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Abstract Under the assumptions that the initial density po is close enough to 1 and
po —1 € HP'(R?), up € H*(R*) N H*(R?) for s > 2 and 0 < ¢ < 1, the authors
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1 Introduction

In this paper, we consider the following 2-D inhomogeneous incompressible Navier-Stokes
equations (INS for short)

Oip +div (pu) =0, (t,z) € RT x R?,
O (pu) + div (pu ® u) — div (uM) + Vp =0, (1.1)
divu =0,

where p,u = (uy, u2) stand for the density and velocity of the fluid respectively, M = 1(9;u; +
d;ju;), p is a scalar pressure function, and the viscosity coeflicient u(p) is a smooth, positive
function on [0,00). Such system describes a fluid which is obtained by mixing two miscible
fluids that are incompressible and that have different densities. It may also describe a fluid
containing a melted substance. One may check [14] for the detailed derivation.

Let pg, mo satisfy

po >0 ae. in RN, pye LoRY),
mo € L2RY)N, mg=0 ae. on{po =0}, 7 e 1®N),

PO
2
where we agree that I";% =0 a.e. on {pp = 0}, and we impose

pli=o = po,  puli=o = mo. (1.2)
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Concerning (1.1)—(1.2), DiPerna and Lions [11, 14] proved the following celebrated theorem
in N space dimensions.

Theorem 1.1 There exists a global weak solution (p,u) of (1.1)—(1.2) such that the follow-
ing energy inequality holds:

[mo|?

1 t
/ plul*dz + —// w(p)(Osu; + 0ju;)* dxdt’ < / ——da ae. te(0,00).
RN 2 Jo Jrw RN L0

Furthermore, for all0 < a < 8 < o0,
meas{z € RN : a < p(t,z) < B} is independent of t > 0.

One may check [14] for the detailed proof. However, the uniqueness and regularities of thus
obtained weak solutions are big open questions even in two space dimension, as was mentioned
by Lions in [14].

On the other hand, when p(p) is independent of p, i.e. p is a positive constant, and pg is
bounded away from 0, it was shown by Kazhikov [12] (see also [3, 4]) that (1.1) has a unique
local smooth solution with regular initial data. In addition, they proved the global existence and
uniqueness for small enough data in any space dimensions and for all data in two-dimensional
case. Similar results were proved by LadyZzenskaja and Solonnikov [13] for the initial boundary
value problem of (1.1). While when py > 0, Simon [16] proved the global existence of weak
solutions to (1.1).

According to the statement in [14, p. 31], even when N = 2, further regularities of the weak
solutions obtained in Theorem 1.1 does not seem to be available when p depends on p. Except
under the assumptions that

ianLpo)—lH <e and wy€ HY(T?).
>0l ¢ Loo(T2)

Desjardins [10] proved that u € L*°([0,T]; H(T?)) and p € L*([0,T] x T?) for the weak
solution (p,u) constructed in [14]. Moreover, with additional assumptions, he could also prove
that u € L2([0,7]; H?(T?)) for some short time 7. To understand this problem further, the
second author of this paper proved in [19] the global wellposedness to the following model
problem with large regular initial data:

0
9. div(pu) =0, (t,x) € RT x R?

ot

0

%u) +div(pu ® u) — VE(u(p)w) + Vp = 0, (1.3)
divu = 0,

where w = Ojuy — dauy is the vorticity of the fluid, and V*f = (—0af, 01 f). Notice that as
divu = 0, V*(uw) = pAu when p is independent of p, so (1.3) coincides with the classical

inhomogeneous, incompressible Navier-Stokes equation in this case.

On the other hand, denoting a def % —1,and b def +1= %, i(a) def 1u(p), we can see that
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system (1.1) can be reformulated as

oa+u-Va=0, (tz)eRT xR?
Ou+u - Vu+ b(Vp — div (f(a)M)) =0,
divu =0,

(a,u)|t=0 = (ag, up).

(INS)

In [1], Abidi proved in general space dimension N that if 1 < p < 2N, 0 < pu < pu(p),
N

N .
up € By, (RY) and ag = pio — 1€ B/, (RY), then (INS) has a global solution provided that
llaoll  x +lluoll x_, < c¢g for ¢g sufficiently small. Furthermore, the obtained solution is unique
B P p

p,1 p,1

if 1 < p < N. This result generalized the corresponding result of [9] for the constant viscosity
case. Very recently, Abidi and Paicu [2] improved the wellposedness results in [1, 9] for more
general p when fi(a) = p.

We shall prove in this paper that when N = 2, (INS) has a unique global smooth solution
with smooth initial data provided that ag is small enough, while we do not need any restriction
for the size of the initial velocity field ug. More precisely, we have

Theorem 1.2 Let s > 2, € € (0,1). Let ag € H*1(R?) and ug € H—*(R?) N H*(R?) with
div ug = 0. We assume that p(p) is a smooth and positive function on [0,00). Then (INS) has
a unique global solution (a,u) such that a € C([0,00), H*T'(R?)) and u € C([0,00), H~=(R?) N
H#(R2)) N L*((0, 00), HF2(R2) N H2~=(R2)) provided that

llaoll rr+1 < co
for some small enough constant co. Furthermore, there exists some C' > 0 such that
[u(®)llzs < O+ )", (1.4)

Remark 1.1 (i) One may check the definition of the function spaces ZTT(H $(R?)) in
Definition 2.2, which was first introduced by Chemin and Lerner [8].

