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Abstract Let G be a finite group with a non-central Sylow r-subgroup R, Z(G) the
center of G, and N a normal subgroup of G. The purpose of this paper is to determine
the structure of N under the hypotheses that N contains R and the G-conjugacy class
size of every element of N is either 1 or m. Particularly, it is shown that N is Abelian if
N ∩ Z(G) = 1 and the G-conjugacy class size of every element of N is either 1 or m.
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1 Introduction

All groups considered in this paper are finite. Let G be a group, π a set of some primes and

x an element of G. xG denotes the conjugacy class containing x, |xG| denotes the size of xG, xπ

and xπ′ denote π-component and π′-component of x, respectively. Moreover, we write Gπ for

a Hall π-subgroup of G, Gπ′ for a Hall π′-subgroup of G, and nπ for the π-part of n whenever

n is a positive integer.

In 1904, Burnside proved that if a group G has a conjugacy class with prime power size,

then G is not simple (see [3, Corollary II, p. 322]). Since then, many authors have investigated

the relationship between the structure of a group and its conjugacy class sizes (for example,

[1, 2, 4, 5, 8–14]). Among these results, a classic result by Itô [8] asserts that a group G is

nilpotent if |xG| = 1 or m for every x ∈ G. Recently, Beltrán and Felipe [2] proved that every

Hall p′-subgroup of a p-solvable group is nilpotent if |xG| = 1 or m for every p′-element x of

G. On the other hand, the structure of a normal subgroup N of a group G was given if N

is the union of some G-conjugacy classes (see [9–12]). Now, we are interested in the following

question: Let G be a finite group and let N be a normal subgroup of G. If |xG| = 1 or m for

every element x ∈ N , is N nilpotent?

Our main result is the following theorem.

Theorem 1.1 Let G be a finite group with a non-central Sylow r-subgroup R and N a

normal subgroup of G containing R. If |xG| = 1 or m for every element x of N , then N is

nilpotent.
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2 Preliminaries

We first list some lemmas which are useful in the proof of our main result.

Lemma 2.1 (see [5, Lemma 1.1]) Let N be a normal subgroup of a group G and x an

element of G. Then

(a) |xN | divides |xG|;

(b) |(Nx)G/N | divides |xG|.

Corollary 2.1 Let N be a normal subgroup of a group G and N ∩ Z(G) = 1. If |xG| = 1

or m for every element x of N , then N is Abelian.

Proof By the assumption of this corollary, we may assume |N | = km + 1, where k is the

number of noncentral G-conjugacy classes contained in N . It follows that (|N |, m) = 1. By

Lemma 2.1, we deduce that N is Abelian.

Lemma 2.2 (see [7, Theorem 33.4]) Let G be a group. A prime p does not divide any

conjugacy class size of G if and only if G has a central Sylow p-subgroup.

Lemma 2.3 Let π be a set of some primes and N be a normal subgroup of a group G. If

x = xN is a π-element, then there exists a π-element x∗ of G such that x = x∗.

Proof Let o(x) = n0 and o(x) = n · m such that n is a π-number and (n, m) = 1. Then

n0 | n and xn0 ∈ N . Since (n, m) = 1, there exist integers u and v such that un + vm = 1. It

follows from x = xun · xvm that xN = (xm)vN . It is clear that x∗ = (xm)v is a π-element.

Lemma 2.4 (see [6, Theorem 1]) Let G be a group acting transitively on a set Ω with

|Ω| > 1. Then there exist a prime p and a p-element x ∈ G such that x acts without fixed point

on Ω.

3 Proof of Theorem 1.1

Now, we are equipped to prove the main result.

Assume that Theorem 1.1 is not true. Let G be a counterexample with minimal order, and

Z(G) be the center of the group G. Without loss of generality, we may replace N by NZ(G).

Therefore we may assume that Z(G) ≤ N . We will complete the proof by the following steps.

Step 1 Np � Z(G) for any prime divisor p(6= r) of |N |.

If not, there exists a prime divisor q(6= r) of the order of N such that Nq ≤ Z(G) and

thus Nq E G. Consider the quotient groups G/Nq and N/Nq. For convenience, we use “˜” to

work in the factor group mod Nq. Obviously, R̃ is a non-central Sylow r-subgroup of G̃, and

Ñ is a normal subgroup of G̃ containing R̃. Let x̃ be an element of Ñ and y an element of

G. We may assume that x is a q′-element of N by Lemma 2.3. If x̃ ỹ = ỹ x̃, then [x, y] ∈ Nq.

So y normalizes the group 〈x〉 × Nq, and hence [x, y] ∈ 〈x〉. Consequently, [x, y] = 1. So

C eG(x̃) = C̃G(x). Therefore, |x̃
eG| = |G̃ : C eG(x̃)| = |G̃ : C̃G(x)| = |G : CG(x)| = 1 or m. This

means that the hypotheses of the theorem are inherited by factor group G̃ and Ñ . We conclude

that Ñ is nilpotent by the minimal choice of G. Since Nq ≤ Z(G) while Z(G) ≤ Z(N), N is

nilpotent, a contradiction.

