
Chin. Ann. Math.

30B(5), 2009, 527–538
DOI: 10.1007/s11401-009-0215-1

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2009

Generalized Tricomi Problem for a Quasilinear

Mixed Type Equation∗∗

Shuxing CHEN∗

(Dedicated to Professor Andrew Majda on the Occasion of his 60th Birthday)

Abstract In this paper, the Tricomi problem and the generalized Tricomi problem for a

quasilinear mixed type equation are studied. The coefficients of the mixed type equation

are discontinuous on the line, where the equation changes its type. The existence of solution

to these problems is proved. The method developed in this paper can be used to study

more difficult problems for nonlinear mixed type equations arising in gas dynamics.
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1 Introduction

In this paper, we are concerned with the boundary value problems of a nonlinear mixed

type equation of second order. The motivation comes from the study of the stability of Mach

configuration in gas dynamics. It is known that Mach configuration is a wave configuration

frequently appearing in shock reflections. For instance, consider an incident plane shock front

attacks a plane wall, if the incident angle is smaller than a critical value, then the regular

reflection occurs, while if the incident angle is larger than the critical value, then the Mach

reflection occurs. In the latter case the intersection of the incident shock and the reflected

shock will not meet at the rigid wall, but at a point away from the wall. The intersect is

connected with the rigid wall by another shock front, called Mach stem. Meanwhile, there

is a slip line issuing from the intersection. These three shock fronts and a slip line near the

intersection form a Mach configuration, which was first found by von Neumann (see [15]).

A crucial problem in studying Mach configuration is its stability under perturbation, because

only a stable wave structure is physics and can actually occur. For a Mach configuration in

a compressible flow, a part of the upstream flow first passes across the incident shock and

then passes across the reflected shock, while another part of the upstream flow simply passes

across the Mach stem. After passing shock fronts these two parts of the flow meet again at the

downstream part, where they are separated by a stream line bearing a contact discontinuity.
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Generally, the flow behind the Mach stem is always subsonic, but the flow passing across both

the incident shock and the reflected shock can be subsonic or supersonic. Therefore, referring

to the flow in the downstream part one has two different cases: one is two subsonic regions

separated by a streamline, the other is a subsonic region and a supersonic region adjacent to

each other separated by a streamline. If one neglect the characteristics describing the effect

of transport, then in the first case the flow in the downstream part should be described by an

elliptic equation with discontinuous coefficients, while in the second case the wave configuration

should be described by a mixed type equation. Generally, the first case is called E-E type Mach

configuration, and the second case is called E-H type Mach configuration. The stability of

E-E type Mach configuration has been verified in [3, 4], while the stability of E-H type Mach

configuration is still an open problem so far.

Since the downstream flow behind the reflected shock front and the Mach stem for E-H Mach

configuration is supersonic-subsonic flow separated by a contact discontinuity, so that the flow

should be described by a nonlinear mixed type equation with discontinuous coefficients. As

we know that the study on mixed type equations is much more difficult than the study on

the purely elliptic equations and the purely hyperbolic equations, so that the results on mixed

type equations are also much less than the latter. It turns out that the mixed type equation

introduced in the study on E-H type Mach configurations has some similarity to Lavrentiev-

Bitsadze mixed type equation (see [13]). Correspondingly, the stability of E-H type Mach

configuration will be reduced to a generalized Tricomi problem of such a nonlinear mixed type

equation.

As early in 1923, Tricomi initiated the study of the mixed type equation with the form

y
∂2u

∂x2
+
∂2u

∂y2
= 0 (1.1)

and a special boundary value problem for it in [19]. They are called Tricomi equation and

Tricomi problem by his successors respectively. Later, another mixed type equation, called

Keldysh equation, with the form

y
∂2u

∂y2
+
∂2u

∂x2
= 0 (1.2)

is also studied. These two equations have continuous coefficients. Moreover, both are elliptic

on the upper half plane and are hyperbolic on the lower half plane. The difference is: when the

characteristics on the lower half plane approaches the line y = 0, the characteristics of Tricomi

equation is perpendicular to y = 0, while the characteristics of Keldysh equation is tangential to

y = 0. Such a difference causes great divergence of the setting of the boundary value problems

for these two equations as well as the properties of solutions for them. They stand for two basic

models of mixed type equations.

