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Abstract The simulation of wave phenomena in unbounded domains generally requires an
artificial boundary to truncate the unbounded exterior and limit the computation to a finite
region. At the artificial boundary a boundary condition is then needed, which allows the
propagating waves to exit the computational domain without spurious reflection. In 1977,
Engquist and Majda proposed the first hierarchy of absorbing boundary conditions, which
allows a systematic reduction of spurious reflection without moving the artificial boundary
farther away from the scatterer. Their pioneering work, which initiated an entire research
area, is reviewed here from a modern perspective. Recent developments such as high-order
local conditions and their extension to multiple scattering are also presented. Finally, the
accuracy of high-order local conditions is demonstrated through numerical experiments.
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1 Introduction

Unbounded domains are often encountered in scientific and engineering applications. Exam-

ples are radar and sonar technology, wireless communication, and seismic imaging. Typically

the phenomenon of interest is local but embedded in a vast surrounding medium. Although the

exterior region may not be truly unbounded, the boundary effects are often negligible, so that

one further simplifies the problem by replacing the vast exterior by an infinite medium.

Mathematical models of natural phenomena usually consist of partial differential equations,

whose derivation is based on physical conservation laws. Many standard numerical methods,

such as finite differences and finite elements, can approximately solve partial differential equa-

tions. In fact, they can even handle complicated geometries, inhomogeneous media, and nonlin-

earity. However, they typically require an artificial boundary, which truncates the unbounded

exterior domain, to fit the infinite region on a finite computer. This immediately raises the

question:

Which boundary condition guarantees that the solution to the initial-boundary value

problem inside the artificial boundary coincides with the solution of the original

problem in the unbounded region?
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If we exhibit a boundary condition, such that the fictitious boundary appears perfectly trans-

parent, we shall call it “exact”. Otherwise it will correspond to an approximate boundary

condition (also called radiating, absorbing, silent, transmitting, transparent, open, free-space,

and one-way boundary conditions, see [1]) and generate some spurious reflection, which travels

back and perturbs the solution everywhere in the computational domain. The resulting error in

the computer simulation then consists of two independent error components: the discretization

error of the numerical method used in the interior and the spurious reflection generated at the

fictitious boundary. Unless both error components are reduced systematically, the numerical

solution will not converge to the solution of the original problem in the unbounded region.

In this article, we shall restrict ourselves to time dependent scattering problems. Typically

a scattering problem consists of an obstacle, a source term f , and possibly an incident wave ui

(see Figure 1). Scattering problems are common in acoustic, electromagnetic, and elastic wave

propagation. Our goal is to calculate numerically the time-dependent wave field us scattered

from the complex, possibly nonlinear, but bounded scattering region.us ui

f

B
Figure 1 A typical scattering problem consists of an obstacle, a source term f , and incoming
wave ui, and a scattered wave us. The artificial boundary B defines the outer boundary
of the computational domain Ω.

In 1974, Smith [2] suggested perhaps the first exact method to restrict the computation

to a finite region. Let the computational domain Ω be bounded by a convex boundary of n

line segments (or planar facets in R
3). Then the restriction to Ω of the solution in unbounded

space consists of a linear combination of 2n solutions which satisfy all possible combinations

of Dirichlet or Neumann boundary conditions. Unfortunately, this approach has but little

practical value, since a rectangular domain requires 26 = 64 independent numerical solutions.

This example illustrates a key aspect in the design of improved absorbing boundary conditions:

it is not sufficient to construct a new boundary condition; in addition, the computational effort

involved must be comparable to that of the numerical method used in the interior. Otherwise

it will quickly be dismissed as prohibitively expensive and impractical.

In 1977, Engquist and Majda [3, 4] proposed the first hierarchy of absorbing boundary

conditions, which allows a systematic reduction of spurious reflection while keeping the artificial

boundary at a fixed distance from the scatterer. Their pioneering work, still very much in use
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even today, initiated an entire research area that led to a wide variety of different approaches,

such as perfectly matched layers (PML, see [5]), fast integral based formulations (see [6]), semi-

local formulations (see [7, 8]) and high-order local conditions (see [9–11]) — see [12–14] for

review articles and additional references. All these approaches lead to convergent numerical

schemes while treating the open boundary at a computational cost comparable to that in the

interior.

