

− C

∫

∂Ω

|tw|β2(x)dσx +

∫

Ω

h1(x)|tw|dx +

∫

∂Ω

h2(x)|tw|dσx

≤
tp

+

p−
Φ(w) −

c1t
q−

q+

∫

∂Ω

|w|q(x)dσx − Ctβ
−

1

∫

Ω

|w|β1(x)dx

− Ctβ
−

2

∫

∂Ω

|w|β2(x)dσx + t
(

∫

Ω

h1(x)|w|dx +

∫

∂Ω

h2(x)|w|dσx

)

.

Since 1 < p+ < β−
i , i = 1, 2 and 1 < p+ < q−, we have ϕ(tw) → −∞ as t → +∞. So we

choose a t0 large enough such that ϕ(t0w) < 0, and set h = t0w. Then h is the desired element.

Since ϕ(0) = 0, from Lemmas 4.1 and 4.2 we see that ϕ satisfies the condition of mountain

pass theorem (see [24]). So ϕ admits at least one nontrivial critical point. It is the nontrivial

solution of (1.1).
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Proof of Theorem 3.1(2) Under the conditions q+, β+
i < p−, i = 1, 2, we claim that ϕ

is coercive. In fact, we assume ‖u‖ large enough. Similarly to the proof of Lemma 4.2, we have

ϕ(u) = I(u) − φ(u) −H(u) ≥
ξ1

p−
‖u‖p−

−
Cc2

q−
‖u‖q+

−
Cϑ1

β−
1

‖u‖β
+
1 −

Cϑ2

β−
2

‖u‖β
+
2 .

So ϕ is coercive. Besides, ϕ is sequentially weakly lower semicontinuous. Thus ϕ is bounded

below and ϕ attains its infimum in X , i.e., ϕ(u0) = inf
u∈X

ϕ(u) and u0 is a critical point of ϕ,

which is a weak solution of (1.1).

Remark 4.1 In the proof of Theorem 3.1(2), we can not guarantee that u0 is nontrivial.

In fact, we can also apply [25, Theorem 3.5] to get the weak solution because, when p− > q+,

we can also prove that ϕ satisfies (PS) condition.

Now we prove Theorem 3.2 below. Firstly, we state the following useful lemma.

Lemma 4.3 (see [20]) If α(x) ∈ C+(Ω), α(x) < p∗(x), ∀x ∈ Ω and λ(x) ∈ C+(∂Ω),

λ(x) < p∗(x), ∀x ∈ ∂Ω, and denote

αk = sup{|u|Lα(x)(Ω); ‖u‖ = 1, u ∈ Zk},

λk = sup{|u|Lλ(x)(∂Ω); ‖u‖ = 1, u ∈ Zk},

then lim
k→∞

αk = 0, lim
k→∞

λk = 0.

Proof of Theorem 3.2(1) We will prove that ϕ satisfies the conditions of Theorem

2.1. Obviously, because of the assumptions of (iv), ϕ is an even functional and satisfies (PS)c

condition (see Lemma 4.1). We will prove that if k is large enough, then there exist ρk > γk > 0

such that (A2) and (A3) hold. Let u ∈ Zk with ‖u‖ appropriate large such that ξ1‖u‖p−

<

ζ1‖u‖p+

. Through the assumptions of (ii), we have

ϕ(u) = I(u) − φ(u) −H(u)

≥
1

p+
Φ(u) −

c2

q−

∫

∂Ω

|u|q(x)dσx −
ϑ1

β−
1

∫

Ω

|u|β1(x)dx−
ϑ2

β−
2

∫

∂Ω

|u|β2(x)dσx

≥
1

p+
min{ξ1‖u‖

p−

, ζ1‖u‖
p+

} −
c2

q−
max{|u|q

+

Lq(x)(∂Ω)
, |u|q

−

Lq(x)(∂Ω)
}

−
ϑ1

β−
1

max{|u|
β

+
1

Lβ1(x)(Ω)
, |u|

β
−

1

Lβ1(x)(Ω)
} −

ϑ2

β−
2

max{|u|
β

+
2

Lβ2(x)(∂Ω)
, |u|

β
−

2

Lβ2(x)(∂Ω)
}

≥
ξ1

p+
‖u‖p−

− C(q−, β−
1 , β

−
2 )max{|u|q

+

Lq(x)(∂Ω)
, |u|q

−

Lq(x)(∂Ω)
,

|u|
β

+
1

Lβ1(x)(Ω)
, |u|

β
−

1

Lβ1(x)(Ω)
, |u|

β
+
2

Lβ2(x)(∂Ω)
, |u|

β
−

2

Lβ2(x)(∂Ω)
}.

