
Chin. Ann. Math.

30B(5), 2009, 645–652
DOI: 10.1007/s11401-009-0174-6

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2009

On Regularity and Singularity of Free Boundaries

in Obstacle Problems∗∗

Fanghua LIN∗

(Dedicated to Professor Andrew Majda on the Occasion of his 60th Birthday)

Abstract The author presents a simple approach to both regularity and singularity

theorems for free boundaries in classical obstacle problems. This approach is based on

the monotonicity of several variational integrals, the Federer-Almgren dimension reduction

and stratification theorems, and some simple PDE arguments.

Keywords Free boundary, Monotonicity, Dimension reduction, Uniqueness of blow-ups

2000 MR Subject Classification 35R35, 49J40

1 Introduction

Let Ω be a bounded, smooth domain in R
n, and consider a closed, convex subset K of

H1(Ω):

K = {u ∈ H1(Ω) : u = ϕ on ∂Ω and u ≥ ψ in Ω}.

Here ϕ is a smooth function on ∂Ω, and ψ is smooth in Ω with ψ ≤ ϕ on ∂Ω. In K, there is

a unique v that minimizes the Dirichlet integral
∫

Ω
|∇v|2dx. Such a v is called the solution of

the obstacle problem. The classical obstacle problem is to study properties of such minimizers

v. The obstacle problem, in fact, was one of the main motivations for the development of the

theory of variational inequalities (see [8]), and it has many interesting applications (see [7]).

Suppose that the obstacle ψ is smooth (say C2,α in Ω). Then the solution v of the obstacle

problem is of class C1,1(Ω), and that is the optimal regularity one can generally expect (see

[6, 7]). Let

∧(v) = {x ∈ Ω : v(x) = ψ(x)},

N(v) = {x ∈ Ω : v(x) > ψ(x)},

Γv = ∂N(v) ∩ Ω.

Γv is called the free boundary of the solution v, and ∧(v) is called the set of coincidence. One

of the most fascinating and challenging questions concerning the obstacle problem is the study

of the properties of Γv. Without any further assumptions on ψ (besides the smoothness), one

can easily construct examples to show that ∧(v) can be an arbitrary closed subset of Ω.
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In order to establish regularity of Γv, one of the natural assumptions would be that ∆ψ < 0

in Ω. Under this assumption, with some usual normalizations, the problem is reduced to the

study of Γu of the following normalized solutions P1(M) to the obstacle problems. Here P1(M)

consists of such u:

(1) u ≥ 0 in B1, ‖u‖C1,1(B1) ≤M ;

(2) ∆u = 1 in {x ∈ B1 : u(x) > 0};

(3) 0 ∈ Γu = ∂{x ∈ B1 : u(x) > 0} ∩B1.

Caffarelli [4] observed that P1(M) is compact. This is based on the following simple fact.

Lemma 1.1 (Nondegeneracy) Let u ∈ P1(M), x0 ∈ B 1
2

with u(x0) > 0. Then

sup
∂Br(x0)

u(x) ≥
1

2n
r2, 0 < r ≤

1

2
.

Proof Consider

h(x) = u(x) −
1

2n
|x− x0|

2, in N(u) = {x ∈ B1 : u(x) > 0}.

Then ∆h(x) = 0 in N(u) and h(x0) = u(x0) > 0. Thus sup
∂(Br(x0)∩N(u))

h(x) ≥ u(x0) > 0. Since

on Γu, h ≤ 0, one easily deduces that sup
∂Br(x0)∩N(u)

h(x) ≥ u(x0) > 0, and the conclusion of the

lemma follows.

The following fundamental result concerning free boundary regularity was first established

by Caffarelli [3]. An alternate proof based on compactness arguments was later given in [4]

(where the proofs are conceptually much more clear and relatively easier to follow than those

in [3], but are nonetheless quite involved).

Theorem 1.1 (Caffarelli) Let u ∈ P1(M) and N(u) is not too thin at 0 ∈ Γu. Then Γu is

a C1-hypersurface near 0.

Here ∧(u) is not too thin means that there is a universal continuous monotone function

σ : R
+ → R

+ such that σ(0+) = 0 and δr0
(∧(u)) ≥ σ(r0) for some small r0 > 0.

δr(∧(u)) ≥ ε means that ∧(u) ∩Br cannot be put into a strip between two parallel hyper-

planes with distance between these two planes < εr.