(ii) The main difficulty of the proof of Theorem 1.2 lies in the estimate of ||a(t)|| gs+1. As
a satisfies a free transport equation, it is easy to get any LP control of ||a(t)|r» in terms of
llao||L» via characteristic method. However, in general the derivative estimate of a(t) can not
be obtained in such a trivial way. In fact, to control the size of ||a(t)| gs+1, we need to use
[ullzs_(sge+2) and I IVu(t)||=dt (see (4.2)). The assumption that ug € H~°(R?) is related
to the decay of u(t) at co. In general, if we assume that [|ezP(0ty| > < C(1 +t)~" for

0 < e < v, then one may improve (1.4) to
a2z < C(1+ )~ ™),

Compared with the L? decay estimates for the homogeneous case in [15, 18], the decay rate
in (1.4) might not be the optimal. However as we are mainly concerned with the global well-
posedness of (INS) here, we may not pursue this point here.

Notations Let A, B be two operators. We denote [A; B] = AB — BA, the commutator
between A and B. By a < b, we mean that there is a uniform constant C, which may be
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different on different lines, such that a < Cb. We denote (c;)jen (or (¢;j(t))jen) to be a
sequence in £? with norm 1, (a | b)r2 = [, abdx the standard L? inner product of a and b,

and [ul|zz (LP) = ||U||L2 ([0,T]; L? (R2)) -

2 Littlewood-Paley Analysis

For the convenience of the reader, we shall recall some basic facts on Littlewood-Paley
Theory. One may check [5-7, 17] for more details.

Proposition 2.1 (Littlewood-Paley Decomposition) Let C def {¢ e R, 3 < <
There exists a radial function ¢ € C°(C) such that
D p(277¢) =1, veEeR\ {0},
JEZ

j = 5’| = 2= Supp ¢(277-) N Supp p(277") = 0.

81,

w

Let h def F~1p. Then the dyadic operators AJ—, S’j with j € Z can be defined as follows:

p(277D)f = 2 /Rd h(2y) f(z — y)dy,
def A

SifE > Ayt

J'<j—1

A o2

(2.1)

Lemma 2.1 (Bernstein’s Inequality) Let B be a given ball with center 0. A constant C ex-
ists so that, for any positive real number X\, any nonnegative integer k, any smooth homogeneous
function o of degree m, and any couple of real numbers (a,b) with b > a > 1, there hold

Supp @ C AB = sup [|0%| s < CFTINFIE=D) ||u| Lo,
ler|=

Supp @ C A\C = C7 VPN ||uf| e < sup [|0%ul|Le < CTTFNF|ul| e, (2.2)

la|=k
Supp @ C AC = [lo(D)ul s < Co A"+~ 8) 0| 1
for any function u € L°.

With the introduction to A; and S;, we recall the definition of the homogeneous Besov
space from [17].

Definition 2.1 (Besov Spaces) Let s € R,1 < p,r < oco. The homogenous Besov space
B;T(Rd) is defined by

ts d f
B; (R Z {f € S,(RY); 1/l 55 < oo},
where )
_]sr "
def (22 |A fHLp) for r < oo,
1ls, &0 i
’ sup 27¢||A; f| v forr =00
JEZ
and
def

SHRY) = A{f € S®RY; lim 8§;f =0 in §'(RY)}.
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Remark 2.1 It is easy to verify that the homogeneous Besov space B§)2(Rd) coincides with
the classical homogeneous Sobolev space H*(R?) and Bgom(Rd) coincides with the classical
homogeneous Holder space C* (R?) when s is not a positive integer. In case s is a nonnegative
integer, Bgoyoo(]Rd) coincides with the classical homogeneous Zygmund space C*(R?).

An immediate corollary of Definition 2.1 is

Corollary 2.1 Let s € R,1 < p,r < oo, and u € S};,. Then u belongs to B
there exists {c;j}jez such that ||cj|le =1 and

if and only if

T

1AjullLe < 277 |Jull 5, .

In order to study the global wellposedness of (INS) with initial data in Sobolev space, we
need also the following spaces from [8].

Definition 2.2 Forr € [0,4+c0], s € R and T € [0, +00], we define
Tr (IS def
(e (D) fu e $'(0,7 x RY : Jullz, 40, < o0,

where

Nl=

gy (X2 ([ 1)’
Lr.(H?) J L2
JEZ 0
Remark 2.2 Similarly to Definitions 2.1 and 2.2, one may also define inhomogeneous Besov
space Bj (R?) and L5 (H#). One may check [8, 17] for more details.

Thanks to Minkowski’s inequality and an standard argument of interpolations, we have

Proposition 2.2 Let u € C([0,7]; S(R?)). There hold

iz ey < Wollipieys 7 <2 Nalliggiy < Nilggey #722  (23)
and

ol sy S W0y I
with 0 < 0 <1, %:%—I—% and s = 0s1 + (1 — 0)so.

In what follows, we shall constantly use the homogeneous Bony’s decomposition (see [5]):

uwv = Tyv + R (u,v) = Tyv + Tyu + R(u,v), (2.5)
where
. def . . ., def . .
T = ZSj,luAjv, R'(u,v) = ZAjqu+gv,
JEZL JEZ
dof X def A
Z AuA/v—ZAuAv Ajv = Z Ajrv.
li—dq'1<1 3" —jl<1

By using the Bony’s decomposition (see [1]), one has
Proposition 2.3 Let s >0, G € Wloiﬂ *,G(0)=0,T>0, and u € E%(Hs) N Ly (L>™).
Then
IG5 ey < O+ Tl o)l g g (2.6)



612 G. L. Gui and P. Zhang

3 Preliminaries

In this section, we shall apply Littlewood-Paley analysis to study some commutator and

product estimates, which will be used in the subsequent sections.