If

max{|u|q
+

Lq(x)(∂Ω)
, |u|q

−

Lq(x)(∂Ω)
, |u|

β
+
1

Lβ1(x)(Ω)
, |u|

β
−

1

Lβ1(x)(Ω)
, |u|

β
+
2

Lβ2(x)(∂Ω)
, |u|

β
−

2

Lβ2(x)(∂Ω)
} = |u|q

+

Lq(x)(∂Ω)
,

then we have

ϕ(u) ≥
ξ1

p+
‖u‖p−

− C(q−, β−
1 , β

−
2 )λq+

k ‖u‖q+

.
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Choose γk = (q+C(q−, β−
1 , β

−
2 )

λ
q+

k

ξ1
)

1

p−
−q+ . For any u ∈ Zk with ‖u‖ = γk, we have

ϕ(u) ≥ ξ1

( 1

p+
−

1

q+

)

γ
p−

k .

Since λk → 0 as k → ∞ and 1 < p− ≤ p+ < q− < q+, we have 1
p+ − 1

q+ > 0 and γk → ∞.

Thus, for sufficiently large k, we have ϕ(u) → ∞ with u ∈ Zk and ‖u‖ = γk as k → ∞. In

other cases, similarly, we can deduce

ϕ(u) → ∞, since λk → 0, αk → 0, k → ∞,

and note that from p(x) < βi(x), ∀x ∈ Ω, we have p− < β−
i ≤ β+

i . So (A2) holds.

Similar to the proof of Theorem 3.1, by virtue of the hypotheses of (iii), there exists an

M3 > 0 such that, for all x ∈ ℧i, i = 1, 2 and |u| > M3, we have

Fi(x, u) > C|u|βi(x).

On the other hand, when |u| ≤ M3, from assumption (ii), we have |Fi(x, u)| ≤ C. Thus the

two inequalities above imply

Fi(x, u) > C|u|βi(x) − C.

Let u ∈ Yk. We have

ϕ(u) = I(u) − φ(u) −H(u)

≤
1

p−
Φ(u) −

c1

q+

∫

∂Ω

|u|q(x)dσx − C
(

∫

Ω

|u|β1(x)dx+

∫

∂Ω

|u|β2(x)dσx

)

+

∫

Ω

h1(x)|u|dx +

∫

∂Ω

h2(x)|u|dσx + C

≤
1

p−
max{ξ2‖u‖

p+

, ζ2‖u‖
p−

} −
c1

q+
min{|u|q

+

Lq(x)(∂Ω)
, |u|q

−

Lq(x)(∂Ω)
}

+ 2(|h1|Lp′(x)(Ω)|un|Lp(x)(Ω) + |h2|Lp′(x)(∂Ω)|un|Lp(x)(∂Ω)) + C.

If max{ξ2‖u‖p+

, ζ2‖u‖p−

} = ξ2‖u‖p+

, min{|u|q
+

Lq(x)(∂Ω)
, |u|q

−

Lq(x)(∂Ω)
} = |u|q

+

Lq(x)(∂Ω)
, then we

have

ϕ(u) ≤
ξ2

p−
‖u‖p+

−
c1

q+
|u|q

+

Lq(x)(∂Ω)
+ 2(|h1|Lp′(x)(Ω)|un|Lp(x)(Ω) + |h2|Lp′(x)(∂Ω)|un|Lp(x)(∂Ω)) + C.

Since dimYk <∞, all norms are equivalent in Yk. So we get

ϕ(u) ≤
ξ2

p−
‖u‖p+

−
c1

q+
‖u‖q+

+ 2(|h1|Lp′(x)(Ω) + |h2|Lp′(x)(∂Ω))‖u‖ + C.