It was a long outstanding problem to study the properties of Γu near a point x0 ∈ Γu where

∧(u) is, in fact, thin. We call this a singular point of Γu. In 1998, Caffarelli introduced a

remarkable idea to tackle this difficulty and established the following result.

Theorem 1.2 (see [5]) Let x0 ∈ Γu ∩B 1
2

and suppose that ∧(u) is thin at x0. Then

(a) There exists a unique non-negative quadratic polynomial

Qx0
(x) =

1

2
(x− x0)

TMx0
(x− x0) with ∆Qx0

= 1 ≡ traceM,

such that |u(x) −Qx0
(x)| ≤ |x|2σ(|x|).

(b) Mx0
is continuous in x0 because x0 in the singular part of Γu.

(c) If dimkerMx0
= k, then the singular set of Γu is contained in a C1 k-dimensional

submanifold near x0.
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Remark 1.1 There are examples of solutions u of the obstacle problem such that u ≥ 0

in B1 and ‖u‖C1,1(B1) ≤ M0, 0 ∈ Γu and ∆u = 1 + h(x) > 0 with h a smooth function in

B1 that vanishes at the infinite order at Γu. Moreover, singular points of Γu form a closed

subset of a smooth hypersurface (for example, a hyperplane) of positive Hn−1-measure. In

other words, Caffarelli’s theorem is, in general, the best possibility besides further smoothness

of these k-dimensional submanifolds.

2 Weiss Montonicity and Its Consequences

For a harmonic function u in B1, Almgren [1] showed that

N(r) =
rD(r)

H(r)
, 0 < r < 1,

where

D(r) =

∫

Br

|∇u|2dx, H(r) =

∫

∂Br

u2,

is a monotone increasing function of r. In particular, N(0+) = lim
r→0+

N(r) exists and it is

the vanishing order of u at 0. Suppose that u vanishes at 0 with order k ∈ {1, 2, · · · }. Then

Almgren’s monotonicity immediately implies that

D(r)

rn−2+2k
− k

H(r)

rn−1+2k
, 0 < r < 1

is a monotone increasing and non-negative function of r ∈ (0, 1).

Weiss [11] proved a similar monotonicity formula for solutions u ∈ P1(M) of the obstacle

problem (with a similar proof).

Lemma 2.1 (Weiss Monotonicity Formula) Let u ∈ P1(M), x0 ∈ Γu such that BR(x0) ⊆

B1. Then the function

Φ(x0, r, u) ≡
1

rn+2

∫

Br(x0)

[|∇u|2(x) + 2u(x)]dx−
2

∫

∂Br(x0)
u2

rn+3

is monotone increasing for 0 < r ≤ R. In fact,

d

dr
Φ(x0, r, u) =

2

rn+2

∫

∂Br(x0)

(

uρ −
2u

ρ

)2

.

An easy consequence of this monotonicity formula is the following lemma concerning the

existence of homogeneous degree 2 blow-ups for u ∈ P1(M) at a free boundary point.

Lemma 2.2 (Existence of Homogeneous Blow-Ups) Let u ∈ P1(M). Then for any sequence

{λi}, λi ↓ 0, there is a subsequence {λ′i} such that uλ′

i(x) =
u(λ′

ix)
(λ′

i
)2 converges uniformly to

u0(x) ∈ P1(M) such that u0(x) = |x|2u0(
x
|x|).

Proof We observe that, for any 0 < λ < 1, uλ(x) ∈ P1(M). We apply Lemma 2.1 to uλ to

obtain

Φ(0, 1, uλ) − Φ(0, 0+, uλ) =

∫ 1

0

2

rn+2

∫

∂Br(0)

(∂uλ

∂ρ
−

2uλ

ρ

)2

dr

=

∫ λ

0

2

rn+2

∫

∂Br(0)

( ∂

∂ρ
u−

2u

ρ

)2

dr → 0, as λ→ 0+.
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Thus for a subsequence of uλ′

i such that uλ′

i(x) → u0(x) in C1,β (for any 0 < β < 1, via the

fact that uλi ∈ P1(M)) with u0 ∈ P1(M), one has

∫ 1

0

2

rn+2

∫

∂Br

(∂u0

∂ρ
−

2u0

ρ

)2

dr = lim
λi→0

∫ 1

0

2

rn+2

∫

∂Br

(∂uλ′

i

∂ρ
−

2uλ′

i

ρ

)2

dr

= lim
λ′

i

∫ λ′

i

0

2

rn+2

∫

∂Br

(∂u

∂ρ
−

2u

ρ

)2

dr = 0.