In the following, we will consider the quotient groups G/Z(G) and N/Z(G). For convenience,

we use “ ” to work in the factor group mod Z(G).
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Step 2 For any 1 6= x ∈ N , we have

( i ) If o(x) is a power of a prime p, then CN (x)p′ ≤ Z(CG(x)).

(ii) If o(x) is not a prime power, then CN (x) ≤ Z(CG(x)).

If o(x) is a power of p, then by Lemma 2.3 we may assume that x is a p-element. For any

p′-element y ∈ N∩CG(x) = CN (x), since CG(xy) = CG(x)∩CG(y) ⊆ CG(x), the assumption of

the theorem implies CG(xy) = CG(x), and hence CG(x) ⊆ CG(y). It follows that y ∈ Z(CG(x)),

and therefore CN (x)p′ ≤ Z(CG(x)).

If o(x) is not a prime power, then o(x) is also not a prime power. So we may assume

x = x1x2 · · ·xs, where the order of each xi is a power of a prime pi and xi commutes pairwise

with pi 6= pj (i, j = 1, 2, · · · , s and s ≥ 2). Since o(x) is not a prime power, there at least exist

two elements beyond Z(G) among xi (1 ≤ i ≤ s), say, x1 and x2. Noticing that x, x1 and x2

are non-central elements and CG(x) = CG(x1) ∩ CG(x2 · · ·xs) = CG(x2) ∩ CG(x1x3 · · ·xs), we

have CG(x) = CG(x1) = CG(x2) by the assumption of the theorem. On the other hand, (i)

implies that CN (x)p′

1
≤ Z(CG(x)) and CN (x)p′

2
≤ Z(CG(x)), while CN (x)p′

1
CN (x)p′

2
= CN (x).

So CN (x) ≤ Z(CG(x)).

Step 3 Let 1 6= x, y ∈ N and o(x) be not a prime power. If CG(x) 6= CG(y), then

CN (x) ∩ CN (y) = Z(G).

By (ii), we have CN (x) ≤ Z(CG(x)). If there exists an element a such that 1 6= a ∈

CN (x) ∩ CN (y) but a /∈ Z(G), then CG(x) = CG(a), and therefore CN (x) = CN (a). Also,

a ∈ CN (y) implies y ∈ CN (a) = CN (x) ≤ Z(CG(x)). It follows that CG(x) ⊆ CG(y). Hence

CG(x) = CG(y), a contradiction.

Step 4 For any 1 6= x ∈ N , we have

(iii) If o(x) is a power of a prime q, then |x G|q′ = mq′ .

(iv) If o(x) is not a prime power, then |x G| = m.

Let CG(x) = H . For every element y ∈ H of order of a power of a prime t where t ∈ q′, we

may assume that y is a t-element and y ∈ H by Lemma 2.3. Therefore we have that 〈x, y〉 is

a cyclic group and hence 〈x, y〉 is Abelian. So y ∈ CG(x). It follows that |H |t = |CG(x)|t. So

|H |q′ = |CG(x)|q′ . Therefore

|xG|q′ =
|G|q′

|H |q′

=
|G|q′

|CG(x)|q′

=
|G|q′/|Z(G)|q′

|CG(x)|q′/|Z(G)|q′

=
|G|q′

|CG(x)|q′

= |G : CG(x)|q′ = mq′ .

Next, if x is not a prime power order element, then o(x) is also not a prime power. So

we may assume that x = x1x2 · · ·xs, where the order of each xi is a power of a prime pi and

xi commute pairwise with pi 6= pj (i, j = 1, 2, · · · , s and s ≥ 2). Since o(x) is not a prime

power, there at least exist two elements beyond Z(G) among xi (1 ≤ i ≤ s), say, x1 and x2. So

x = x1 x2 x3 · · ·xs. Obviously, CG(x) = CG(x1)∩CG(x2 x3 · · ·xs) = CG(x2)∩CG(x1 x3 · · ·xs),

and it is clear that CG(x) ≤ CG(x1) and CG(x) ≤ CG(x2). Hence |x G
1
| | |x G| and |x G

2
| | |x G|.

By (iii), we have mp′

1
| |x G| and mp′

2
| |x G|. So |x G| = m.

Step 5 If 1 6= x ∈ N is not a prime power order element, then CG(x) = CG(x), particularly,

CN (x) = CN (x).

Since

|x G| = |G : CG(x)| ≤ |G : CG(x)| = |G : CG(x)| = m

while |x G| = m by (iv), thus we obtain CG(x) = CG(x). Particularly, CN (x) = CG(x) ∩ N =

CG(x) ∩ N = CG(x) ∩ N = CN (x).
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Step 6 Let g0 ∈ N − Z(G) and g
0

be not a prime power order element. Consider the

conjugacy class g N
0

of g
0

in N . Then there exists some non-central element x of N such that

g N
0
∩ CN (x) = ∅.