Lemma 3.1 Let s >0, f,g*, ¢* € C([0,T]; S(R?)) and g = (g, g*). Then there holds

1
(02114, (1 divg) — div (f A0, 12))
jEL
S IV @ 91z ey + 1z i) IVl Ly ) - (3.1)
Proof We first get by using Bony’s decomposition (2.5) that
Aj(fdivg) = div (f A;g)
= Aj(T10ig" + R'(f.0ig") — 0:(T1A;9") — O:;R'(f. A;9")

—

4
— 0i([As; T)g") — Aj(To.s9") + AR (f,0ig") — OuR'(f, Ayg') < ZAﬁ. (3.2)
=1

Here and in what follows, we use Einstein convention of summations. Thanks to (2.1), one has

[Aj: Sj—1f1A g () = 2% /}R2 W2 (@ — ) [Sy—1f(y) — Sjr—1f ()] A g’ (y) dy. (3.3)

Then we get
IMlepan =] 2 aldss Sranbod'|,
li—4"1<4
S Z 27 7jHVSj/—lfHL%°(L°°)|‘Aj'gi|‘L;(L2)
[7—3"1<4
S IV llzgws) Z 1A g Nesz2ys

[7—3"1<4
from which we deduce that

(S 214 0)" <190 lram [ X (2° Y 1ars'lian)]’

JEZ JEZ l7—3"1<4
S IV Al @) gl gy ey (3.4)

A similar estimate holds for .A?. While as

1 = || D Ay(Ay£8ya00igh)|

Jj'zj—2
S D 1A flleeSi20ig e S10ig e > 1A flre,
J'2j—2 J'2j—2
we obtain
, 3 o o, . 213
(E 210 0) S [ S (X 207 [ 27)As fliaVglmat) |
JET JEL  j'2j—2 0
o, T o, . 271
S[3 3 2 [ 2Ay fluel Tallemt) |
0

JEL j'>5—-2
5 HfHZ%O(Hs ||v9||L1 (L) (35)
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A similar estimate holds for A}. Combining (3.2), (3.4) with (3.5), we get the inequality (3.1).
A similar proof of Lemma 3.1 ensures

Lemma 3.2 (Communicator Estimate) Let s > 0 and f, g € C([0,7); S(R?)). There hold

1

is . bl
(D 22901Lf5 AlValds i) S IV ez ollolzy ey + 1 i IV 9l g zeys (3:6)
JEZL
1

-S . §
(D 2291105 AglValEs )™ S W llasololizy oy + 1 1z ooy IVG Ly 2y (37)
JEZL

Proof The main idea in proving (3.6) is to use Bony’s decomposition (2.5) to get
[f3 Aj]Vg = [Tr; Aj)Vg + R'(f.A;V9) — A; R (£, V).

Then a similar proof of Lemma 3.1 ensures (3.6). To prove (3.7), we only need to notice from
(3.3) that

1Az S5 1f185 gl i 2y S I lLse o) 1859l Ly (z2)-
The other details are omitted here.
However, when f = u = (u1,u2) with divu = 0, we can improve (3.6) as follows.

Lemma 3.3 Let s > —1, and u € C([0,T]; S(R?)) be a solenoidal vector field. Then for
any § > 0, there hold

(1)

I 1 T
(Z 2l Al Valldy )" < Sl ooy +C57 [ lulglullgdts (38)
jeZ 0 ’

(i)
T
oVl ey < Bl vy + €570 [l el (3.9)

Proof (i) Thanks to (2.5), we first split [u; A;] - Vu as

4
[u; Aj]-Vu = [Ty; Aj]-Vu+ R (u, AjVu) — AjTy,u— A;V - R(u, u) def ZB;. (3.10)
=1
However, thanks to (3.3), we have
1Bl S > 2791IVSyrullr< Ay Vull 2,
li—3"1<4
and it is easy to observe that
1985 1ullie S lulleo 32 2° 527 Jullge, (3.11)

(<42
which ensures

18512 < lulleg (D= 14, Vullzz ).

li—3"1<4
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Therefore, we obtain

1
s 3
(S 2211BL2, 1s))

JEZ
<[ ([ @emiamuma)] [ ([ e viavumimae)’]
jez 70 jez 70

Applying Lemma 2.1 and Minkowski inequality gives

([ @A vulsluza)]

JEZ
T " bk " 3
S[[ (S 1auietuly) at” s [ [ lullulzear]
0 ez 0
from which we deduce that for any § > 0,
, L T
(1B iy a) " < Ol groeny + O3 /0 iyl -t (3.12)
JEZ

A similar but easier argument gives the same estimate for B;’. While thanks to (3.11), we have

1Bl S D 185428Vl | Ajull e S 2 ullego Y A5 ulle,

J'2j=2 J'2j=2

from which we deduce that

js % T is 1 A Lol(i—4))(s
(C 1By m) " S [ ([ 2 Iulleo( 1 b=

JEZ JEZ 352

1
2

x(2j,(s+2)HAJ"UHLz)%2%(j7jl)(5+1)dt)2}

Note that

[SE

(X [ a0 )’
0

JeL  j'2j=2

T, . 2,
SIS S ([ 2o pulimar) s S fulgy v,

JELj' 252

D=

and by Minkowski inequality we have

T -
(TS [ Ml 1Al 2= ar) ]
O *

VIS S

T ./ . . " 2 1
< [ [ 2 a0y ar

JEL  §'=j—2

T
2
S [ Il ul e
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As a consequence, we obtain
, 3 T
(2183 )" < Ol vy + C5 [ Nulylluldt. 13
JEL 0
Finally, as

1Bll2 S22 D IAjpullrelldjulle S Plullee D 1Al re,

Jj'2j—4 J'2j=2

from the proof of (3.13), B} satisfies (3.13) as well. Summing up (3.10)—(3.13), we conclude the
proof of (3.8).

(ii) As divu =0, we get by using Bony’s decomposition (2.5) that
u-Vu=2Tg,u+ V- R(u,u).