In this article we shall focus on local absorbing (or nonreflecting) boundary conditions,

which are completely local both in space and time. First in Section 2, we introduce the funda-

mental ideas underlying the derivation of nonreflecting boundary conditions by considering the

simple one-dimensional case. Next, we review the original Engquist-Majda conditions [3] for

wave propagation in more than one space dimensions, where we exhibit the trade-off between

exactness and locality. We also present recent developments of high-order local boundary con-

ditions without high-order derivatives, both for acoustic and electromagnetic waves. Next, in

Section 3, we consider the extension of local NBC to multiple scattering, first in one and then

in three space dimensions. Finally, in Section 4, we demonstrate the accuracy high-order local

conditions via numerical experiments.

2 Absorbing Boundary Conditions

To illustrate the fundamental ideas underlying the derivation of absorbing boundary con-

ditions, we begin with a simple one-dimensional problem. In this special situation many basic

notions, in particular the exact boundary condition, appear in a very simple form. Nonetheless,

we hasten to point out that its appealing simplicity is also misleading: the real challenges in

deriving effective absorbing boundary conditions appear only in higher dimensions. Indeed a

one-dimensional wave can only propagate in two directions, to the left or to the right. In two

or more dimensions, however, waves propagate in infinitely many directions.

2.1 The one-dimensional wave equation

Consider the one-dimensional wave equation on the positive real axis,

∂2u

∂t2
− ∂2u

∂x2
= f, x > 0, t > 0. (2.1)

At the left boundary x = 0, we require that the solution satisfies

u(0, t) = 0, t > 0. (2.2)

Thus, u(x, t) describes the position of an infinitely (or just very) long vibrating string, attached

at its left end; hence, u = 0 corresponds to the state at rest. The one-dimensional wave equation

(2.1) describes the propagation of small perturbations induced by the applied forcing f(x, t).

Here we have normalized the propagation speed to one by rescaling time appropriately. The

initial conditions of the vibrating string are defined by its position and velocity at t = 0:

u(x, 0) = U0(x),
∂

∂t
u(x, 0) = V0(x), x > 0. (2.3)

It can be shown that the initial-boundary value problem (2.1)–(2.3) is well-posed: it has a

unique solution, which depends continuously on U0, V0 and f .
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We now make the following assumption, which defines the local character of the problem: let

the forcing vanish outside a bounded region next to the left boundary, that is, let f(x, t) = 0 for

x ≥ L and for all time t > 0. Then the positive real line separates into two distinct regions: the

bounded interval Ω = [0, L] and the interval [L,∞), unbounded yet where the forcing vanishes

identically. Both regions meet at the artificial boundary {x = L}, which consists only of a single

point. Furthermore, we assume that the string is at rest in the exterior at t = 0: U0(x) = 0

and V0(x) = 0 for x ≥ L.

We now wish to simulate numerically the time dependent behavior of the vibrating string

in the computational domain Ω. Unfortunately, we cannot apply our favorite numerical scheme

in Ω and simply ignore the new artificial boundary point. On the contrary, we must pay close

attention to the new boundary point at x = L. Without a boundary condition at x = L, the

initial value problem (2.1)–(2.3) restricted to Ω is not even well-posed. To derive a boundary

condition, we first need to better understand its role at the artificial boundary. Suppose that

a wave propagates to the right inside Ω and reaches the right boundary at x = L. It must

not be reflected, for any spurious reflection will travel back into the computational domain and

spoil the solution everywhere. This spurious reflection, caused by an inaccurate treatment of

the artificial boundary, is not due to finite precision, unlike discretization errors present in any

computation. If we find a boundary condition, which lets the waves hit the boundary without

any reflection, the solution inside Ω, with that boundary condition imposed at x = L, coincides

with the restriction to Ω of the solution in the unbounded region. Hence such a boundary

condition is exact.

x = Lx = 0
u



1

Figure 2 The one-dimensional wave equation: inside the computational domain Ω = [0, L],
the problem can be arbitrarily complicated, but in the exterior region x ≥ L, we assume
that f(x, t) = 0 for t > 0 and that u and ∂tu vanish at t = 0.

Inside the computational domain Ω waves propagate both to the left and to the right. In

the exterior region, however, the absence of any forcing and the zero initial conditions preclude
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the appearance of any waves traveling to the left: there all waves propagate eastward towards

infinity (see Figure 2). To derive the exact boundary condition at x = L, we first need to

separate the incoming from the outgoing waves. To do so, we let v and w be defined by

v =
∂u

∂t
+
∂u

∂x
, w =

∂u

∂t
− ∂u

∂x
. (2.4)

Since u satisfies the wave equation (2.1) in x ≥ L, we conclude that

∂v

∂t
− ∂v

∂x
= 0,

∂w

∂t
+
∂w

∂x
= 0.