Consider the conjugacy class gN
0

of g0 in N . Noting that N operates transitively on the set

gN
0

with |gN
0
| > 1, we have that there exists an element x of N such that x operates without

fixed point on gN
0

by Lemma 2.4. It follows that gN
0

∩ CN (x) = ∅. So g N
0
∩ CN (x) = ∅.

Step 7 There exists a {p, r}-element g of N such that g is a {p, r}-element of N for any

prime divisor p(6= r) of |N |.

According to Step 1, for any prime divisor p(6= r) of |N |, there exists a non-central p-

element in N , say, x. By (i), we have CN (x) = CN (x)p × CN (x)p′ . We claim CN (x)r � Z(G).

Otherwise, CN (x)r ≤ Z(G). As R is non-central, there exists a non-central r-element z such

that z ∈ N \ CN (x)r . So CN (x)r < 〈CN (x)r , z〉 ≤ CG(z), in contradiction to |zG| = |xG| = m.

Take z ∈ CN (x)r \ Z(G) and let g = xz. Thus g = x z. It is clear that g and g satisfy the

requirement of Step 7.

Step 8 If there exist an r-element x of N and a prime divisor p(6= r) of |N | such that

p ∤ |CN (x)|, then |N |p | m.

As

|xN | = |N : CN (x)| = |N : CN (x)|,

it leads to |N |p | |xN | since p does not divide |CN (x)|. It follows that |N |p | |xG| by Lemma

2.1. The hypotheses of the theorem imply |N |p | m.

Step 9 |CN (y)| and |N | have the same prime divisors for any r-element y of N .

If it is not true, there exist an r-element x0 of N and a prime divisor p of N such that p

does not divide |CN (x0)|. Obviously, p 6= r. By Step 8, we have |N |p | m.

By Step 7, we may take a {p, r}-element g ∈ N such that g is a {p, r}-element. Applying

Step 6, we have that there exists a non-central element x of N such that g N ∩ CN (x) = ∅.

Consider that CN (x) operates on g N by conjugation. Notice that no element in CN (x) distinct

from 1 centralizes any element in g N by Steps 3 and 5. So all orbits of CN (x) on g N have the

same length |CN (x)|, which implies |CN (x)| | |g N |. Also |g N | | |g G| by Lemma 2.1, so

|CN (x)| | |g G|. (3.1)

On the other hand, it is obvious that CN (g) operates without fixed points on g G − g G ∩

CN (g). By Steps 3 and 5 once again, we have

|CN (g)| | (|g G| − |g G ∩ CN (g)|). (3.2)

Since N contains a Sylow r-subgroup R of G, |CN (g)|r = |CN (x)|r, from which the rela-

tionship between (3.1) and (3.2) becomes

|CN (g)|r | |g G ∩ CN (g)|. (3.3)

Notice |N |p | m. Also, Step 4 implies that |N |p | |g G|. Obviously, |CN (g)|p ≤ |N |p. So

|CN (g)|p | |g G|. Noticing (3.2), we have

|CN (g)|p | |g G ∩ CN (g)|. (3.4)
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By (3.3) and (3.4), we have

|CN (g)|{p,r} | |g G ∩ CN (g)|. (3.5)

Noticing that CN (g) is Abelian by ( ii ), we get

|g G ∩ CN (g)| = |CN (g)|{p,r}, (3.6)

a contradiction.

Step 10 The final contradiction.

Let p be a prime divisor of |N | with p 6= r. Choose a non-central r-element x0 such that

|CN (x0)|p is as small as possible. By Step 9 we have |CN (x0)|p > 1. So, it is clear that we may

take a {p, r}-element g ∈ CN (x0) such that g is also a {p, r}-element. Arguing as in Step 9, we

may see that (3.1) and (3.2) still hold, and therefore (3.3) also holds.

Noting CN (g) = CN (x0) by Step 3, we have |CN (g)|p = |CN (x0)|p. Noticing |CN (x0)|p ≤

|CN (x)|p by the choice of x0, we have |CN (g)|p ≤ |CN (x)|p. Consequently, |CN (g)|p | |g G| by

(3.1). By using a similar argument as in Step 9, (3.4) is obtained. Arguing as in Step 9 once

again, we have (3.5), and thus equation (3.6) holds, a contradiction.

Corollary 3.1 Let G be a finite group with a non-central Sylow r-subgroup R and N a

normal subgroup of G containing R. If |xG| = 1 or m for every element x of N , then either N

is Abelian or Nr′ ≤ Z(G).

Proof By Theorem 1.1, we have that N is nilpotent. So, for any p(6= r)-element x of

N , we have r ∤ |G : CG(x)|. If Nr′ � Z(G), then r ∤ m. So R ≤ Z(N). However, since R

is non-central, there exists a non-central r-element x0 such that N ≤ CN (x0). Thus we have

Nr′ ≤ Z(CG(x0)) by (i) in the proof of Theorem 1.1. So N is Abelian.

Corollary 3.2 (see [8, Theorem 1]) Let G be a group. If |xG| = 1 or m for every element

x in G, then G is nilpotent.

Proof Let N = G. Obviously, N satisfies the hypotheses of Theorem 1.1. So N = G is

nilpotent by Theorem 1.1.
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