Noting that
A (Tqu Z A sz_1Vu A/u)

3" —jl<4
from (3.11), we obtain
- 3
Fou ) / 2 3 8y Vuli | Ay ull et |
3" —j]<4
T (512) | L . 274
< [Z( | Ty @ 1Al 1Ayl par) ]

JEZL

which together with the proof of (3.12) ensures

T
||TVuUHZ1T(HS) < 5HUHZ1T(HS+2) + 0(571/0 HUHQCSHU‘HHdt (3.14)
On the other hand, as

A;V - R(u,u) =V - Z Aj( /u®AJ—/u),
§>j—2
we get by using Lemma 2.1 that

1

. r -~ . 273
IV )y ey S [ ([ 2050 3 18yl Ay ul o) |

jez 70 §1>j—2
s / D 20D DAy a)b
JEZ J'>j—2

1
x (2j/SHAj/u||L2)%HAjluHLoodt) |,

from which we deduce by a similar proof of (3.13) that

T
IV B, )l g3 ey < Ol gy sy + €5~ / el o] -t (3.15)
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Summing (3.14) and (3.15), we obtain (3.9). This completes the proof of Lemma 3.3.

To study the propagation of regularities of the velocity field in the negative Sobolev spaces,
we also need the following forms of commutator estimate and product law.

Lemma 3.4 Let f,g € C([0,T); S(R?)). Then for any 0 < & < 1, there holds

1
_ . 2
{ > 2 2q€|\[Aq;f]g||2L1T(L2)} S (I zge ooy + 11 zee i) N9l 21 (112 (3.16)
qeZ

Proof Firstly, similarly to (3.10), we decompose [A,; f]g as
[Atﬁ flg = [Aq§ Tf]g + Aq(Tgf) + A(IR(fa g) — R/(fv Aqg)-

Applying (3.3) and Corollary 2.1, we have

1A TAgl ey S > WA Se-1f1Augll Ly 2y S I lzse=)lAggll s r2)
l[g—¢|<4

S e ez lgll gy e (3.17)

Similarly

1A TP llercrzy S O ISe-1gllr ooyl Acf g re) S 2| fllzg ooy lgllzy gr-)- (3:18)
l[g—¢|<4

Thanks to Corollary 2.1 and Lemma 2.1, we have

HAqR(f, g)HL;(L2) 5 29 Z HAlf”LlT(L?)||Aeg||Lg9(L2)

2q-2
<27 3 200l gl oo
>q—2
S a2z ol Ty, - 19

Finally, again thanks to Corollary 2.1, we obtain

IR (£ A9y = || 30 SevaBaghe|
>

LL(L2
>q-2 (%)

S Al =y > IAef g

0>q—2

< 2‘150(1( Z cﬂqfl)||f||zg9(gl)||g”Z1T(H*5)
l>q—2

N CquE”f”Z;?(Hl)||QHZ1T(H75),
which together with (3.17)—(3.19) implies (3.16).

Lemma 3.5 Let -1 <s<1and0<e <1. Let f,g € C([0,T]; S(R?)). Then there holds

1Fallzs ey S U1 com) + 171 2o gl 2 oy (3.20)
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Proof By using Bony’s decomposition (2.5), we first get

fa=Trg+Tyf + R(f,9).

Applying Corollary 2.1, we have
1Ag(Trg)llncray S > IS fllisewe)llAeglliy 2y S a2 PN fllege o) 9Nz, 1oy
l[g—€|<4

1A(TyNpszzy S Z 1Se- 19l Ly po) |1 Aef Nl Lo 12y S a2 PN gge 19l (1095

[g—£|<4

where we use (2.2) and s < 1, so that

HS£—19||L1T(L°°) S 062(1_S)é|‘9||21T(Hs)-
On the other hand, as s > —1, by using Lemma 2.1, one gets
1Ag(R(f,9)l 1 (r2) S 2° > 1Acf g2y 1 Aegll L2y
L>q—2

< gas Z 042_(5_‘1)(1“)||f||Z;O(H1)”9HZ1T(H°‘)
>q—2

S Cq2iqs|‘f|‘z%o(gl)Hg”ZIT(HS)-

This proves (3.20).

4 Proof of Theorem 1.2

We shall first provide all the necessary a priori estimates for the existence proof of Theorem
1.2.

4.1 The transport equation
We first deal with the continuity equation in (INS):

. — + 2
{ata+u Va=0, (tz)€R*xR2 1)

a|t:0 = agp-.

Lemma 4.1 Let o > 2 and ag € H*(R?). Let u be a solenoidal vector field with u €
LY([0,T); H*TY(R?)) and Vu € L>*([0,T); L®(R2)). Then (4.1) has a unique solution a €
L¥(H*(R?)) N C([0,T); H*(R?)), which satisfies

lallzse(zry = llaollrr, V1 <p< oo,

T (4.2)
el 1oy < Callaolins 1+ gy oy exo ([ 1900,

Proof As the existence of solutions to (4.1) essentially follows from the a priori estimates,
for simplicity, we just present the detailed proof to (4.2). The first part of (4.2) follows from
the standard characteristic method and divu = 0. On the other hand, again as divu = 0, by
acting A; to (4.1) and taking the L? inner product of the resulting equation with A;a, we get

1d . . .
Sl + (A ul - Va | Aga)ss =0, (43)



618 G. L. Gui and P. Zhang
While thanks to (2.5), we have

[Aj; u]-Va=[Aj; TVa+ Aj(R (u,Va)) — R (u, VAja).
It is easy to observe

I1Aj; TulVallz S D IVSemrullz=|Avallz S [ Vaullz= Y Az,

j—e1<a j—e1<4
IA; (R (w,Va)lez S D IVSereal =27 AcVulliz S llalle Y 1AcVul| L2
(>j-N (>j-N

Similarly,
1B (u, V20|12 S allz= D [AeVullre.
>N
Then integrating (4.3) over [0,¢] for ¢ < T, we have

t
1A all ey S 1Ajaollce + /0IVU(T)ILwllAeaIILgo<L2)dT

[i—€|<4
t .
Hlaolex Y [ 18Tulzedr,
¢>j—N"V0
But as
t
3 / JAVulzdr S (30 e lullz ey S €27 ulzy oy
>j—N"0 0>5—N ! r
and

t t
3 / V()| =l Acall o (1) dT S 279 / & (M) IV < lallz g, .
[7—¢|<4

by using Minkowski inequality, we get
t
Jallz sy 5 ol o + ozl zy ooy + [ 107 = Nl e, 07
0

Gronwall inequality together with the first part of (4.2) gives (4.2). Since a € L3P (H®(R?))
and a satisfies (4.1), it is standard to prove that a € C([0,T]; H*(R?)). We omit the details
here.