In 1950, Lavrentiev and Bitsadze [13] introduced a new mixed type equation with the form

∂2u

∂y2
+ sgn y

∂2u

∂x2
= 0. (1.3)

The equation has discontinuous coefficients on the line y = 0, while the solution is required to

be continuous and have continuous derivatives on y = 0. Equation (1.3) was considered as a

simplest model of mixed type equations, but recent research found its new applications. As we
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mentioned above, in the study of E-H type Mach reflection of shock fronts the Euler system

under consideration can be reduced to a nonlinear mixed type equation, which is defined in a

neighborhood of triple intersection with coefficients discontinuous on the slip line (see [6]).

In this paper, we will study the following model quasilinear mixed type equation

(1 + u)
∂2u

∂y2
+ sgn y

∂2u

∂x2
= 0 (1.4)

near u = 0. We hope that such a study will give a good deal of enlightenment to study more

general case. Let δ be a number in (0, 1
2 ), and require |u| ≤ δ in all later discussions. Under

such an assumption, equation (1.4) is elliptic in the upper half plane and is hyperbolic in the

lower half plane.

The equation of characteristic curves of (1.4) in y < 0 is

(1 + u)dx2 − dy2 = 0,

or
dy

dx
= ±

√
1 + u . (1.5)

Hence the rightward characteristics starting from the origin is

Γ1 :







dy

dx
= −

√
1 + u ,

y|x=0 = 0,
(1.6)

while the leftward characteristics starting from (1, 0) is

Γ2 :







dy

dx
=

√
1 + u ,

y|x=1 = 0.
(1.7)

We emphasize that Γ1 and Γ2 depend on the solution u.

Let Γ0 : y = γ0(x) be a C2 curve satisfying γ0(x) > 0 in 0 < x < 1, and

γ0(0) = γ0(1) = 0, γ′0(0) > 0, γ′0(1) < 0. (1.8)

Then we can set the following Tricomi problem

(P1) :











equation (1.4), (x, y) ∈ Ω1,

u(x, y) = ψ(x), (x, y) ∈ Γ0,

u(x, y) = φ(x), (x, y) ∈ Γ1,

(1.9)

where Ω1 is the domain bounded by Γ0, Γ1 and Γ2. |φ|, |ψ| ≤ δ and

γ′1(x) = −
√

1 + φ(x) . (1.10)

Next we are going to prove the following theorem.

Theorem 1.1 Assume that γ0(x) ∈ C1,α0 [0, 1], |γ′(0)|, |γ′(1)| < 1; ψ(x), φ(x) ∈ C1,α0 [0, 1]

satisfy |ψ|, |φ| ≤ δ, φ(0) = ψ(0); γ1(x) ∈ C1,α0 [0, 1] satisfies (1.10). Then there exists a unique

solution u(x, y) ∈ C1,α(Ω1) of (P1), where α is a number in (0, α0) depending on γ0 and γ1.
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Remark 1.1 Since the curve Γ2 also depends on u, the domain Ω1 should be determined

together with the solution u. Therefore, the data on the curve Γ1 will generally be assigned on

a longer segment than actually required. For instance, γ1(x) and φ(x) can be given on [0, 1] and

condition (1.10) is satisfied on this interval. Furthermore, Γ2 is on the left side of the straight

line ℓ2 : y =
√

1 + δ (x − 1) because |u| ≤ δ. Denote by A(x, y) the intersection Γ1 ∩ ℓ2. Then

in order to determine the solution of (1.9), it is enough to have γ1(x) and φ(x) on 0 ≤ x ≤ x.

A more general boundary value problem for (1.4), which is called generalized Tricomi prob-

lem here, is discussed. Assume that Σ1 is a C2 curve y = ζ(x) satisfying

ζ(0) = 0, 0 <
√

1 − δ + ζ′(x) < η, (1.11)

where η is a small number. Denote by Ω2 the domain bounded by Γ0, Σ1 and Γ2, by Ω+ the

domain Ω2 ∩{y = 0}, by (∂u
∂y

)± the upper limit and the lower limit on y = 0. Then we can also

set up the following boundary value problem:

(P2) :



















equation (1.4), (x, y) ∈ Ω2,

u(x, y) = ψ(x), (x, y) ∈ Γ0,

u(x, y) = φ(x), (x, y) ∈ Σ1,

u and ∇u are continuous, on y = 0.