Thus we can rewrite (2.1) as the first-order hyperbolic system

∂

∂t

[
v

w

]
+

[
−1 0
0 1

]
∂

∂x

[
v

w

]
= 0. (2.5)

Its general solution is

v(x, t) = φ(x + t) and w(x, t) = ψ(x− t),

where φ and ψ are arbitrary functions, which are determined by initial and boundary conditions.

Therefore, v is constant on the characteristics x + t = c, whereas w remains constant on the

characteristics x − t = c. Thus v corresponds to incoming waves, whereas w corresponds to

outgoing waves. Since there are no incoming waves in x ≥ L, we have

v(L, t) = 0, t > 0. (2.6)

By applying the definition (2.4) of v in (2.6), we thus obtain the exact nonreflecting boundary

condition for the displacement u(x, t),

( ∂
∂t

+
∂

∂x

)
u = 0, x = L, t > 0. (2.7)

Note that the problem inside Ω can be arbitrarily complicated, since the derivation of the (exact)

nonreflecting boundary condition (2.7) depends only on properties in the exterior region.

2.2 Absorbing boundary conditions in higher dimensions

We consider a highly complex but local scatterer in unbounded two space dimensions. Al-

though we shall restrict ourselves to the two-dimensional case, much of the present discussion

carries over immediately to the three-dimensional case. Thus we consider the wave equation on

the two-dimensional infinite plane,

∂2u

∂t2
− ∂2u

∂x2
− ∂2u

∂y2
= f, t > 0, (2.8)

with the initial conditions

u(x, y, 0) = U0(x, y),
∂

∂t
u(x, y, 0) = U1(x, y), t = 0.

By scaling time appropriately we have normalized the speed of propagation to one. Again the

phenomenon of interest is very complicated, possibly nonlinear, but local. Next, we truncate
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the unbounded exterior by an artificial boundary and restrict the computation to the square

Ω = [−L,L]× [−L,L] (see Figure 1). Outside Ω we assume that neither source terms nor initial

perturbations are present:

U0(x, y) = U1(x, y) = 0, f(x, y, t) = 0, t > 0, (x, y) ∈ R
2 \ Ω.

Again we seek a boundary condition at (x, y) ∈ B, which ensures that all waves reach the

exterior region unharmed without generating any unphysical reflection at the fictitious interface.

Because of symmetry we only need to consider a single edge of the rectangle, here the right

edge at x = L. Hence the exterior region lies to the right and the computational domain Ω

to the left of the artificial boundary {(x, y) ∈ R
2 | x = L}. Since the initial conditions and

the forcing vanish identically in the exterior, all waves in the region x ≥ L are purely outgoing

and must propagate eastward. To avoid any spurious reflection at x = L, the exact boundary

condition must annihilate all incoming waves. In the previous section we easily derived such an

exact nonreflecting boundary condition for the one-dimensional wave equation. Unfortunately,

the same approach does not apply in two dimensions. In contrast to the one-dimensional

case, any fixed location (L, y) at the artificial boundary receives incoming waves from not one

but infinitely many angles of incidence, which propagate in infinitely many directions. The

distinction between incoming and outgoing waves is now “infinitely more complicated”.

Let û(x, ξ, ω) denote the Fourier transform of the solution u(x, y, t) in time and in the

tangential plane, parallel to the artificial boundary,

û(x, ξ, ω) =

∫ ∞

−∞

∫ ∞

−∞

u(x, y, t)ei(ωt+ξy)dy dt. (2.9)

Here we have set the solution u(x, y, t) to zero for all previous time t < 0. Then u is related to

û via the inverse Fourier transform, which resembles (2.9) after exchanging u and û. Since u

satisfies the wave equation (2.8) with f = 0 for x ≥ L, its Fourier transform satisfies

∂2

∂x2
û = (ξ2 − ω2)û, x ≥ L. (2.10)

To derive an exact nonreflecting boundary condition at x = L, we need to relate the normal

derivative (here ∂xu) to tangential and time derivatives (here ∂yu and ∂tu). From (2.10)

we conclude that ∂xû is determined by ±
√
ξ2 − ω2 û. The sign in front of the square root

discriminates precisely incoming from outgoing waves; here the correct choice leads to the

following exact boundary condition:

∂

∂x
û = −iω

√
1 −

( ξ
ω

)2

û, x = L. (2.11)

Although this boundary condition ensures the absolute transparency of the artificial boundary,

this formulation has but little value in practice. Indeed, we do not seek a boundary condition

for û but instead for u. In theory we can always compute the inverse transform and thus

determine ∂xu. However, unlike a polynomial expression, whose inverse Fourier transform

yields a local differential operator, the inverse transform of the above expression does not result
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in a simple differential operator because of the square root. Instead, we obtain a so-called

pseudo-differential operator, which cannot be evaluated without forward and inverse Fourier

transform. As a consequence, the normal derivative ∂xu at any given point on the boundary

(L, y) depends on past values of u on the entire line x = L, and cannot be computed locally

either in space or time.