4.2 Elliptic estimates
To deal with the pressure term in (INS), we need to handle the following type of elliptic

equation:
(E) div (bVp) = div F.
= def . def .
Lemma 4.2 Let s > 2, F = (F1,F), b = 1+ a, withb = inf b(t,x) > 0 and
(t,x)€[0,T] xR2
Va € LE(H*"Y(R?)). Then up to a constant, (E) has a unique solution p such that

BIVpllzs gy < C(AT) (|7 (H°), (4.4)

where .
Ar Lppn bt ||VCLHZ;9(Hsf1)-
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Proof Again for simplicity, we only present the detailed proof to the a priori estimate (4.4).
We first take the L? inner product of (E) with p and use integration by parts to obtain

(bVp|Vp)r2 = (F|Vp) L2

which ensures
IVpllizzy < b F|prre- (4.5)

Furthermore, applying Aq to (E) and taking the L? inner product of the resulting equation
with qu, we get
(Aq(bVp) [ AgVp)r2 = (AgF [ AgVDp) L2,

which gives
(bAVP | AgVp)12 = (AgF | AgVp)rz + ([ Ag] VP | Ay Vp)12
Then, by integrating the above inequality over [0, T], we get
12||Aqvp||L1(L2) < ”Aqﬁ”L 12y + e ]VPHLl (L?)-

Applying (3.7), we have

1

— s . 3
BIVPIzy ey < 1E gy ey + (D0 22115 AlVall3s 12))

qEZ
< 1Pl s ey + ClIVal oy IV s a1 (4.6)
while thanks to Proposition 2.2, we have
1981z, 11y < CIVDI, H0>| o
19913 a0y < 19l ey S5 1F ey S5 1Pz ey

which together with (4.5) and (4.6) gives (4.4).

4.3 The momentum equation

The goal of this section is to study the momentum equation in the system (INS), which is
the key part in the existence proof of Theorem 1.2.

(M) O+ u-Vu+b(Vp—div (a(a)M) = 0.
Lemma 4.3 Let 0 <e <1, s> 0, and u € C([0,T); S(R?)). Then there hold

HUHZ%O(Hs) S HUHZ;O(H*E) + ||u||f°°(H‘)’
(4.7)
||VUHL1T(L°°) + HuHLl (H2) ~ HUHLI (<)t ||u||L1 (Es+2)"

Proof Thanks to Definition 2.2, to prove the first part of (4.7), we only need to show that

1
. o . 2
15 auleg e S (30 25 1 Aulz 0 )

j<—2
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which is a consequence of

1 1
18 1ulzan < S0 MAgulizan < (30 275 Al s )" (30 2)
j<—2 j<—2 J<-2
1
2
(Z 2-2i% || A, uHLm(m)) .
j<=2

On the other hand, thanks to Littlewood-Paley decomposition, we have

/ IVu(®)llzedt Y 1A Vullps ooy + Y 185 Vull s )

7<0 7=>0

5 Z 22jcj2_j(2_8) HU’HZ,}(Hz—s) + Z 22jcj2_j(2+8)HUHZ%(H3+2)

J=<0 >0
S HUHZ,}(H275) + HUHZ%(H3+2)- (4.8)
A similar argument gives the same estimate for ||u||L1T(H2).

Proposition 4.1 Let s > 2, ¢ € (0,1). Let (a,u) be a given smooth enough solution of
def . — def def .
(INS) on [0,T]. We assume that b = mléln£2 bo > 0 (resp. b = |boll=), and p = bnzfg]u(%) > 0.

9,

Then there exist positive constants ¢ and C such that for all § > 0, there holds
HUHZ;O(Hs) +cb HHUHZIT(HsH)

< ||U0||Hs + C[((S + ||VCLHZ;9(Hs)(1 + |‘GHZ;9(H3+1))S+2)[”U”ZIT(Hz—s)

T
gy en) +57 Tl e ). (49)
Proof We first apply Aq to the momentum equation (M) to yield
(M,) 0 Aqu+u-VAgu+ AVp — div (bi(a) AgM) = —=A,(aVp) + [u; Ag] - Vu+ R,

with
R, % A, (b div (ila) M) — div (bJi(a) A, M).

We split R, as follows:
Ry = —div {b[ii(a) — (0); AgJM} + (0){Ay(adiv. M) — div (@ AgM)}
+A,{adiv[(fi(a) — (0)) M]} — div {a A[(5(a) - (0))M]}

= —div {b[fi(a) — 1(0); AJM} + RL + R2, (4.10)
where

R} € 5i(0){A (adiv M) — div (a A, M)},

R2 A {adiv[(fi(a) — 3(0)M]} — div {a A,[(i(a) - (0)M]}.
Notice from (4.1) that inf b(t,z) = b and ||b]| o (jo,r]xr2) = b. Then thanks to Lemma

(t,z)€[0,T] xR?
2.1, we get by taking L? inner product of (M,) with A,u that

||A ull 22 + cbp2®!|| Agul|Fs < || Aqul| 2 (| Ryl 2 + ||R2HL2 +[us Ag] - V|2
+ 0027 [fi(a) ~fa(0); Ag M| £2) = (Ag (aVp) [ Aqu) 2 (4.11)

