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Abstract The authors construct self-similar solutions for an N-dimensional transport

equation, where the velocity is given by the Riezs transform. These solutions imply non-

uniqueness of weak solution. In addition, self-similar solution for a one-dimensional con-

servative equation involving the Hilbert transform is obtained.
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1 Introduction

In this paper, we shall construct self-similar solutions of the transport equation

θt + Rθ · ∇θ = 0, on R
N × R

+, (1.1)

θ(x, 0) = θ0(x), (1.2)

where θ : R
N ×R

+ → R, N ≥ 2, Rθ = (R1θ, · · · , RNθ) and Riθ are the Riesz transform of θ in

the i-th direction, i.e.,

Riθ(x) = Γ
(N + 1

2

)
π−N+1

2 P.V.

∫

RN

xi − yi

|x − y|N+1
θ(y)dy, 1 ≤ i ≤ N. (1.3)

Equation (1.1) was studied in [2], and the authors showed the blow-up in finite time for all

positive initial data. For a simple proof of the formation of singularities with radial initial data

see [10], and for the viscous case see [13].

The technique used in this paper to construct self-similar solutions of the form

θ(x, t) = Nk(N)
((

1 −
( |x|

t

)2)
+

) 1
2 ∈ C

1
2 (RN ) (1.4)

is based on a result of [11], where the author showed that the function θ(x, 1) is such that

Λθ(x, 1) = N in the unit ball (see Section 2). These are also self-similar solutions of the 1D
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transport equation

θt + Hθθx = 0, on R × R
+, (1.5)

θ(x, 0) = θ0(x), (1.6)

where Hθ is the Hilbert transform of θ, i.e.,

Hθ(x) =
1

π
P.V.

∫
θ(y)

x − y
dy

(for more details on this equation, see [1, 7, 8, 14]).

In Section 3, we will see that this result can be used to show the existence of self-similar

solutions of the equation

θt + (θHθ)x = 0, in R
N × R

+, (1.7)

θ(x, 0) = θ0(x), (1.8)

which was studied from completely different contexts (vortex sheet, water wave, 1D model of

the quasi-geostrophic equation, dislocations dynamics in solids and complex Burgers equation)

in [1, 3–6,9, 12] and references therein. Nevertheless we will follow the ideas of [4] to construct

the self-similar solutions.

Next we shall comment briefly the notation: the spaces W k,p are the classical Sobolev spaces

(k derivatives in Lp). The operator Λα is defined by the operator (−∆)
α
2 , i.e., in the Fourier

space

Λ̂αθ(ξ) = |ξ|αθ̂(ξ),

and we recall the identity

R̂jθ(ξ) = −i
ξj

|ξ| θ̂(ξ).

2 Riezs Transport Equation

2.1 Self-similar solutions

From the scaling invariance of equation (1.1), θ(x, t) → θ(λx, λt) with λ > 0, we will consider

a self-similar function with the following form:

θ(x, t) = Φ
(x

t

)
= Φ(ξ), (2.1)

where ξ = x
t
. The equalities

∂tθ(x, t) = ∂tΦ
(x

t

)
= −ξ

t
∇Φ(ξ),

Rθ(x, t) = RΦ(ξ),

∇θ(x, t) = ∇
(
Φ

(x

t

))
=

1

t
∇Φ(ξ)

yield, from equation (1.1),

∇Φ(ξ) · (RΦ(ξ) − ξ) = 0. (2.2)

Now we shall show the existence of a solution to (2.2) by means of the following lemma.
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Lemma 2.1 The function

v(ξ) = Nk(N)((1 − |ξ|2)+)
1
2 ∈ C

1
2 (RN ), (2.3)

where k(N) = Γ(N
2 )(2

1
2 Γ(3

2 )Γ(2N+1
2 ))−1 and f+ is the positive part of the function f , satisfies

the equalities

Rv(ξ) = ξ, if |ξ| < 1,

and

∇v(ξ) = 0, if |ξ| > 1.

Proof From [11], we know that v(ξ) satisfies the following properties:

(1) Λv(ξ) = N , if |ξ| < 1.

(2) Λv(ξ) ∈ L1(RN ).

(3) Λv is radial.

Since

Rv = ∇(Λ−1v) ≡ ∇Ψ, (2.4)

∇ · Rv = Λv, (2.5)

we have ∆Ψ = Λv and therefore Ψ is a radial function with ∆Ψ(ξ) = N if |ξ| < 1. This implies

the following expression for Ψ:

Ψ(ξ) =
|ξ|2
2

+ a0, if |ξ| < 1,

where a0 is constant. By using (2.4), we obtain

Rv(ξ) =
ξ

|ξ|
∂

∂|ξ|Ψ(ξ) = ξ, if |ξ| < 1. (2.6)

Thus, the function

θ(x, t) = Nk(N)
((

1 −
( |x|

t

)2)
+

) 1
2 ∈ C

1
2 (RN ) (2.7)

is a self-similar solution of equation (1.1) (almost everywhere).