“· · · unfortunately, these (perfectly absorbing) boundary conditions have to be nonlocal in

both space and time”, — Engquist and Majda, 1977.

To overcome the difficulties associated with the nonlocal nature of the exact boundary condi-

tion (2.11), we can replace the above pseudo-differential operator by an approximate differential

operator. In doing so we give up on the absolute transparency of the artificial boundary and

accept some spurious reflection. Such absorbing boundary conditions were proposed by En-

gquist and Majda [3] in 1977, and we now briefly recall the fundamental ideas underlying this

popular approach.

The Fourier transform of a differential operator always results in a polynomial expression in

the frequency domain. For instance, the Fourier transform of the differential operator ∂yy yields

the polynomial −ξ2. Conversely every polynomial in Fourier space corresponds to a (local)

differential operator in physical space. Thus, the inverse Fourier transform of a polynomial in

s = ξ
ω
, which approximates

√
1 − s2 , will yield a differential operator, which can be used as an

(approximate) absorbing boundary condition in physical space.

For s sufficiently small, we approximate
√

1 − s2 by the first few terms of its Taylor expan-

sion: √
1 − s2 = 1 − s2

2
+O(s4), |s| → 0.

We now replace the square root in (2.11) by the leading term in the Taylor expansion, that is√
1 − s2 ≃ 1, and perform the inverse Fourier transform to obtain

∂û

∂x
≃ −iωû ⇒

( ∂
∂t

+
∂

∂x

)
u = 0, x = L.

This is the first-order Engquist-Majda boundary condition, which contains only first derivatives

of the solution. It coincides with the exact boundary condition (2.7) for the one-dimensional

wave equation. Therefore, it remains exact for solutions of the two-dimensional wave equation,

which depend only on x and t and thus impinge on the artificial boundary with a normal angle of

incidence. Next, we include one additional term of the Taylor expansion in the approximation,√
1 − s2 ≃ 1 − s2

2 . This yields the second-order Engquist-Majda boundary condition

∂û

∂x
≃ −iω

(
1 − 1

2

( ξ
ω

)2)
û ⇒

( ∂2

∂t2
+

∂2

∂x∂t
− 1

2

∂2

∂y2

)
u = 0, x = L. (2.12)

Equation (2.12) remains exact at normal incidence, since we can rewrite it in the equivalent

form as

(∂t + ∂x)(∂t + ∂x)u = 0, x = L, (2.13)

by using (2.8). The inclusion of even higher order terms of the Taylor expansion to improve

the accuracy of the approximation ceases to yield well-posed boundary conditions. Although
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this difficulty can be overcome by the use of rational (Padé) approximations, the high-order

derivatives involved in these boundary conditions greatly complicate their use in any numerical

scheme. As a result, the first- and second-order boundary conditions are most commonly used

in practice.

Various other (e.g., Chebyshev) approximations of
√

1 − s2 were proposed to design im-

proved local boundary conditions. Eventually, Higdon [15] showed that all these boundary

conditions are particular cases of the following general class of boundary operators
(

cosαp

∂

∂t
+

∂

∂x

)
· · ·

(
cosα1

∂

∂t
+

∂

∂x

)
u = 0, x = L, (2.14)

where α1, · · · , αp are arbitrary parameters. For instance, the second-order Engquist-Majda

boundary condition (2.13) results from setting α1 = 0◦ and α2 = 0◦ in (2.14). This general

formulation, written as the product of first-order differential operators (cosαi ∂t+∂x), provides a

new, more intuitive, interpretation for the effectiveness of absorbing boundary conditions. Since

any such differential operator perfectly annihilates plane waves with angle of incidence ±αi,

the artificial boundary will appear absolutely transparent at the discrete angles of incidence

α1, · · · , αp. The choice of α1, · · · , αp is arbitrary and can be adapted to any given situation.

�
x

y

Figure 3 A traveling plane wave with an angle of incidence θ.