In other words, u0(x) = |x|2u0(
x
|x|).

Now we let F = {Γu : u ∈ P1(M)}. Then it is easy to verify the following properties of F :

(1) ∀E ∈ F , a ∈ E, Ea,λ ∈ F , where Ea,λ = (E−a
λ

) ∩B1, 0 < λ ≤ 1 − |a|.

This is a direct consequence of the fact that if u ∈ P1(M), a ∈ Γu, then u(λ(x−a))
λ2 ∈ P1(M),

for 0 < λ ≤ 1 − |a|.

(2) ∀E ∈ F , a ∈ E, {λi} ↓ 0, there is a subsequence {λ′i} such that

Ea,λ′

i
⇀ T with T0,λ ≡ T for 0 < λ < 1.

In other words, there is a tangent cone of E at each point a ∈ E.

This property follows directly from Lemma 2.2 on the existence of homogeneous degree 2

blow-ups of u at points of Γu. Here we say Ei ⇀ F if for any ε > 0 and for all sufficiently large

i, i ≥ i(ε), Ei is contained in the ε neighborhood of F .

The following result is simply a version of the dimension reduction principle of Federer [7]

and Almgren’s improvement thereof (stratification principle) [1, 10].

Consider E ∈ F and let

Sj = {a ∈ E : the invariant dimension of T ≤ j, for all tangent cones T of E at a}

for j = 0, 1, 2, · · · , n. Here, for a given tangent cone T of E at a (i.e., T0,λ ≡ T = lim
λi

Ea,λi
for

a sequence of λi ↓ 0, 0 < λ ≤ 1), a linear subspace V of R
n is called an invariant space of T

if (T + v) ∩ B1 ⊂ T for all v ∈ V . The maximum dimension of all such invariant spaces V is

called the invariant dimension of T .

Theorem 2.1 (Reduction and Stratification Principle) (i) For every E ∈ F , dimH E (the

Hausdorff dimension of E) ≤ n − 1. Moreover, there is an (n − 1)-dimensional hyperplane

T ∈ F .

(ii) dimH Sj ≤ j, for j = 0, 1, 2, · · · , n− 1,

S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn−1 = E.

Moreover, S0 consists of isolated points.

Proof The proof of this theorem is now standard (see e.g., [9, 10]). On the other hand,

an even simpler argument can be made after we establish the uniqueness of the homogeneous

degree 2 blow-ups at singular points of Γu. We thus omit further details of the proof of this

theorem.
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3 Regularity Theorem

We now consider the top dimensional parts of the free boundaries.

Let u ∈ P1(M), E = Γu ∈ F , S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn−1 ≡ E. Let F = Sn−1 | Sn−2.

Thus for every point a ∈ F , there is a tangent cone of Γu at a which is an (n− 1)-dimensional

hyperplane.

Definition 3.1 Let a ∈ Γu. We say that ∧(u) is not too thin at a if one of the following

conditions is satisfied for ∧(u) :

(a) lim
r→0

|Br(a) ∩ ∧(u)|

|Br(a)|
> 0,

(b) lim
r→0

δr(∧(u) ∩B1(a)) > 0.

Lemma 3.1 Suppose that a ∈ F and ∧(u) is not too thin at a. Then there is a homogeneous

degree 2 blow-up u0 of u at point a
(

that is, a limit of a sequence of functions of the form
u(λi(x−a))

λ2
i

, λi → 0+
)

such that u0(x) = 1
2 (x+

n )2 in a suitable coordinate system of R
n.

Proof Since a ∈ F , there is a sequence of {λi}, λi ↓ 0, such that ui(x) = u(λi(x−a))
λ2

i

→ u0(x)

in C1,α(B1) such that

(1) u0(x) = |x|2u0(
x
|x|),

(2) Γui
→ Γu0

, Γu0
= {xn = 0} for a suitable choice of coordinate system.

Since ∧(u) is not thin at u, this implies either | ∧ (u0)| > 0 or δ1(∧(u0)) > 0. Thus ∧(u0)

has to be a half-space bounded by {xn = 0}. Therefore u0(x) = 1
2 (x+

n )2 follows by a suitable

choice of coordinate system.