2dt
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for some constants ¢, C' > 0. However thanks to (2.5) and using the fact that divu = 0, we have

(Aq(an) | Aqu)L2 = (Aq(TavP) | Aqu)L2 + (Aqu(a,Vp) | Aqu)L2
= _(Aq(TVap) | Aqu)L2 =+ (AqR’(a, Vp) | Aqu)L%

which together with (4.11) ensures that

||Aqu||L;s>(L2) +cb g22q||Aqu||L1T(L2)
< [1Aquollzz + [ Rgll Ly L2y + IR .22y + fws Ag) - Vull Ly r2y
+1A¢(Tvap) 1 (22) + 18R (a, VD) L1 (12) + C 27[[1i(a) — 2(0); Ag] M| L1 L2y,

from which we deduce that

1 1
S 2 S 2
< Nuoll e + { Y2 IRY I 1)} + { 20 27N RE 1)}

qEZ qEL
1
+1T9apl 7y 7o) + 1@ I gy ey + (D0 22 Al - Vulldy 1))
qEZ
1
+CB( S 2V ) — 0); A M, 1)) (4.12)

qEL
By Lemma 3.1, we have
1
{32 20RZ, o)} S IValage (o) IVl zy ey + ol ey 120
gllLi L2y ~ L3 (L) LL(H?) Lo (H*) Ly(L>®)
qeZ

but a similar argument as (4.8) implies that
IV2ullpy noey S Nullzy cgra-ey + Il zy ogrovays
from which, by (2.4), we obtain
3
{32 IR 1) b S IVl e iz ooy + Nl gy igesny) (413)
qEL

Applying Proposition 2.3 and Lemma 3.1 once again gives

1
s 2 ~ ~
{ S22 R, 1} S IValeg @ llGila) = BONVullz ey
qEZ ~ ~
(i) — i(0)) Vul| 1 (1)
SNVl o ey (1 Nl zo o) IVl 23 ) + 1017 (7o)

which together with (2.4) and (4.7) implies that

1
s 2
{22 IRE 1y b S IVl 2 ey (L Nl e o)l 2y 2oy + Nl gy grevay) (414)
qeZ
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Similarly, applying (3.6) gives

=

(Z 22a(s+D)|([fi(a) — 7i(0); Aq]M||2L1T(L2)) 2

qEL

S IVallge ey lull gy ey + lallzge (o VUl Ly o)
S IVallze (o)l gy gra—ey + 1ell gy gy - (4.15)
On the other hand, by taking divergence to (M), we get
div (bVp) = div F, (4.16)
with

F = bdiv (i(a)M) — u - Vu — Ji(0) Au
= (14 a)div [(fi(a) — Z(0)M)] + afi(0)Au — u - Vu.

Then Proposition 2.3 together with (2.4), (3.9) and (4.7) gives
1Flyqa < 6+ lallo) el my + (Mol IVl aey + 571 [ gl )
< O+ llallz= + lall g ol 7y go-ey + Il gy gera]
T
4057 [l yllulz» dt,
o 2
10 23 iy < Clallzs ey (4 Nl aroy) U1V g ) + g gresay) + - Vil ey
<CP+ ||a||Z;°(Hs+1)(1 + ||a||f$(HS))][HUHZ}(EP*E) + ||U||Z}F(Hs+z)]
T
05 [ gl
Then applying Lemma 4.2 gives
bIVPIEs ey < CCAD)IIF Ly 2y + 1F Nz s
< C(Ar)* [[5 + ||a||Z;o(Hs+1)(1 + ||a||Z%o(Hs))][H“HZlT(H?*E)
T
gy ) 7 [l e ] (4.17)
One the other hand, a similar proof of Lemma 3.1 yields

Faply ey + 17 (@ V) gy ey S [l e VP sy + el z ey [V 23 )
/S ”vaHZ%"(HS*I)||vp||Z%(Hs—1) (418)

Plugging (3.8), (4.13)—(4.18) into (4.12), we obtain (4.9), which completes the proof of Propo-
sition 4.1.
Now let us turn to the estimate of ||u||z?(H,€) + ”u”ZlT(H%E)'
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Proposition 4.2 Let (a,u) be a smooth enough solution to (INS). Then under the assump-
tions of Proposition 4.1, we have

||u||Z;§’(H75) +cb EHUHZ;(}ﬂfE)

lall £ e
< Nuoll g« + €0+ lall e ey (1 + Nl e o)) (1 + m)}
T

T
) [ el (2.9

b— C”“”Z%O(Hs) 0

_ ||a||Zoo(Hs)
X[||”||Z%(H2*E) + ||U||Z%(Hs+2)] + C((S L + T

Proof Firstly, by applying A, to (M), we get

O Au+ Ay(u-Vu) + A, Vp — div(bii(a) Ay M)
= —Ag(aVp) + R} + R} + div(b[Ay; fia)| M),

where

def [ 1

R} Ay aldiv (i(a)M), REE '

' Va- Ay ((@M),
from which we deduce that
||Aqu||L9;(L2) +cb ﬁ22q||Aqu||LlT(L2)
< Aquollzz + 1 Ag(u- V)|l L1 (r2) + [|12q(aVD) | Ly L2y + 1RSI L1 2y
+ 1Ryl Ly (z2) + CD29[[[Ag; i(a) — (0)] M L1 (L2)-

Multiplying the above inequality by 279 and taking the ¢? norm to the resulting inequality,
we obtain

HUHZ;S(Hfs) +cb HHUH];HT(H%E)