Nevertheless, all absorbing boundary conditions remain only approximations to the exact

boundary condition (2.11); therefore, they generate some spurious reflection at x = L. How

large is the amount of reflection for a specific boundary condition? Recall that any solution of

the (homogeneous) wave equation can be represented by the superposition of plane waves. In

Figure 3 we observe a plane wave, which impinges on the artificial boundary at x = L with an

angle of incidence θ. The linearity of both the wave equation (2.8) and the boundary condition

(2.14) imply that any reflected wave necessarily propagates with the same frequency as the

incident wave. Hence the solution consists of an outgoing wave, whose amplitude we normalize

to one, and an incoming spurious wave with amplitude |r|:

u(x, y, t) = ei(kx+ℓy−ωt) + rei(−kx+ℓy−ωt), k, ω ≥ 0, (2.15)

where r = r(θ;α1, · · · , αp) depends on the angle of incidence θ, defined by tan θ = ℓ
k
, and

the fixed parameters α1, · · · , αp. In Figure 4 we compare the effectiveness of three absorbing
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boundary conditions by displaying the amount of reflection |r| versus the angle of incidence

θ. The choice α1 = 0◦ corresponds to the first, whereas α1 = 0◦ and α2 = 0◦ correspond to

the second Engquist-Majda boundary condition. Alternatively, the popular parameter choice

α1 = 0◦ and α2 = 60◦ annihilates incoming waves at normal incidence and at 60◦ angle of

incidence. All other angles of incidence will generate some spurious reflection, which is very

small close to normal incidence but rapidly increases as grazing incidence is approached.
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Figure 4 Amount of spurious reflection (in percent) caused by the use of the boundary
condition (2.14) for a plane wave with angle of incidence θ.

2.3 High-order local nonreflecting boundary conditions

The local absorbing boundary conditions described in the previous section can be made

arbitrarily accurate, but in practice the resulting increasingly higher order derivatives greatly

complicate their use in any numerical scheme. As a result, the first- and second-order boundary

conditions are most commonly used in practice. If even higher accuracy is needed, the artifi-

cial boundary then needs to be moved farther away from the scatterer. Hence the absorbing

boundary conditions from Section 2 do not fully satisfy the demand for increasingly accurate

and efficient modern numerical methods to solve complex time-dependent scattering problems

in unbounded domains.

Starting from a convergent series representation of the scattered field in inverse powers of

distance, Hagstrom and Hariharan [9] derived a nonreflecting boundary condition of arbitrarily

high order, in the special case when B is a sphere. Thus, let B be the sphere of radius R and

assume that u satisfies the homogeneous wave equation

∂2u

∂t2
− c2∆u = 0 (2.16)

with zero initial condition outside B. Starting from the convergent expansion

u(r, θ, φ, t) =

∞∑

j=1

fj(t− r, θ, φ)

rj
, r > R, (2.17)
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where r, θ and φ are spherical coordinates, Hagstrom and Hariharan [9] derived the following

exact local NRBC:

(1

c

∂

∂t
+

∂

∂r
+

1

r

)
u = w1,

(1

c

∂

∂t
+
k

r

)
wk =

1

4R2
(k(k − 1) + ∆S)wk−1 + wk+1

(2.18)

for k = 1, 2, · · · , and w0 = 2u. Here, ∆S denotes the Laplace-Beltrami operator in spherical

coordinates (r, θ, φ),

∆S =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
. (2.19)

In fact in 1980, Bayliss and Turkel [17] started from that same infinite series representation and

derived a hierarchy of local absorbing boundary conditions in spherical coordinates. Similar to

the boundary conditions of Engquist and Majda [3,4], it also requires increasingly higher order

derivatives for improved accuracy.

The boundary condition (2.18) is local in space and time yet does not involve high-order

derivatives, but instead an infinite sequence of auxiliary variables wk defined on B. In practice,

only a finite number of auxiliary functions wk, k = 1, · · · , P is used setting wP+1 = 0. Then,

in general the boundary condition is no longer exact, but it remains exact for solutions which

consist of a finite combination of vector spherical harmonics up to order P . Imposition of the

boundary condition at any fixed radius R thus yields at least spectral accuracy for smooth wave

fields with increasing P . Therefore (2.18) is exact in the same sense as the conditions proposed

in [7, 8, 16], namely that P can always be chosen sufficiently large so that the error introduced

at B is smaller than the discretization error inside Ω, without moving B farther away from the

scatterer. However, this new boundary condition does not require any spherical harmonics or

inner products with them; hence, it is somewhat easier and cheaper to implement.