(1.12)

For the problem (P2), we are going to prove

Theorem 1.2 Under the assumptions of Theorem 1.1 on φ, ψ and Γ0 and the assumption

that η is sufficiently small, there exists a unique solution u(x, y) ∈ C0,α(Ω2) of (P2) which sat-

isfies u(x, y) ∈ C1,α(Ω±) and all conditions in (1.11), where α is a number in (0, α0) depending

on γ0 and γ1.

In the next sections, we will give the proof of the existence of solutions to the Tricomi

problem (P1) and the generalized Tricomi problem (P2). Section 2 will give the outline of our

method and the form of the linearized problems, which are Tricomi problem and generalized

Tricomi problem for Lavrentiev-Bitsadze equation (1.3). The Tricomi problem for linear mixed

type equation is solved in Section 3. There we first introduce an operator from the value of u

on x-axis to the value of ∂u
∂y

. Combining the condition on the characteristics Γ1, we establish a

boundary value problem of Laplace equation on Ω+ with oblique derivative boundary condition

on y = 0. Section 4 treats the generalized Tricomi equation. In this case, the relation on x-axis

is more general. Similar argument as did in Section 3 leads us to a boundary value problem of

Laplace equation on Ω+ with a nonlocal boundary condition on y = 0. Based on the results

on the Tricomi problem and the generalized Tricomi problem for Lavrentiev-Bitsadze equation,

the nonlinear problems (P1) and (P2) for equation (1.4) are solved by using implicit function

theorem.

2 Linearization

First let us give the outline of our method to seek the solution to the problems (P1) and

(P2). Without loss of any generality, we may assume ψ(x) = 0. Next we denote the value of

the solution u on x-axis by f(x). Combining it with the boundary condition on the curve γ0,
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we obtain a solution u(x, y) of (1.4) inside Ω+, which is the restriction of the domain Ω1 or Ω2

on the upper half plane. Then the derivative ∂u
∂y

on x-axis can be determined correspondingly,

which is denoted by h(x), i.e. h(x) = ∂u
∂y

(x, 0).

For definiteness we first consider the problem (P1). Using the value of f(x) and h(x) as the

initial data, we can obtain the solution u(x, y) to (1.4) in {y < 0} by solving a Cauchy problem.

The solution is defined in the domain bounded by x-axis and two characteristics issuing from

the points (0, 0) and (1, 0). Denote the rightward characteristics issuing from (0, 0) and the

leftward characteristics issuing from (1, 0) by Γf
1 and Γf

2 respectively. Denote the intersection

of them by Pa : (xa, ya), and denote the value of u on Γf
1 by uf (x). We obviously should have

uf(x) = φ(x) on (0, xa). Hence if we define an operator Φ by

Φ[f, φ] = uf

( x

xa

)

− φ
( x

xa

)

, (2.1)

then to solve the problem (P1) is equivalent to finding a function f(x) satisfying

Φ[f, φ] = 0. (2.2)

Let H be the set C1,α[0, 1], and F be the set of all function in H satisfying f(0) = f(1) = 0.

Next we are going to show that the map (f, φ) 7→ Φ[f, φ] is a nonlinear continuous map from

F ×H to H .

Lemma 2.1 Let u(x, y) be the solution to the boundary value problem















(1 + u)
∂2u

∂x2
+
∂2u

∂y2
= 0,

u|Γ0
= 0,

u|y=0 = f(x)

(2.3)

in the domain Ω+, and h(x) = ∂u
∂y

(0, x). Then f 7→ h is a continuous map from C1,α(0, 1) to

C1,α(0, 1).