Also note 1 < p+ < q− ≤ q+. Then we get ϕ(u) → −∞ as ‖u‖ → ∞. About other cases, the

proofs are similar and we omit them here. So (A3) holds. From the proof of (A2) and (A3), we

can choose ρk > γk > 0. Thus we complete the proof of Theorem 3.2(1).

Proof of Theorem 3.2(2) We use Theorem 2.2 to prove it. We need to prove that ϕ

satisfies the (PS)
∗
c condition, and there exist ρk > γk > 0 such that for k large enough we have

(B1)–(B3). By the hypotheses of (ii), for almost all x ∈ ℧i and all u ∈ R, we have

fi(x, u) ≥ sgn(u)hi(x) − ϑi|u|
βi(x)−1,
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which implies

Fi(x, u) ≥ hi(x)|u| −
ϑi

βi(x)
|u|βi(x), i = 1, 2.

For u ∈ Yk with ‖u‖ < 1 appropriate small such that ξ2‖u‖p+

< ζ2‖u‖p−

, we have

ϕ(u) = I(u) − φ(u) −H(u)

≤
1

p−
Φ(u) −

c1

q+

∫

∂Ω

|u|q(x)dσx −

∫

Ω

(F1(x, u) − h1(x)|u|)dx

−

∫

∂Ω

(F2(x, u) − h2(x)|u|)dσx

≤
1

p−
Φ(u) −

c1

q+

∫

∂Ω

|u|q(x)dσx +
ϑ1

β−
1

∫

Ω

|u|β1(x)dx+
ϑ2

β−
2

∫

∂Ω

|u|β2(x)dσx

≤
ζ2

p−
‖u‖p−

−
c1

q+
min{|u|q

+

Lq(x)(∂Ω)
, |u|q

−

Lq(x)(∂Ω)
} +

ϑ1

β−
1

max{|u|
β

+
1

Lβ1(x)(Ω)
, |u|

β
−

1

Lβ1(x)(Ω)
}

+
ϑ2

β−
2

max{|u|
β

+
2

Lβ2(x)(∂Ω)
, |u|

β
−

2

Lβ2(x)(∂Ω)
}.

If min{|u|q
+

Lq(x)(∂Ω)
, |u|q

−

Lq(x)(∂Ω)
} = |u|q

+

Lq(x)(∂Ω)
and

max{|u|
β

+
1

Lβ1(x)(Ω)
, |u|

β
−

1

Lβ1(x)(Ω)
, |u|

β
+
2

Lβ2(x)(∂Ω)
, |u|

β
−

2

Lβ2(x)(∂Ω)
} = |u|

β
+
1

Lβ1(x)(Ω)
,

noting that dim Yk <∞ implies all norms are equivalent in Yk, we see that the above inequality

becomes

ϕ(u) ≤
ζ2

p−
‖u‖p−

−
c1

q+
|u|q

+

Lq(x)(∂Ω)
+ C(β−

1 , β
−
2 )|u|

β
+
1

Lβ1(x)(Ω)

=
ζ2

p−
‖u‖p−

−
c1

q+
‖u‖q+

+ C(β−
1 , β

−
2 )‖u‖β

+
1 .

If p− < β+
1 , then we get

ϕ(u) ≤ C‖u‖p−

−
c1

q+
‖u‖q+

.

Let ‖u‖ = γk. If we choose γk small enough, and note that p−, β−
i > q+, i = 1, 2, we have

ϕ(u) < 0. If p− ≥ β+
1 , we have

ϕ(u) ≤ C‖u‖β
+
1 −

c1

q+
‖u‖q+

.

We have the same result. So (B2) holds. For other cases, from βi(x) < p(x), ∀x ∈ Ω, i = 1, 2,

we can check that (B2) also holds.