By combining ideas from [9] and [16], the above approach was recently extended to Maxwell’s

equations in three space dimensions (see [11]). Again, outside B, the medium is assumed to

be linear, homogeneous, isotropic, of constant electric permittivity ε, of constant magnetic

permeability µ, and of zero conductivity. In addition, we assume that at t = 0 the scattered

field is confined to the computational domain inside B. Then, the following exact nonreflecting

boundary condition holds (see [11]):

r̂ × curl E − 1

c

∂E
tan

∂t
= w

1, (2.20)

1

c

∂w
1

∂t
+

w
1

r
=

1

2r2

[−−→
curlS curlSE +

√
µ

ε
r̂ ×−−→

curlS curlSH

]
+ w

2, (2.21)

1

c

∂w
p

∂t
+
p

r
w

p =
1

4r2
(
−→
∆S + p(p− 1))wp−1 + w

p+1, p ≥ 2. (2.22)

Again, the boundary condition (2.20)–(2.22) is local both in space and time. It only involves

first time derivatives and second tangential derivatives of E and of the (unknown) auxiliary

functions w
p, p ≥ 1, which satisfy (2.21)–(2.22). Since at least two scalar potentials are

necessary to represent the general three-dimensional electro-magnetic field in free space, this



On Local NBC for Time Dependent Wave Propagation 599

boundary condition is optimal in the sense that the number of auxiliary variables required is

minimal.

3 Multiple Scattering Problems

When the scatterer consists of several obstacles, which are well separated from each other,

the use of a single artificial boundary to enclose the entire scattering region becomes too expen-

sive. Instead, it is preferable to enclose every sub-scatterer by a separate artificial boundary Bi.

Then we seek an exact boundary condition on B = ∪Bi, where each Bi surrounds a single com-

putational sub-domain Ωi. This boundary condition must not only let outgoing waves leave Ωi

without spurious reflection from Bi, but also propagate the outgoing wave from Ωi to all other

sub-domains, which it may reenter subsequently. To derive such an exact boundary condition,

an analytic representation of the solution everywhere in the exterior region is needed.

3.1 The one-dimensional case

x

t

O B1 B2
Ω1 Ω2

u0 u0
u1 u2

u1
u2

u
1

=
u u

2
=
u

u
1

=
u
−
u

2

u
2

=
u
−
u

1

L

utt − uxx = 0

Figure 5 Multiple scattering in one space dimension.

To illustrate the basic principle underlying the NRBC for multiple scattering problems, we

first consider the following simple one-dimensional Cauchy problem:

∂2u

∂t2
− ∂2u

∂x2
= f(x, t), −∞ < x <∞, t > 0,

u(x, 0) = u0(x),

ut(x, 0) = v0(x).

(3.1)

We assume that the initial disturbance and the forcing are supported inside the region Ω =

Ω1∩Ω2, with Ω1 = [0, B1] and Ω2 = [B2, L], 0 < B1 < B2 < L, that is supp{u0, v0, f( · , t)} ⊂ Ω
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(see Figure 5). We now wish to restrict the computation to the sub-region Ω; therefore we need

to impose appropriate boundary conditions at x = 0, B1, B2 and L to ensure that the solution

in Ω coincides with the solution u of the original Cauchy problem for all time. Because u is

purely outgoing for x < 0 and x > L, the NBC at x = 0 and x = L correspond to the standard

artificial boundary conditions for single scattering (see Subsection 2.1), that is,
( ∂

∂x
− ∂

∂t

)
u = 0, x = 0,

( ∂

∂x
+
∂

∂t

)
u = 0, x = L,

(3.2)

which require no further discussion. We now focus on the two remaining artificial boundary

points at x = B1 and x = B2, where u is not purely outgoing. Because u satisfies the homoge-

neous wave equation in [B1, B2], it is the superposition of a left and right moving wave there,

that is,

u(x, t) = u1(x, t) + u2(x, t) (3.3)

with

u1(x, t) = f(x− t), u2(x, t) = g(x+ t).

Moreover, if we require that supp{u1} ⊂ Ω1 and supp{u2} ⊂ Ω2 at t = 0, u1 and u2 are

uniquely defined for all time (see [18]). At x = B1, an exact NRBC is
( ∂

∂x
+
∂

∂t

)
u =

( ∂

∂x
+
∂

∂t

)
u1 +

( ∂

∂x
+
∂

∂t

)
u2 =

( ∂

∂x
+
∂

∂t

)
u2, (3.4)

since u1 is outgoing here.