Proof The existence of the solution to the Dirichlet problem can be obtained by the

classical theory of nonlinear elliptic equations of second order (see [11]). We indicate here

that it is impossible to expect the C2,α solution to (2.3) even for f(x) ∈ C2,α, because of the

appearance of the singular points (0, 0) and (1, 0) on the boundary. On the other hand, since

both the angles formed by the boundary curve at these two points are less than π, the solution

can be in C1,α (see [10]), where α < α0 is determined by the angles formed by the boundary

curve Γ0 and x-axis at (0, 0) and (1, 0). The estimate of the weak solution of Laplace equation

indicates

‖u‖C1,α ≤ C(‖f‖C1,α + ‖u‖L∞). (2.4)

In view of ‖u‖L∞ ≤ max |f(x)| ≤ ‖f‖C1,α , (2.4) can be simply written as

‖u‖C1,α ≤ C‖f‖C1,α (2.5)

by possibly replacing the constant C. Then the estimate

‖h(x)‖Cα(0,1) ≤ ‖u‖C1,α ≤ C‖f‖C1,α (2.6)

follows, which gives the conclusion of the lemma.



532 S. X. Chen

Lemma 2.2 Let u(x, y) be the solution to the boundary value problem















(1 + u)
∂2u

∂x2
− ∂2u

∂y2
= 0,

u(x, 0) = f(x),
∂u

∂y
(x, 0) = h(x)

(2.7)

in y < 0, where f(x) ∈ C1,α(0, 1), f(0) = f(1) = 0 and h(x) ∈ Cα(0, 1). Denote by Ω− the

domain bounded by x-axis, the rightward characteristics Γ1 : y = γ1(x) issuing from (0, 0) and

the leftward characteristics Γ2 : y = γ2(x) issuing from (1, 0). Denote the equations of Γi by

y = γi(x) for i = 1, 2, and Pa(xa, ya) = Γ1 ∩ Γ2, φ(x) = u(x, γ1(x)). Then

u(x, y) ∈ C1,α(Ω−), φ(x) ∈ C1,α(0, xa),

‖φ(x)‖C1,α ≤ C(‖f‖C1,α + ‖h‖Cα).
(2.8)

Proof Let v1 = ∂u
∂x

and v2 = ∂u
∂y

. Then the equation in (2.7) can be written as























∂v1

∂y
− ∂v2

∂x
= 0,

∂v2

∂y
− (1 + u)

∂v1

∂x
= 0,

v1(x, 0) = f ′(x), v2(x) = h(x).

(2.9)

The functions f ′(x) and h(x) can be extended to (−∞,∞) so that the extended functions

are compactly supported, while their Cα norm are unchanged. Keeping in mind that u =
∫ x

−∞
v1(x)dx, we are going to solve problem (2.9) in the lower half plane.

Denoting by ∂± the operators ∂
∂y

±
√

1 + u ∂
∂x

, from (2.9) we have

√
1 + u∂±v1 ∓ ∂±v2 = 0, (2.10)

which can be written as

∂±(
√

1 + u v1 ∓ v2) −
v1

2
√

1 + u
∂±u = 0. (2.11)

In view of

∂±u = (∂y ±
√

1 + u∂x)

∫ x

−∞

v1 dx

=

∫ x

−∞

v2x dx±
√

1 + u v1 = v2 ±
√

1 + u v1, (2.12)

we have

∂±(
√

1 + u v1 ∓ v2) −
v1v2

2
√

1 + u
± v2

1

2
= 0, (2.13)

which gives a system of integral equations:


















√
1 + u v1 + v2 =

∫

ℓ−

v1v2

2
√

1 + u
+
v2
1

2
ds,

√
1 + u v1 − v2 =

∫

ℓ+

v1v2

2
√

1 + u
− v2

1

2
ds.

(2.14)



Generalized Tricomi Problem for a Quasilinear Mixed Type Equation 533

Obviously, system (2.14) can be solved in Cα by using Picard iteration process. Denote the

solution by (v1, v2), one can obtain u ∈ C1,α by using ∂±u = v2 ±
√

1 + u v1. Hence (2.9) is

weakly satisfied. In accordance, (2.7) is also weakly satisfied.