Remark 3.1 The hypothesis that ∧(u) is not too thin at a ∈ F can be replaced by one of

the following two conditions: either lim
i
| ∧ (ui) ∩ B1| ≥ ε > 0 or lim

i
δ1(∧(ui)) ≥ ε > 0 in the

preceding proof.

Theorem 3.1 (Regularity of Free Boundary) Suppose that a ∈ F and ∧(u) is not too thin

at a. Then Γu is a C1 hypersurface near a.

Proof From the conclusion of Lemma 3.1, we see that there is an r0 > 0 such that

∥

∥

∥

u(r0(x − a))

r20
−

1

2
(x+

n )2
∥

∥

∥

C1,α(B1)
≤

1

100n
.

Let v(x) = u(r0(x−a))
r2
0

. We need to show that Γv ∩ B 1
2

is a C1 hypersurface passing the origin

0. In order to do so, we first consider the following auxiliary functions h(x) parameterized by

x0 ∈ N(v) ∩B 2
3
,

h(x) ≡ ~e · ∇v(x) − v(x) +
1

2n
|x− x0|

2, on N(v) ∩B1.

Here ~e is a unit vector in R
n. It is clear that ∆h(x) = 0 in N(v)∩B1 and that h(x) > 0 on Γv.

On ∂B1 ∩N(v), we have

h(x) ≥ ~e · ~enx
+
n −

1

2
(x+

n )2 +
1

2n
|x− x0|

2 −
1

50n
≥

( 1

20
−

1

50

) 1

n
+ x+

n

(

~e · ~en −
1

2
x+

n

)

> 0
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whenever ~e · ~en ≥ 1
2 . Therefore h(x) > 0 in N(v) ∩B1. In particular, we have

h(x0) = ~e · ∇v(x0) − v(x0) > 0 for all x0 ∈ N(v) ∩B 2
3

and ~e · ~en ≥
1

2
.

A direct consequence of the above monotone property of v(x) in the direction ~e is that Γv ∩B 2
3

is a Lipschitz graph xn = g(x1, · · · , xn−1) with Lip g ≤
√

3
2 .

One is now in a position to apply the result in [2] to conclude that Γv ∩B 1
2

is a C1,α graph.

We should also note that, with a slightly more expanded argument following the above idea,

one can show that Γv ∩B 1
2

is a C1 graph (by improving the sizes of cones of monotonicity for

v when points go to free boundary Γv) without using the result in [2].

4 Singularity Theorem

From discussions in the preceding section, we conclude that Γu, for u ∈ P1(M), can be

decomposed into two points: Γu = Ru + Su.

(1) Ru consists of those points a on the free boundary Γu such that Γu has a tangent cone

at a which is an (n− 1)-dimensional hyperplane, say {xn = 0}, and that u has, at a, a degree

2 blow-up of the form 1
2 (x+

n )2.

We have shown that Γu is a C1 hypersurface near any point of a of Ru. In particular, Ru

is an open subset consisting of regular points of Γu.

(2) If a ∈ Su, then either a ∈ Sn−2 ⊂ Γu (note that the Hausdorff dimension of Sn−2 ≤

n− 2), or at a, u has a homogeneous degree 2 blow-up u0(x) with {u0(x) = 0} = {xn = 0} for

a suitable choice of coordinate system of R
n.

In this last case, | ∧ (u0)| = 0. Since ∆u0 = 1 whenever u0 > 0, we conclude ∆u0 = 1

everywhere on R
n. Since u0(x) = 0 on {xn = 0}, the only solution is given by

x2
n

2 .

Remark 4.1 Points a of Γu with blow-ups of u at a given by
x2

n

2 (for a suitable choice of

coordinate system) may be of positive Hn−1-dimensional measure.

We shall call Su the singular set of the free boundary Γu. The important fact from the

discussion above is that for all a ∈ Su, u has a homogeneous degree 2 blow-up v at a such that

v ≥ 0 and ∆v = 1 in R
n. Hence v is a non-negative quadratic polynomial in R

n.

Write v(x) as 1
2x

TMx. Then M is non-negative and trace M = 1. Moreover, if a ∈ Sj ,

then there is a quadratic blow-up v of u at a such that D2v(0) = M has rank ≥ n − j,

j = 0, 1, 2, · · · , n − 2. One can also use this to verify that dimH Sj ≤ j, which would be even

simpler than the proof, say, in [10].

Our main result of this section is the following theorem.