Now we prove that (B1) holds. Let u ∈ Zk with ‖u‖ appropriate small such that ζ1‖u‖p+

<

ξ1‖u‖p−

. Similarly to the proof of Theorem 3.2(1), we have

ϕ(u) = I(u) − φ(u) −H(u)

≥
ζ1

p+
‖u‖p+

− C(q−, β−
1 , β

−
2 )max{|u|q

+

Lq(x)(∂Ω)
, |u|q

−

Lq(x)(∂Ω)
,

|u|
β

+
1

Lβ1(x)(Ω)
, |u|

β
−

1

Lβ1(x)(Ω)
, |u|

β
+
2

Lβ2(x)(∂Ω)
, |u|

β
−

2

Lβ2(x)(∂Ω)
}.
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If

max{|u|q
+

Lq(x)(∂Ω)
, |u|q

−

Lq(x)(∂Ω)
, |u|

β
+
1

Lβ1(x)(Ω)
, |u|

β
−

1

Lβ1(x)(Ω)
, |u|

β
+
2

Lβ2(x)(∂Ω)
, |u|

β
−

2

Lβ2(x)(∂Ω)
} = |u|q

+

Lq(x)(∂Ω)
,

then we have

ϕ(u) ≥
ζ1

p+
‖u‖p+

− C(q−, β−
1 , β

−
2 )λq+

k ‖u‖q+

.

Choosing ρk = (C(q−, β−
1 , β

−
2 )λq+

k
p+

ζ1
)

1
p+

−q+ with ‖u‖ = ρk, we have

ϕ(u) ≥
ζ1

p+
ρ

p+

k −
ζ1

p+
ρ

p+

k = 0.

Since q+ < β−
i and βi(x) < p(x), ∀x ∈ Ω, we have p+ ≥ p− > β−

i > q+, i = 1, 2, and because

λk → 0, we have ρk → 0. For the other cases we can get the same result. From the proof above,

we can choose ρk > γk > 0. Note Yk ∩ Zk 6= ∅. So

max
u∈Yk,‖u‖≤γk

ϕ(u) < 0 ≤ inf
u∈Zk,‖u‖≤ρk

ϕ(u).

On the other hand, from the proof of (B1), we know that for u ∈ Zk and ‖u‖ ≤ ρk small enough

ϕ(u) ≥ −C(q−, β−
1 , β

−
2 )λq+

k ‖u‖q+

holds, since λk → 0 and ρk → 0 as k → ∞. This implies that (B3) holds. Finally, we prove

(PS)
∗
c condition. Consider a sequence {unj

}nj≥1 ⊂ X such that

nj → ∞, unj
⊂ Ynj

, ϕ(unj
) → c and (ϕ|Ynj

)′(unj
) → 0.

We claim that the sequence {unj
}n≥1 is bounded. If it is not true, by passing a subsequence if

necessary, we may assume ‖unj
‖ → +∞. Without loss of generality, we assume ‖unj

‖ ≥ 1 and

|unj
| → +∞ as nj → +∞ for any x ∈ Ω. Similarly to Lemma 4.1, we have

M1 ≥ −ϕ(unj
) = −I(unj

) + φ(unj
) +H(unj

)

≥ −
1

p−
Φ(unj

) +
1

q+

∫

∂Ω

(c(x)|unj
|q(x))dσx +H(unj

), (4.6)

M2 ≥ 〈ϕ′(unj
), unj

〉 = Φ(unj
) −

∫

∂Ω

(c(x)|unj
|q(x))dσx − 〈ψ(unj

), unj
〉. (4.7)

Combining (4.6) and (4.7), we have

q+M1 +M2 ≥
(

1 −
q+

p−

)

Φ(unj
) + q+H(unj

) − 〈ψ(unj
), unj

〉

≥
(

1 −
q+

p−

)

ξ1‖unj
‖p−

−

∫

Ω

(q+F1(x, unj
) − f1(x, unj

)unj
)dx

−

∫

∂Ω

(q+F2(x, unj
) − f2(x, unj

)unj
)dσx

+ (q+ − 1)
(

∫

Ω

h1(x)|unj
|dx+

∫

∂Ω

h2(x)|unj
|dσx

)

. (4.8)
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By virtue of assumption (i), let η = q+ and n be large enough. Then for almost all x ∈ ℧i we

have

q−Fi(x, unj
) − fi(x, unj

)unj
≤ ε|unj

|µ(x).