N|=

< Nl - + laVpllgy e + lu- Vullgy ey + { D272 IR (12) }
qEL

H{ D2 R (o)} B DD 2O [ ile) — AOIMIy oy} (4:20)

qEZ qEZ

Nl=

Firstly, applying Lemma 3.4 and (3.20), we have

1
_ 2
{22 m2, 10}

qEL
S (lall e o) + lallzs (i) [1GE(@) = FHONMII s (gpr—e) + FO) [l 23 (o]

< Ulallzge ) + all gy i) (4 + lallzgezey + lalpy oMl gy o ey (4:21)
And applying (3.7) and (4.7), we have

{20 29094 @) - BOIMIZy (12}

qEZ
< 17(a) = ()l ge oyl gy gare- oy + V7@ s 1o | Pl g 20

S (”a”Lg?(LOO) + ||a||Z%O(HQ—E))(HUHZ%(H?fs) + ||“||Z1T(Hs+2))- (4.22)
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On the other hand, thanks to Bony’s decomposition (2.5), we have
fi(a)M = Ty M + Tojfi(a) + R(fi(a), M).
Note that

1A Ty Ml Ly 100 5‘ Y ISe-r(@@) g o) ALV 1y 1y S a2 Nullzy (gra-ey-
qg—L|<4

So, a similar estimate holds for Thfi(a). While thanks to Lemma 2.1, we have

| Ag(R(E@), M)y 2)S27 3 1AGE@) 2z | AdM) |y 22y €627 ullz, L(frey

>q—1

Therefore, we obtain

{22 2q€||R4||L1 (L?) } S ||VCL||L°<>(L2 ||u||L1 L(H2=<)" (4-23)
qEL

Finally, to handle [|aVp||7. L (<) We first deduce from (4.16) that
Bl AGVpllLicey < 1AGF Ly 2y + s Agl Vol (2

which gives

1
2
BIVBlzy ey < Iz oy + { D0 272 Nas AglOpl3, 1)}
qEZ
SUFzy iy + Nl s oy + lallzg o)IVDIzy ey (4.24)

However, by applying (3.20), we get
| div[(7i(a) - AO)MIly 4oy S (lallzge ) + lall g g el gy oo
while (3.20) gives
ladivI(i@) O Mz, 1) S Ul ooyl 7 o) | divI(E@) ~HO) Ml 73 g1 -
Therefore, it follows from (3.9) and (4.24) that
(b - Cllalzz ey + Nall i VPl 73 ey <CNFllzy o)
<C+lall oo+l z iy 2l oy + / e (4.25)
On the other hand, thanks to (3.20), we have
10Vl 2oy S Ulallziceooy + lall e i) IVl ey
which together with (4.25) gives

1aVPllzy o) S —Fm1-——
Ly (H75) Q_CHGHZ;O(HS)

T
(<1+||a||z;o<m)>2||u||z1T<H2E)+/O gl —-dt). (4.26)

Plunging (3.8), (4.21)—(4.23) and (4.26) into (4.20), we get (4.19). This completes the proof of
Proposition 4.2.
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4.4 Proof of Theorem 1.2 (existence part)
Now we are in a position to complete the proof of the existence part of Theorem 1.2.

Proof of Theorem 1.2 (Existence Part) Firstly, as ug € H*(R?) N H¢(R?), a similar
proof of (4.7) ensures that ug € L*(R?), and consequently uy € H*(R?). Given (ag,ug) €
H*THR?) x H*(R?), it is standard (see e.g. [1]) to prove that (INS) has a unique solution (a, u)
on [0, 7] for some T > 0, and the following energy equality holds on [0, 7] :

1d

1 ~

Thanks to (4.2), as long as |ag| < 1,
0<b<l+a=b<2,

which together with (4.27) gives

1 ! 1
—/ |u|2dx+u// |Vul?dzdt < —/ luo|? d. (4.28)
4 Jrz —Jo Jr2 b Jr2

Furthermore, thanks to (4.9) and (4.19), we have

el e ey + el 7w o) + [ 12 = C[8 4 all ey (1 + Nl 7o o))+

HG/HZOO(HS)
1 +)H — o
( b— CHGHZ?O(Hs) [HUJHL%(}p ) + ||u||L}(H +2)]

< lluoll gre + lluollzr-- + €6~ luollZ:

e
/ o)l iy + il o) A2 (429)

+Cl5 T+
{ b—Cllallzoe g0 allEes (e

for t < T, where we use (4.28) and ||u|| 0 < C||Vul|12, which follows from Lemma 2.1, so that

[ I 0t < Cluol

Now let us define

» def b cb p def
T = sup{T >0: HCLHLDo (gre+1) < Min (20 T )(1:— L)s+2) = CO}. (4.30)
2C

If T* < oo, by taking § < ZQ—C& in (4.29), we get

H“HLOO i) T H“HLOO ;D) + [H“HLI(Hz S H“HLI Hs+2)]

4C
< luoll gs + lluoll - +'C [|uoll3

o + 0! / llZg (s ey + Nl ey A (431)
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Then, by Gronwall inequality and (4.28), we get

cbp

ol e ey + 10l 7 ey + o Wl gy + el )

< Cllluoll g« + lluoll - )1 + (luoll g+ + lluoll --))?

2
xexp(cx5—1+-6“4)L%%fﬁ) def (4.32)
for t < T*, from which, together with (4.2) and (4.7), we deduce that
210 2Cno .
lallzz 1y < Cllaollsress (1+ T Jexp ( on ), T<T" (4.33)
Therefore, if we take ag small enough so that
T — o exp ((— 20
OlHET = max(4,20(1—|—02biz)) chp ’
then (4.33) implies that
Go

HG“HZIOED(H5+1) < 5, VT <T%,
which contradicts (4.30), and therefore T* = oo. This completes the existence proof of Theorem

1.2.

4.5 Proof of Theorem 1.2 (L? decay part)

The main goal of this subsection is to prove (1.4). Motivated by [18], we shall first focus on
a logarithmic-type decay estimate of ||u(t)]| 2.