From the approximate process of solving the integral system (2.14), we also know that the

characteristics determined by
dy

dx
= ± 1√

1 + u
(2.15)

are C1,α curves. It is evident that

γ1(x) ∈ C1,α(0, xa), γ2(x) ∈ C1,α(xa, 1),

‖γ1(x)‖C1,α(0,xa) + ‖γ2(x)‖C1,α(xa,1) ≤ C(‖f‖C1,α + ‖h‖C0,α),

u(x, y) ∈ C1,α(Ω−), ‖u(x, y)‖C1,α(Ω−) ≤ C(‖f‖C1,α + ‖h‖C0,α).

(2.16)

Noticing φ(x) = u(x, γ1(x)), we obtain (2.8) immediately.

Since h(x) is determined by f(x) according to Lemma 2.1, we obtain that Φ[f, φ] is a

continuous map from F ×H to H .

Obviously, Φ[0, 0] = 0. Therefore, by using of the implicit function theorem, the solvability

of (2.2) near φ = 0 can be obtained from the reversibility of the linearized operator Φ′ at

f = φ = 0. Notice that the operator Φ′ at f = φ = 0 is an operator defined similarly to the

operator Φ, but one has to replace problem (P1) in the definition of Φ by the Tricomi problem

of Lavrentiev-Bitsadze equation as














∂2u

∂x2
+ sgn y

∂2u

∂y2
= 0,

u = 0, on Γ0,

u = φ(x), on x+ y = 0.

(2.17)

The linearization of problem (P2) is similar. Notice that the curve Σ1 in (1.12) is independent

of the solution u. The above linearization procedure will lead us to a boundary value problem














∂2u

∂x2
+ sgn y

∂2u

∂y2
= 0,

u = 0, on Γ0,

u = φ(x), on Σ1.

(2.18)

In the next section, we will first treat (2.17). Then the solvability of (2.17) and the corre-

sponding estimates ensure the solvability of the nonlinear problem (P1).

3 Tricomi Problem for Linearized Mixed Type Equation

Problem (2.17) was studied by Bitsadze and Lavrentiev [1, 13], Frankle [9], Hua [12] and

others.

Assume f(x) ∈ C1,α(0, 1) with 0 < α < 1. Similarly to the argument in Lemma 2.1, we

know that the Dirichlet problem














∂2u

∂x2
+
∂2u

∂y2
= 0,

u|Γ0=0 = 0,

u|y=0 = f(x)

(3.1)
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has a unique C1,α(Ω+) solution satisfying

‖u(x, y)‖C1,α(Ω+) ≤ C‖f‖C1,α(0,1). (3.2)

Turn to the lower part of the domain Ω. Consider the initial value problem


















∂2u

∂x2
− ∂2u

∂y2
= 0,

u|y=0 = f(x),

uy|y=0 = h(x).

(3.3)

The solution can be given by d’Alembert formula

u(x, y) =
1

2
(f(x− y) + f(x+ y)) +

1

2

∫ x+y

x−y

h(ξ)dξ. (3.4)

By taking y = −x, we obtain

φ(x) =
1

2
f(2x) +

1

2

∫ 0

2x

h(ξ)dξ. (3.5)

Differentiating both sides gives

f ′(x) − h(x) = φ′
(x

2

)

, (3.6)

which can be regarded as a boundary condition for u(x, y) on x-axis. Then the solution u(x, y)

of (2.17) on Ω+ satisfies






















∂2u

∂x2
+
∂2u

∂y2
= 0,

u = 0, on Γ0,

∂u

∂n
+
∂u

∂x
= −φ′

(x

2

)

, on y = 0, 0 < x < 1,

(3.7)

where n is the outer normal direction of the domain Ω+ on y = 0. According to the theory

of elliptic equations in a polygonal domain (see [10] and the notations therein), the solution of

problem (3.7) can be written as a sum of a regular part ur and a singular part us, such that

ur ∈ C2,σ and us =
∑

cj,mSj,m with

Sj,m = r
λj,m

j φj,m(θj), (3.8)

where (rj , θj) is the local system coordinates in the neighborhood of the j-th vertex of the

polygonal domain, φj,m are C2,σ functions of θj , and λj,m are determined by the shape of the

polygonal domain and the coefficients of the boundary conditions as

λj,m =
Φj − Φj+1 −mπ

ωj

. (3.9)

