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Abstract The authors investigate the long-term dynamics of the three-dimensional Navier-
Stokes-Voight model of viscoelastic incompressible fluid. Specifically, upper bounds for the
number of determining modes are derived for the 3D Navier-Stokes-Voight equations and
for the dimension of a global attractor of a semigroup generated by these equations. Viewed
from the numerical analysis point of view the authors consider the Navier-Stokes-Voight
model as a non-viscous (inviscid) regularization of the three-dimensional Navier-Stokes
equations. Furthermore, it is also shown that the weak solutions of the Navier-Stokes-
Voight equations converge, in the appropriate norm, to the weak solutions of the inviscid
simplified Bardina model, as the viscosity coefficient ν → 0.
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1 Introduction

We consider the three-dimensional Navier-Stokes-Voight (or Navier-Stokes-Voigt) (NSV)

model that governs the motion of a Kelvin-Voight linear viscoelastic incompressible fluid:

vt − ν∆v − α2∆vt + (v · ∇)v + ∇p = f(x), x ∈ Ω, t ∈ R
+, (1.1)

div v = 0, x ∈ Ω, t ∈ R
+,

v(x, t) = 0, x ∈ ∂Ω, t ∈ R
+,

(1.2)

v(x, 0) = v0(x), x ∈ Ω (1.3)

in a bounded domain Ω ⊂ R
3 with sufficiently smooth boundary ∂Ω. Here v = v(x, t) is the

velocity vector field, p is the pressure, ν > 0 is the kinematic viscosity, and f is a given force
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field. The length scale α is a characterizing parameter of the elasticity of the fluid in the sense

that α2

ν
is a characteristic relaxation time scale of the viscoelastic material.

The system (1.1)–(1.2) was introduced and studied by Oskolkov in [41]. It is interesting to

observe that the inviscid version of the NSV equations (1.1)–(1.3), i.e., when ν = 0, coincides

with the simplified Bardina model of turbulent flows. The viscous simplified Bardina model

was introduced, and studied, in [36] (see also [4]) as a simplified version of the Bardina sub-

grid scale model of turbulence (see [3]). In [5] the viscous and inviscid simplified Bardina

model were shown to be globally well-posed. Viewed from the numerical analysis point of view

the authors of [5] proposed the inviscid simplified Bardina model (or equivalently the inviscid

NSV equations) as a non-viscous (inviscid) regularization of the 3D Euler equations, subject

to periodic boundary conditions. Motivated by this observation, system (1.1)–(1.3) was also

proposed in [5] as a regularization, for small values of α, of the 3D Navier-Stokes (NS) equations

for the purpose of direct numerical simulations, for both the periodic and the no-slip Dirichlet

boundary conditions.

It was shown in [41] that the initial boundary value problem (1.1)–(1.3) has a unique weak

solution. Moreover, it was shown in [25] and [26] that the semigroup generated by the problem

(1.1)–(1.3) has a finite dimensional global attractor.

In this paper, we give an estimate of the fractal and Hausdorff dimensions of the global

attractor of a dynamical system generated by the problem (1.1)–(1.3), which is an improve-

ment of the estimates done in [26]. Moreover, we derive estimates for the number of asymptotic

determining modes of the solutions of the problem (1.1)–(1.3). We also show that there exists a

number m such that each trajectory v(t) on the global attractor of the dynamical system gener-

ated by this problem is uniquely determined by its projection Pmv(t) onto the span{w1, · · · , wm}
of the first m eigenfunctions of the Stokes operator. This observation is related to the notion

of continuous data assimilations as it has been presented in [30, 39, 40].

It is worth stressing that by adding the regularizing term (−α∆vt) to the NS equations,

system (1.1)–(1.3) changes its parabolic character. In particular, the 3D system (1.1)–(1.3)

is globally well-posed forward and backwards in time. The semigroup generated by problem

(1.1)–(1.3) is only asymptotically compact. In this sense the system is similar to damped

hyperbolic systems. We also remark that this type of inviscid regularization has been recently

used for the two-dimensional surface quasi-geostropic model (see [29]). In particular, necessary

and sufficient conditions for the formation of singularity were presented in terms of regularizing

parameter. Similar criterion for the formation of singularity in the 3D Euler equations of

inviscid incompressible flows is also reported in [35].

In addition, it was shown in [27] that the global attractor of the 3D NSV equations, driven

by an analytic forcing, consists of analytic functions. As a consequence, the spectrum of the

solutions of the 3D NSV system, lying on the global attractor, have exponentially decaying tail,

despite the fact that the equations behave like a damped hyperbolic system, rather than the

parabolic one. This result provides an additional evidence that the 3D NSV, with the small

regularization parameter α, enjoys similar statistical properties as the 3D NS equations. These

statistical properties were investigated further, both analytically and computationally, in [37].

In addition, the existence of probability invariant measures associated with the dynamics of

the 3D NSV have been established in [44]. Moreover, the limiting behavior of these measures,

as α → 0, and its relation to the notion of stationary statistical solutions of the 3D NS (see,
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e.g., [16] for details) have also been investigated in [44].