Thus, by Hölder’s inequality, (4.8) becomes

q−M1 +M2 ≥
(

1 −
q+

p−

)

ξ1‖unj
‖p−

− ε
(

∫

Ω

|unj
|µ(x)dx+

∫

∂Ω

|unj
|µ(x)dσx

)

− 2(q+ − 1)(|h1|Lp′(x)(Ω)|unj
|Lp(x)(Ω) + |h2|Lp′(x)(∂Ω)|unj

|Lp(x)(∂Ω))

≥
(

1 −
q+

p−

)

ξ1‖unj
‖p−

− Cε‖unj
‖µ+

− 2(q+ − 1)C(|h1|Lp′(x)(Ω) + |h2|Lp′(x)(∂Ω))‖unj
‖.

The last inequality follows from the compact embedding in Propositions 2.1 and 2.2. Since

p− > q+, we have

1 −
q+

p−
> 0 and p− > µ+,

which implies that the sequence {unj
}nj≥1 ⊂ X is bounded. It is a contradiction to the suppo-

sition. Therefore, we have proved that {unj
}nj≥1 ⊂ X is bounded. By passing a subsequence if

necessary, we can assume unj
⇀ u0 in X as nj → +∞. As X =

⋃

nj

Ynj
, we can choose vnj

∈ Ynj

such that vnj
→ u0. Hence

lim
nj→∞

ϕ′(unj
)(unj

− u0) = lim
nj→∞

ϕ′(unj
)(unj

− vnj
) + lim

nj→∞
ϕ′(unj

)(vnj
− u0)

= lim
nj→∞

(ϕ|Ynj
)′(unj

)(unj
− u0) = 0.

Noting that ϕ′ = L− J − ψ is of type (S+), we have

unj
→ u0 and ϕ′(unj

) → ϕ′(u0).

Next, we prove ϕ′(u0) = 0. Taking arbitrary wk ∈ Yk, when nj ≥ k, we have

〈ϕ′(u0), wk〉 = 〈ϕ′(u0) − ϕ′(unj
), wk〉 + 〈ϕ′(unj

), wk〉

= 〈ϕ′(u0) − ϕ′(unj
), wk〉 + 〈(ϕ|Ynj

)′(unj
), wk〉.

Taking limit on the right-hand side of the equation above, we obtain

〈ϕ′(u0), wk〉 = 0, ∀wk ∈ Yk.

So we have ϕ′(u0) = 0. Therefore, ϕ satisfies (PS)
∗
c condition for every c ∈ R. Thus we complete

the proof.

Remark 4.2 In the proof of Theorem 3.2(2), if β+
i < p−, i = 1, 2, we can get the further

result that the sequence of nontrivial solutions of (1.1), denoted as {vk}k≥1, is bounded. In
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fact, we have

0 = 〈ϕ′(vk), vk〉 = Φ(vk) −

∫

∂Ω

c(x)|vk|
q(x)dσx − 〈ψ(vk), vk〉

≥Φ(vk) −

∫

∂Ω

c(x)|vk|
q(x)dσx −

(

∫

Ω

ϑ1|vk|
β1(x)dx+

∫

∂Ω

ϑ2|vk|
β2(x)dσx

)

≥ min{ξ1‖vk‖
p−

, ζ1‖vk‖
p+

} − c2 max{|vk|
q+

Lq(x)(∂Ω)
, |vk|

q−

Lq(x)(∂Ω)
}

− ϑ1 max{|vk|
β

+
1

Lβ1(x)(Ω)
, |vk|

β
−

1

Lβ1(x)(Ω)
} − ϑ2 max{|vk|

β
+
2

Lβ2(x)(∂Ω)
, |vk|

β
−

2

Lβ2(x)(∂Ω)
}

≥min{ξ1‖vk‖
p−

, ζ1‖vk‖
p+

} − C(c2, ϑ1, ϑ2)max{|vk|
q+

Lq(x)(∂Ω)
, |vk|

q−

Lq(x)(∂Ω)
,

|vk|
β

+
1

Lβ1(x)(Ω)
, |vk|

β
−

1

Lβ1(x)(Ω)
, |vk|

β
+
2

Lβ2(x)(∂Ω)
, |vk|

β
−

2

Lβ2(x)(∂Ω)
}.

Note

q+ < β−
i < β+

i < p−, i = 1, 2.

Similarly to the proof above, we conclude that {vk}k≥1 is bounded in W 1,p(x)(Ω).
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