Here λj,m is assumed not to be integer, ωj is the angle of the polygon formed by the sides Γj

and Γj+1, m is an arbitrary integer such that λj,m > 0, and Φj is a number related to the

boundary condition on the boundary Γj defined as

Φj =











π

2
, if a Dirichlet condition is given on Γj ,

arctanβj , if an oblique derivative
∂u

∂n
+ βj

∂u

∂s
is given on Γj .
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In problem (3.7), the domain Ω+ has two vertices (0, 0) and (1, 0), then j = 2. Consider the

vertex (0, 0), we have j = 0, Φ0 = π
2 , Φ1 = π

4 . Therefore, if ω0 <
π
4 , then the exponent λ0,m > 1

and the singular part (3.8) is in C1,α for some α ∈ (0, 1). Similarly, if the angle formed by Γ0

and x-axis at (1, 0) is less than π
4 , then the singular part is also in C1,α for some α ∈ (0, 1).

Therefore, under the assumption that the angles between Γ0 and x-axis at both (0, 0) and (1, 0)

are less than π
4 , problem (3.7) admits a C1,α solution u(x, y) satisfying

‖u(x, y)‖C1,α(Ω+) ≤ C‖φ‖C1,α(0, 1
2
). (3.10)

This is the basic fact required for applying the implicit function theorem as shown in Section

2. Correspondingly, the proof of Theorem 1.1 is complete.

4 Generalized Tricomi Problem (P2)

In this section, we are going to prove the existence of the solution to the generalized Tricomi

problem (P2). The outline of the method is similar to that for problem (P1). Hence we will

pay main attention to the new ingredients and omit similar arguments.

The linearized problem for (P2) is



























∂2u

∂x2
+ sgn y

∂2u

∂y2
= 0,

u = 0, on Γ0,

u = φ(x), on Σ1,

u and ∇u are continuous, on y = 0,

(4.1)

where Σ1 is the curve y = ζ(x). In Ω+ the treatment for problem (4.1) is the same as that for

problem (2.17). In Ω−, the equation in (4.1) becomes

∂2u

∂x2
− ∂2u

∂y2
= 0. (4.2)

The d’Alembert formula gives

φ(x) =
1

2
(f(x− ζ(x)) + f(x+ ζ(x))) +

1

2

∫ x+ζ(x)

x−ζ(x)

h(ξ)dξ, (4.3)

where f(x) and h(x) are the initial value of u(x, y) and its derivative on x = 0. Differentiating

(4.3) gives

2φ′(x) = (1 − ζ′(x))f ′(x− ζ(x)) − h(x− ζ(x)) + (1 + ζ′(x))f ′(x+ ζ(x)) + h(x+ ζ(x)). (4.4)

Denote by m(x1) the inverse of x1 = x − ζ(x). Let ℓ(x1) = m(x1) + ζ(m(x1)). From (4.4) we

have

φ1(x1) = f ′(x1) − h(x1) + ρ(x1)(f
′(ℓ(x1)) + h(ℓ(x1)), (4.5)

where φ1(x1) = 2φ′(m(x1))
1−ζ′(m(x1))

, ρ(x1) = 1+ζ′(m(x1))
1−ζ′(m(x1))

. Since ζ(0) = 0 and

0 <
√

1 − δ + ζ′(x) < η for all x, (4.6)
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then

−
√

1 − δ x < ζ(x) < (−
√

1 − δ + η)x,
x1

1 +
√

1 − δ − η
> m(x1) >

x1

1 +
√

1 − δ
,

0 < ρ(x1) <
1 −

√
1 − δ + η

1 +
√

1 − δ − η
,

0 < ℓ(x1) <
(1 −

√
1 − δ + η)x1

1 +
√

1 − δ − η
.

Writing x1 by x again, then equality (4.5) becomes

∂u

∂y
(x, 0) − ∂u

∂x
(x, 0) = ρ(x)

(∂u

∂y
(ℓ(x), 0) +

∂u

∂x
(ℓ(x), 0)

)

− φ1(x). (4.7)

Hence we obtain a boundary value problem























∂2u

∂x2
+
∂2u

∂y2
= 0,

u = 0, on Γ0,

∂u

∂y
(x, 0) − ∂u

∂x
(x, 0) = ρ(x)

(∂u

∂y
(ℓ(x), 0) +

∂u

∂x
(ℓ(x), 0)

)

− φ1(x), on y = 0,

(4.8)

which is essentially equivalent to (4.1). We emphasize here that condition (4.7) is a nonlocal

condition, so that the classical existence theorem on elliptic boundary value problems does not

work in this case.