Thus to impose the exact NRBC at x = B1, we must be able to evaluate u2 there. Here we

need to distinguish initial times up to t = B2 −B1 from later times t ≥ B2 −B1:

(1) 0 ≤ t < B2 − B1. Due to the finite propagation speed (here equal to one), u2 has not

reached Ω1 yet; hence, it is still zero at x = B1 and (3.4) reduces to the standard NRBC for

purely outgoing solutions.

(2) B2 − B1 ≤ t. u2 no longer vanishes at x = B1, however it is fully determined by its

past values at x = B2 through

u2(B1, t) = u2(B2, t− (B2 −B1)). (3.5)

How do we determine u2 at x = B2? Recall that we are only computing u (and not u1 or u2)

inside Ω. Again, during initial times t < B2 −B1, we have u2 = u at x = B2. To determine u2

at later times, we recall that

u(x, t) = u1(x, t) + u2(x, t), ∀x ∈ [B1, B2], t > 0. (3.6)

Therefore we obtain u2 at x = B2 by subtracting from u the value of u1 there, which again is

determined by its past values on B1, that is,

u2(B2, t) = u(B2, t) − u1(B2, t) = u(B2, t) − u1(B1, t− (B2 −B1)). (3.7)

Hence in every time step of the numerical scheme, we concurrently update the new values of

u1 and u2 at x = B1, B2 respectively. This requires the additional storage of past values ui at

x = Bi, i = 1, 2, for the finite time window [t− (B2 −B1), t].
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3.2 The three-dimensional case

For simplicity, we consider a scattering problem with two bounded disjoint scatterers, each

surrounded by a sphere Bi of radius Ri, i = 1, 2. Hence, the entire artificial boundary B =

B1 ∪ B2 and the computational domain Ω = Ω1 ∪ Ω2. In contrast to the situation of single

scattering in Section 2, we cannot simply expand u outside B as a superposition of purely

outgoing wave fields. In fact, since part of the scattered field leaving Ω1 will reenter Ω2 at

later times, and vice versa, u is not outgoing outside Ω. Thus, the boundary condition we seek

at B must not only let outgoing waves leave Ω1 without spurious reflection from B1, but also

propagate those waves to Ω2, and so forth, without introducing any spurious reflections.

Following [18], we first decompose the scattered field u in two wave fields u = u1 + u2,

where ui is purely outgoing as seen from Ωi. The two wave fields u1 and u2 both solve the

homogeneous wave equation (2.16) outside Ω, and their sum coincides with u. The outgoing

field uout
1 , as seen from Ω1, is fully determined by its boundary values on B1, while the incoming

field uin
12 is fully determined by its boundary values on B2. Hence

uout
1 + uin

12 = u|B1
,

uout
2 + uin

21 = u|B2
,

(3.8)

where uout
i is the outgoing wave field from Ωi and uin

ij is the incoming wave propagating from

Ωj to Ωi.

Next, we apply c−1∂t + ∂ri
+ r−1

i in local spherical coordinates (ri, θi, φi) to u on each

artificial boundary component Bi, i = 1, 2. This yields the following exact local NBC for

multiple scattering (see [19]):

B1u|B1
=

(1

c

∂

∂t
+

∂

∂r1
+

1

R1

)
u|B1

= B1u
out
1 + B1u

in
12, on B1,

B2u|B2
=

(1

c

∂

∂t
+

∂

∂r2
+

1

R2

)
u|B2

= B2u
out
2 + B2u

in
21, on B2.

(3.9)

To evaluate B1u
out
1 we use (2.18) at B1, whereas to evaluate B1u

in
12 we use past values for

u2 and the corresponding auxiliary functions on B1. The needed past values of wk are stored

on each Bi at regular time and angular intervals and calculated, as needed, via local spline

interpolation (see [19]). Because those values are time-retarded, they are already known, so

that the entire scheme remains explicit in time. Remarkably, the information transfer (of time

retarded values) between sub-domains occurs only across those parts of the artificial boundary,

where outgoing rays intersect neighboring sub-domains, i.e., typically only across a fraction of

the artificial boundary.

4 Numerical Experiment

We shall now illustrate the accuracy of local nonreflecting boundary conditions via the

following numerical experiment. Consider a spherical inclusion of radius r0 > 0 located inside

an unbounded inhomogeneous acoustic medium. At the sound-soft interface of the inclusion we

impose a time-dependent pressure field which corresponds to an outgoing spherical wave field,
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initiated by an off-centered Gaussian point source. Located on the z-axis at distance d < r0

from the origin, its time dependence is shown in Figure 6. Hence at the surface of the cavity,

r = r0, the imposed time-dependent acoustic field is determined by

u(r0, θ, t) =
1

rd
exp

(
− (rd − cmint+ 0.2)2

σ2

)
, (4.1)

where rd =
√
r20 + d2 − 2r0d cos(θ) , σ = 0.25√

− log α
, α = 10−7, and cmin = 0.5. Here, rd cor-

responds to the distance of any point (r0, θ) from the point source at distance d from the

origin.