Theorem 4.1 For x0 ∈ Su∩B 1
2
⊂ Γu, there is a unique non-negative quadratic polynomial

Qx0
(x) = 1

2 (x − x0)
TMx0

(x − x0) with ∆Qx0
= 1 = traceMx0

, such that |u(x) − Qx0
(x)| ≤

|x|2ε(|x|), where ε(r) is a monotone, continuous function on R+ with ε(0+) = 0. Moreover,

Mx0
is continuous in x0 for x0 ∈ Su.

As a consequence of this theorem, one has the following corollary.

Corollary 4.1 If x0 ∈ Su and dimkerMx0
= j, then Su near x0 is contained in a C1

j-dimensional submanifold for j = 0, 1, 2, · · · , n− 1. In particular, Sj is contained in a union
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of j-dimensional C1 submanifolds for j = 0, 1, · · · , n− 2.

The above result is exactly parallel to the singularity theorem of Caffarelli [3]. The only

difference is that our proof will be based upon a new monotonicity formula.

Let u ∈ P1(M) and v be a non-negative quadratic polynomial such that ∆v = 1. Without

loss of generality, we assume that v is a homogeneous degree 2 blow-up of u at 0 ∈ Su, and that

u is already close to v on B1 (say in C1,α norm). Let

D(w, r) =

∫

Br

|∇w|2(x) dx,

H(w, r) =

∫

∂Br

w2,

where w = u− v.

Lemma 4.1 (Generalized Almgren-Weiss Monotonicity)

d

dr

[D(w, r)

rn+2
− 2

H(w, r)

rn+3

]

= 2

∫

∂Br

|ρ∂w
∂ρ

− 2w|2

rn+4
≥ 0 for 0 < r < 1.

Proof A direct calculation shows that

d

dr

[D(w, r)

rn+2
− 2

H(w, r)

rn+3

]

=
2

rn+4

∫

∂Br

∣

∣

∣
ρ
∂w

∂ρ
− 2w

∣

∣

∣

2

+ ε(r),

where

ε(r) =
2

rn+3

∫

Br

(2w − ρwρ)∆w dx.

Since v is a homogeneous function of degree 2, we have 2w − ρwρ = 2u − ρuρ. If x ∈ ∧(u),

i.e., u(x) = 0, then ∇u(x) = 0 (u ≥ 0 and C1,1), and hence 2u − ρuρ = 0. If x ∈ N(u), then

∆w = ∆u − ∆v = ∆u− 1 = 0 on the set {u(x) > 0}. Hence ε(r) ≡ 0.

From our assumption, we have that D(w, 1) − 2H(w, 1) is small since v is close to u on B1

in the C1,α norm. On the other hand, since v is a blow-up of u at 0, that means that there is

a sequence of λi ↓ 0 such that uλi(x) → v(x) ∈ C1,α norm as i→ +∞. Because

D(w, λi)

λn+2
i

− 2
H(w, λi)

λn+3
i

= D(wi, 1) − 2H(wi, 1) → 0, as i→ +∞,

where wi = uλi(x) − v(x), we conclude

0 ≤
D(w, r)

rn+2
− 2

H(w, r)

rn+3
≤ D(w, 1) − 2H(w, 1).

Lemma 4.2 (Convexity)

d

dr

(

∫

∂Br
w2

rn+3

)

≥
2

r

[D(w, r)

rn+2
− 2

H(w, r)

rn+3

]

≥ 0.

Proof

d

dr

∫

∂Br
w2

rn+3
=

2

r

[D(w, r)

rn+2
− 2

H(w, r)

rn+3

]

+
2

rn+3

∫

Br

w∆w dx.
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Notice that one has w ∈ C1,1(B1) and, when u > 0, ∆w = ∆u − ∆v = 0. On the other hand,

if u = 0, ∆u = 0 a.e. on {u = 0}, then w∆w = v∆v = v a.e. on {u = 0}. Hence w∆w ≥ 0 a.e.

in B1. The conclusion of the convexity lemma follows.

The reason that we call Lemma 4.2 the convexity lemma is that if we let f(t) =
R

∂Br
w2

rn+3 ,

r = et, −∞ < t < 0, then ftt(t) ≥ 0 by Lemmas 4.2 and 4.1. An easy consequence of either

one of these two lemmas is the uniqueness of homogeneous degree 2 blow-up at any point a of

Su. The rest of the proof of the main theorem follows.
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