Lemma 4.4 Under the assumptions of Theorem 1.2, there holds
Ju(t)]|z> SIn" (e +1). (4.34)

Proof Firstly, thanks to (4.27), one has

d
g Iveullz: + plVulz: <o.

Applying Schonbek’s strategy in [15], by splitting the phase-space R? into two time-dependent

parts, we get

IVu(t)2, = / €2l €)[2de + / €2, €)2de,
5(t) 5(t)e

where S(t) def {€:1¢g < \/E gt)}, p def sup  p(t,xz) = sup po(x), and g(t) satisfies
B (t,2) ER+ xR? zER?

g(t) < (1+1t)"2, which will be chosen later on. Then we obtain

TR + FOIVF Ut <pet(e) [ [atte)Pde. (1.35)

S(t)
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To deal with the low frequency part of u on the right-hand side of (4.35), noting that div. M =

1 Au, we rewrite the momentum equations in (INS) as

Oru — poAu +u-Vu+ Vp + aVp — poalu
—div[(1 4 a)(i(a) — @(0))M] + (1(a) — 1(0))VaM =0,

where 1o df %ﬁ(O) Denoting P to be the Leray projection operator, by using Duhamel’s

principle, we get

u = o + / e t—DAP(T . (—u @ u) + div [(1 + a) (fi(a) — Fi(0))M]

+ poalAu — aVp — (fi(a) — (0))VaM)dt'.

Taking Fourier transform with respect to = variables gives rise to

it )] S e o g (€)] + /O e 1ot ] (17, (u @ w)| + |7 [(1 4 a)(Gila) — i(0)) M]])
+ | Fe(aldu)| + | Fo(aVp)| + | F2[(i(a) — (0)) VaM][|dt’,

so that
u 2 e~ 2motlel |5 2 4 t u@u)| e
[, moraes [ @R +9'0)] [ (Aol
+ 110+ a)la) = FO)Mz)a¢] +520) ] [ (17 et
F1F@VD) e + |1F2lGila) — (0) VaM] ) ar] (4.36)
Applying (4.28) and (4.33) gives
([ 1t + o - monMilizar)” < ([ 10+ a)ita) - mopailes d)

< [la) — /7(0)||2Lt°°(L2)||v“H%§(L2)
< (140 Vullpaeay S (14 (437)

and

t 2 t 2
( / |F2(aVp)llzat') < ( / laVpllzs dt')” S llal oo I 9P12 5 1) < C.

Furthermore, thanks to (4.7) and (4.32), we have
t 2
(] 17atuliz ar) < falrwo |Aulzy0n <C,

t 2
( / 1 [Gia) = 0))VaM] =t ) S [ Gila) = FODIE (1) IVl 12 IVl ) SC:

Finally, it is easy to observe that

(/Otm(u@u)ugo ar)’ < (/Ot lu® ular) = (/Ot Jul32ar)”
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Noting that ug € H* N H~¢, one has
e )P < (14 1)
S(t)
Then as g(t) < (14 t)~2, one deduces from (4.36) that
[, fe.oPa < 0 [ iz ar)’ + a0 (1.33)
with 1 %' min{1, £}. Substituting (4.38) to (4.35) results in

d
SlvAuls + POV ullt S gt + 1) / lu@)2ar)’.  (439)
which gives
S ()3
t 2
S Il + [ 0 (a0 @) [ i) Yar. @
0

ow taking g“(t) = n (4.40), we deduce from (4. an . that
N ki 2 0 4.40 ded f 4.28 d (4.40) th

3
e+t) In(e+t)

IVAull3 (e +1) S 1+ / t (én:(?)til e . 753 / Ju)lEadr) ) ar

0

t
1
<1 dt' <1 ¢
~ +/o (e + 1) < Infe 1),
which gives (4.34), and this completes the proof of Lemma 4.4.

With the fundamental estimate (4.34), we can follow the main ideas of [18] to prove (1.4).

Proof of Theorem 1.2 (Decay Part) We shall essentially follow the ideas of [18]. For
completeness, we shall present most of the details here. First, by applying (4.34), we get

/t w22 dt’ < Cle +t) In"*(e + t). (4.41)
0

Taking ¢2(t) = 71c in (4.39) for some a € [2k,1] and thanks to (4.41), we obtain

d a—1-2k a— ! 2
D IO S e+ 07 e+ ([ utel-a)
t
< e+ 2172 4 (04 )22 In (e + t)/ u(')|2. ¢,
0
which gives
t t’
(e + )% | /pu(t)|% §(e+t)a’2“+/ (e+t’)a*21n*2(e+t’)(/ lu(m)l3d7) dr'. (4.42)
0 0

For t > 1, we define

def def

y(t) = /0 (e—|—t’)0‘|‘\/ﬁu(t')||%z dt’ and Y (t) = max{y(s);1 < s <t}
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Let I(¢) def fot lu(t')||32> dt’. Then one has

t—[t] t
I(t) = / lu(t')|2 e’ + / lu(t))|2. at
0 t—[t]
U
<Cot 3 [ (et fult) ale+ )
=0 Ji—i—1

[1-1
SCo+Y(s) Y (t—4)*<Co+Y(t)
j=0

%, (4.43)

from which, by integrating (4.42) from t — 1 to t, we get
y(t) S (e+ )2 + /Ot(e +) T In (e + )Y () dt.
Then, applying Gronwall’s inequality, we have
Y(t) S (e+1)*2 + /Ot(e + )7 2 e+ ) dt < (e 4+ 1) (4.44)
Plunging (4.44) into (4.43) gives rise to I(t) < (e +t)!72%. Then it follows from (4.42) that
(e ORI S o402+ [ o 1) e )t 5 (o)
which gives (1.4), and this completes the proof of Theorem 1.2.
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