The sound speed in the surrounding medium varies from cmin to cmax as a function of

distance only. For r ≥ 1, the velocity profile shown in Figure 6 is constant and equal to cmax

normalized to one. Hence the inhomogeneous surrounding medium, initially at rest, is expected

to act as a spherical wave guide around the cavity. The unbounded exterior is now truncated at

R = 1, where we apply the high-order local conditions (2.18) with varying P , noting that with

P = 0 the boundary condition (2.18) corresponds to the first-order Engquist-Majda condition

in spherical coordinates.
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Figure 6 Left: the time dependence of the Gaussian point source. Right: the velocity
profile c(r).

Although this test problem is three-dimensional, it is axisymmetric about the z-axis, that is,

the solution is independent of φ, so that we can restrict the computations to the two-dimensional

region Ω, determined by r0 ≤ r ≤ R, 0 ≤ θ ≤ π. Inside Ω we use the standard second-order

centered finite differences on an 80 × 480 polar equidistant mesh, combined with the explicit

second-order leap-frog scheme in time. At the artificial boundary B located at r = R, the

boundary condition (2.18) is discretized in space using centered second-order finite differences

and in time as described in [9].

Since no simple analytical expression for the exact solution is available here, we shall com-

pute a reference solution in a much larger domain. Due to the finite speed of propagation, any

spurious reflection will then be postponed to later times and thus not affect the reference solu-

tion inside Ω until T = 7.5. In Figure 7 we observe how the spherical wave front penetrates the
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Figure 7 Scattering from a spherical wave guide: snapshots of the reference solution at
different times. The three circles drawn are located at r = 0.5, 1, 1.5. The Gaussian point
source is located outside the computational domain at r = 0.45, θ = 0.
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acoustic medium to the right of the cavity and then progresses around it, noting the distorted

wave front due to the varying velocity profile around t = 1.5. By t = 3 the main wave front has

left the computational domain, yet part of the wave energy remains trapped inside the wave

guide and continues to travel around the cavity.

We now compare the exact (numerical reference) solution with that obtained by imposing

the boundary condition (2.18) for varying P at the fixed location r = 0.75, θ = 3π
4 , located

well inside Ω. In Figure 8 the numerical solutions obtained with P = 0, P = 1 and P = 5 are

shown. The numerical solution obtained with P = 0 strongly deviates from the exact solution

past t = 2. We recall that the error observed here is solely due to the approximate nature of

the boundary condition and thus cannot be improved upon by refining the mesh. The solution

obtained with P = 1 clearly displays a significant improvement in accuracy. Nonetheless, we

find again deviations of 5–10% around t = 3.5, for instance. As we further increase P , those

spurious reflections essentially disappear and cannot be observed anymore at this scale. Hence

their amplitude now lies below the discretization error. Further mesh refinement in the interior,

however, would generally require further increase in P , as both error components need to be

reduced systematically to achieve convergence.
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Figure 8 The numerical solutions computed using the boundary conditions (2.18) with
P = 0, P = 1 and P = 5, are compared with the exact solution at r = 0.75, θ = 3π

4
.
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5 Conclusion

The constant demand for increasingly accurate, efficient, and robust numerical methods,

which can handle a wide variety of physical phenomena, spurs the search for improvements in

absorbing boundary conditions. The frustration is all too obvious, when the gains made in the

interior by using sophisticated numerical methods, such as high order and adaptive methods,

are annihilated at the artificial boundary by the use of an inaccurate boundary condition.

Among many different approaches nowadays available to truncate the unbounded exterior

and achieve convergence at a reasonable computational cost, local absorbing boundary condi-

tions remain probably the simplest and most flexible approach. Because they are completely

local, they apply to all (convex) artificial boundaries and require no special functions or damp-

ing parameters in the exterior. Moreover, they are easily coupled with standard finite differ-

ence or finite element methods in the interior and have been found very accurate in practical

computations. In contrast to the popular perfectly matched layer approach, high-order local

nonreflecting boundary conditions can also be extended to multiple scattering problems, as they

yield an efficient analytical representation of the solution everywhere outside the computational

domain.
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