Remark 2.1 We can check that the functions θT (x, t) = −θ(x, (T − t)), with 0 < T < ∞,

are solutions with an initial data θT (x, 0) = −θ(x, T ), which collapse in a point in finite time

T .

Remark 2.2 The previous ideas can be easily adapted to prove that the function,

θ(x, t) = k(1)
((

1 −
( |x|

t

)2)
+

) 1
2 ∈ C

1
2 (R), (2.8)

is a self-similar solution to equation

θt + Hθθx = 0, on R × R
+, (2.9)

which is a one-dimensional version of equation (1.1).
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2.2 Formal weak solutions and non-uniqueness

In this section, we shall check that the previous functions are solutions to (1.1) in the weak

sense that we define below. In addition, we will be able to show the non-uniqueness.

Definition 2.1 The function θ(x, t) is a weak solution to (1.1), if

θ ∈ C((0, T ), Lq(RN )) ∩ C((0, T ), W 1,p(RN ))

with 1 ≤ q < ∞ and 1 ≤ p < 2,

∂tθ ∈ W 1,p(RN )

for all t > 0 with 1 ≤ p < 2,

∫

RN

(θ(x, t)t + Rθ(x, t) · ∇θ(x, t))φ(x, t)dx = 0

for all t ∈ (0, T ) and all φ ∈ C∞
c ((0, T ) × RN ), and

lim
t→0+

θ(x, t) = θ0(x), in Lq(RN ).

Theorem 2.1 (Non-uniqueness) The function

Φ(x, t) = Nk(N)
((

1 −
( |x|

t

)2)
+

) 1
2

is a global weak solution to (1.1) in the sense of Definition 2.1 with zero initial data.

Proof Given a function φ(x, t) ∈ C∞
c ((0,∞) × RN ) and a fixed time t > 0, we have

∫

RN

(Φ(x, t)t + RΦ(x, t) · ∇Φ(x, t))φ(x, t)dx

=

∫

|x|<t

(Φ(x, t)t + RΦ(x, t) · ∇Φ(x, t))φ(x, t)dx

=

∫

ε<|x|<t

(Φ(x, t)t + RΦ(x, t) · ∇Φ(x, t))φ(x, t)dx

+

∫

|x|<ε

(Φ(x, t)t + RΦ(x, t) · ∇Φ(x, t))φ(x, t)dx,

where 0 < ε < t. The second term on the right-hand side of the last expression is equal to zero.

In addition, we have the following identities:

∇Φ(x, t) =





0, |x| > t,

Nk(N)
x
t2(

1 − |x|2

t2

) 1
2

, |x| < t,
(2.10)

∂tΦ(x, t) =





0, |x| > t,

Nk(N)
− |x|2

t3(
1 − |x|2

t2

) 1
2

, |x| < t.
(2.11)
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Thus, if p < 2, we obtain

‖∇Φ( · , t)‖Lp(RN ) = Nk(N)
( ∫

|x|<t

|x|p

t2p

(
1 − |x|2

t2

) p

2

dx
) 1

p

= Nk(N)t
N
p
−p

(∫

|x|<t

|x|p
(1 − |x|2) p

2

dx
) 1

p

= C(N)t
N
p
−p

( ∫ 1

0

rN−1+p

(1 − r2)
p

2

dr
) 1

p

= C(N, p)t
N
p
−p,

‖∂tΦ( · , t)‖L1(RN ) = Nk(N)
( ∫

|x|<t

|x|2p

t3p

(
1 − |x|2

t2

) p

2

dx
) 1

p

= Nk(N)t
N
p
−p

(∫

|x|<1

|x|2p

(1 − |x|2) p

2

dx
) 1

p

= C(N)t
N
p
−p

( ∫ 1

0

r2p+N−1

(1 − r2)
p

2

dr
) 1

p

= C(N, p)t
N
p
−p.