In order to solve problem (4.8), we define an operator L : u 7→ U as follows:























∂2U

∂x2
+
∂2U

∂y2
= 0,

U = 0, on Γ0,

∂U

∂y
(x, 0) − ∂U

∂x
(x, 0) = ρ(x)

(∂u

∂y
(ℓ(x), 0) +

∂u

∂x
(ℓ(x), 0)

)

− φ1(x), on y = 0.

(4.9)

Lemma 4.1 The operator L : u 7→ U defined by (4.9) is an inner and contractive map in

C1,α(Ω+).

Proof We notice that ℓ(x) ∈ C2, and ℓ(x) satisfies

ℓ′(x) <
1 −

√
1 − δ + η

1 +
√

1 − δ − η
.

Then for any f(x) ∈ C1,α(0, 1), one has f(ℓ(x)) ∈ C1,α(0, 1) and

‖f(ℓ(x))‖Ck,α(0,1) ≤ ‖f(x)‖Ck,α(0,1),

as k = 0, 1. Therefore,

∥

∥

∥
ρ(x)

(∂u

∂y
(ℓ(x), 0) +

∂u

∂x
(ℓ(x), 0)

)

− φ1(x)
∥

∥

∥

Cα(0,1)
≤ C(‖ρ(x)‖Cα · ‖u‖C1,α(Ω+) + ‖φ1‖Cα)

≤ C((δ + η)‖u‖C1,α(Ω+) + ‖φ1‖Cα). (4.10)
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It turns out that as the solution of the oblique derivative problem (4.8), U(x, y) is well defined

in C1,α(Ω+).

Furthermore, to prove the contraction of the map L, we assume that U1 and U2 are the

solutions of (4.8) with u replaced by u1 and u2. Then W = U1 − U2 satisfies























∂2W

∂x2
+
∂2W

∂y2
= 0,

W = 0, on Γ0,

∂W

∂y
(x, 0)− ∂W

∂x
(x, 0)=ρ(x)

(∂(u1−u2)

∂y
(ℓ(x), 0) +

∂(u1 − u2)

∂y
(ℓ(x), 0)

)

, on y=0.

(4.11)

Then we have the estimate

‖W (x, y)‖C1,α(Ω+) ≤ C(δ + η)‖(u1 − u2)(x, y)‖C1,α(Ω+).

By taking δ and η sufficiently small, we obtain the contraction of the operator L in C1,α.

Lemma 4.1 indicates that the operator L has a unique fixed point. It means that problem

(4.8) admits a unique C1,α solution. According to the equivalence of problems (4.8) and (4.1),

we obtain the solution of the generalized Tricomi problem (4.1). Furthermore, problem (P2)

can also be solved by using implicit function theorem for small δ as indicated in Section 2.

Hence Theorem 1.2 is also proved.

Remark 4.1 For more general nonlinear mixed type equation the line, where the equation

changes its type, could also be unknown. It should be determined together with the solution.

We will study such a case in the future.

Remark 4.2 Condition (1.11) means that the curve, where the data on the hyperbolic

region is assigned, is near to the characteristics issuing from (0, 0). It is expected to relieve such

a restriction.

Remark 4.3 In the problem arisen in the stability of Mach configuration, we may only

have the continuity of part of flow parameters on the line where the equation changes its type.

Corresponding to such a situation in our model problem, we could also require the unknown

function is continuous, while the continuity condition for derivatives will be replaced by a

consistence condition like

α+

(∂u

∂y

)

++
β+

(∂u

∂y

)

+
+ γ+u = α−

(∂u

∂y

)

−

+ β−

(∂u

∂y

)

−

+ γ−u, on y = 0. (4.12)

It turns out that in this case we can still establish a similar boundary value problem like (4.7)

with nonlocal boundary condition. Meanwhile, the above approach is also available to the new

boundary value problem.
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