(2.12)

Therefore,
∫

RN

∂tΦ(x, t)φ(x, t)dx ≤ ‖∂tΦ( · , t)‖L1(RN )‖φ( · , t)‖L∞(RN )

= C(N, 1)tN−1‖φ( · , t)‖L∞(RN )

and ∫

RN

RΦ(x, t) · ∇Φ(x, t)φ(x, t)dx ≤ ‖RΦ( · , t)‖Lq(RN )‖∇Φ( · , t)‖Lp(RN )‖φ( · , t)‖L∞(RN )

≤ C(N, q, p)tN−p‖φ( · , t)‖L∞(RN ),

where 1 < p < 2, 1
p

+ 1
q

= 1 and t > 0. Then, we can conclude

lim
ε→t

∫

ε<|x|<t

(Φ(x, t)t + RΦ(x, t) · ∇Φ(x, t))φ(x, t)dx = 0, ∀ t > 0,

and ∫

RN

(Φ(x, t)t + RΦ(x, t) · ∇Φ(x, t))φ(x, t)dx = 0, ∀ t > 0, ∀φ ∈ C∞
c ((0,∞) × R

N ).

In addition, it is easy to check that

lim
t→0+

Φ(x, t) = 0, in Lp(RN ), with 1 ≤ p < ∞.

3 One Dimensional Conservative Equation

In this section, we will construct self-similar solutions for the equation

θt + (θHθ)x = 0, in R
N × R

+, (3.1)

θ(x, 0) = θ0(x), (3.2)

where θ : R → R and Hθ is the Hilbert transform of the function θ.

We will use the techniques developed in [4] to obtain formally a self-similar solution.

We sketch the mean features of equation (3.1) in the following lemma.
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Lemma 3.1 Let Z(w, t) be a complex function Z : M → C, where M = {w = x + i y : y >

0}, such that

Zt + ZZw = 0, on M, (3.3)

Z(w, 0) = Rθ0(x, y) − i Pθ0(x, y). (3.4)

Pθ(x, y) is the convolution with the Poisson kernel and Rθ(x, y) is the convolution with the

harmonic conjugate Poisson kernel, i.e.,

Pθ(x, y) =
1

π

∫

R

y

y2 + (x − s)2
θ(s)ds, Rθ(x, y) =

1

π

∫

R

x − s

y2 + (x − s)2
θ(s)ds. (3.5)

Then, if Z(w, t) is analytic on M and vanishes at infinity,

θ(x, t) = −ℑ(Z(w, t)|y=0) (3.6)

is a solution to (3.1), with θ(x, 0) = θ0(x) on the points where θ and Hθ are differentiable.

Proof If Z(w, t) satisfies the statements of Lemma 3.1, we can write it in the following

way:

Z(w, t) = Rθ(x, y; t) − i Pθ(x, y; t), (3.7)

where θ(x, t) = −ℑ(Z(w, t)|y=0). In addition, we know

Zt + ZZx = 0, on M,

and from (3.7) it follows Z(w, t)|y=0 = Hθ(x, t) − i θ(x, t). By taking the limit y → 0+ in

equation (3.7), we have the desired result.

Next we shall use the previous lemma to prove the following theorem.

Theorem 3.1 The function

θ(x, t) =
1√
tπ

((
1 − πx2

4t

)
+

) 1
2 ∈ C

1
2 (R)

is a self-similar solution (at least in a weak sense) to (3.1) with the initial data θ0 = δ0, where

δ0 is the Dirac Delta.

Proof By Lemma 3.1, we have to study the solutions of the equation

Zt + ZZw = 0, on M, (3.8)

Z(w, 0) =
1

π

x

x2 + y2
− i

1

π

y

x2 + y2
. (3.9)

A standard argument yields that the solution is constant along the following complex trajecto-

ries

X1(x, y, t) =
1

π

x

x2 + y2
t + x, (3.10)

X2(x, y, t) = − 1

π

y

x2 + y2
t + y. (3.11)
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Thus

Z(X1(x, y, t), X2(x, y, t), t) = Z0(x, y),

and one can check that the solution, Z(w, t), satisfies the requirements of Lemma 3.1. In

addition,

θ(X1, t) = −ℑ(Z(X1, X2, t)|X2=0) = Pθ0(x, y, t)|X2=0 =
y

πt

∣∣∣
X2=0

.

The function

y =
√

πt
((

1 − πx2

t

)
+

) 1
2

satisfies equation (3.11) with X2 = 0, and by equation (3.10) we have

X1 =





2x, |x| <

√
t

π
,

t

πx
+ x, |x| >

√
t

π
.

Furthermore, we can conclude that

θ(x, t) =
1√
tπ

((
1 − πx2

4t

)
+

) 1
2

.

Remark 3.1 This solution was obtained in [3] by using the techniques in Section 2. In

fact, they constructed self-similar solutions to the equation

ut + Λαuux = 0, on R × R
+, (3.12)

u(x, 0) = H(x), (3.13)

where H(x) is the Heaviside function and 0 < α ≤ 2.
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