2 Preliminary

In this paper, we will use the following standard notations in the mathematical theory of

NS equations:

Lp(Ω) (1 ≤ p ≤ ∞) and Hs(Ω) are the usual Lebesgue and Sobolev spaces, respectively;

For v = (v1, v2, v3) and u = (u1, u2, u3), we denote by

(u, v) =
3∑

j=1

(vj , uj)L2(Ω), ‖v‖2 =
3∑

j=1

‖vi‖2
L2(Ω), ‖∇v‖2 :=

3∑

j,i=1

‖∂ivj‖2
L2(Ω);

We set

V := {v ∈ (C∞
0 (Ω))3 : ∇ · v = 0};

H is the closure of the set V in (L2(Ω))3 topology;

P is the Helmholz-Leray orthogonal projection in (L2(Ω))3 onto the space H , and h := Pf ;

A := −P∆ is the Stokes operator subject to the no-slip homogeneous Dirichlet boundary

condition with the domain (H2(Ω))3 ∩ V . The operator A is a self-adjoint positively definite

operator in H , whose inverse A−1 is a compact operator from H into H . Thus it has an

orthonormal system of eigenfunctions {wj}∞j=1 of A;

We denote by {λj}∞j=1 (0 < λ1 ≤ λ2 ≤ · · · ) the eigenvalues of the Stokes operator A

corresponding to eigenfunctions {wj}∞j=1, repeated according to their multiplicities;

Vs := D(A
s
2 ), ‖v‖s := ‖A s

2 v‖, s ∈ R. V := V1 = (H1
0 (Ω))3 ∩ H is the Hilbert space with

the norm ‖v‖1 = ‖u‖V = ‖∇u‖, thanks to the Poincaré inequality (2.3). Clearly V0 = H ;

For u, v, w ∈ V , we define the following bilinear form

B(u, v) := P ((u · ∇)v) and the trilinear form b(u, v, w) = (B(u, v), w).

The bilinear form B( · , · ) can be extended as a continuous operator B : V × V → V ′, where

V ′ is the dual of V (see, e.g., [11]);

For each u, v, w ∈ V ,

b(u, v, v) = 0 and b(u, v, w) = −b(u, w, v). (2.1)

Next we formulate some well-known inequalities and a Gronwall type lemma that we will

be using in what follows.

Young’s inequality:

ab ≤ ε

p
ap +

1

qε
1

p−1

bq for all a, b, ε > 0, with q =
p

p − 1
, 1 < p < ∞. (2.2)

Poincaré inequality:

‖u‖ ≤ λ
− 1

2

1 ‖u‖1, ∀u ∈ V, (2.3)

where λ1 is the first eigenvalue of the Stokes operator under the homogeneous Dirichlet boundary

condition. Hereafter, C will denote a dimensionless scale invariant constant which might depend

on the shape of the domain Ω.
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Ladyzhenskaya inequalities (see [11, 32, 34]):

‖u‖L3 ≤ C‖u‖ 1

2 ‖∇u‖ 1

2 , ∀u ∈ V, (2.4)

‖u‖L4 ≤ C‖u‖ 1

4 ‖u‖
3

4

1 , ∀u ∈ V. (2.5)

Sobolev inequality (see, e.g., [1]):

‖u‖L6 ≤ C‖u‖1, ∀u ∈ V. (2.6)

Gagliardo-Nirenberg inequalities (see, e.g., [2, 11, 34]):

‖u‖
L

6

3−2ε
≤ C‖u‖1−ε‖u‖ε

1, 0 ≤ ε ≤ 1, ∀u ∈ V. (2.7)

‖u‖Lp ≤ C‖u‖ 2

p ‖u‖1− 2

p

3

2

, p ∈ [2,∞), ∀u ∈ V 3

2

. (2.8)

Agmon inequality (see, e.g., [11]):

‖u‖L∞(Ω) ≤ C‖u‖
1

2

1 ‖Au‖ 1

2 , ∀u ∈ V2. (2.9)

We will use also the following estimates of the trilinear form b(u, v, w) which follow from

(2.4)–(2.9) (see, e.g., [11]):

|b(u, v, w)| ≤ C‖u‖ 1

2 ‖u‖
1

2

1 ‖v‖1‖w‖1, ∀u, v, w ∈ V, (2.10)

|b(u, v, u)| ≤ C‖u‖ 1

2 ‖u‖
3

2

1 ‖v‖1, ∀u, v ∈ V, (2.11)

|b(u, v, w)| ≤ C‖u‖1‖v‖1‖w‖ 1

2 ‖w‖
1

2

1 , ∀u, v, w ∈ V, (2.12)

|b(u, v, w)| ≤ Cλ
1

4

1 ‖u‖1‖v‖1‖w‖1, ∀u, v, w ∈ V. (2.13)

Lemma 2.1 (see [15, 23]) Let a(t) and b(t) be locally integrable functions on (0,∞) which

satisfy, for some T > 0, the conditions

lim inf
t→∞

1

T

∫ t+T

t

a(τ)dτ = γ, lim sup
t→∞

1

T

∫ t+T

t

a−(τ)dτ = Γ, lim inf
t→∞

1

T

∫ t+T

t

b+(τ)dτ = 0,

where γ > 0, Γ < ∞, a− = max{−a, 0} and b+ = max{b, 0}. If a non-negative, absolutely

continuous function φ(t) satisfies

φ′(t) + a(t)φ(t) ≤ b(t), t ∈ (0,∞),

then φ(t) → 0 as t → ∞.

Definition 2.1 (see, e.g., [15, 19, 33]) A semigroup S(t) : V → V , t ≥ 0 is called asymp-

totically compact, if for any sequence of positive numbers tn → ∞ and any bounded sequence

{vn} ⊂ V the sequence {S(tn)vn} is precompact in V .

Theorem 2.1 (see, e.g., [19,33,47]) Assume that a semigroup S(t) : V → V for t ≥ t0 > 0

can be decomposed into the form

S(t) = Y (t) + Z(t),

where Z(t) is a compact operator in V for each t ≥ t0 > 0. Assume also that there is a

continuous function k : [t0,∞) × R
+ → R

+ such that for every R > 0, k(t, R) → 0 as t → ∞
and

‖Y (t)v‖V ≤ k(t, R) for all t ≥ t0 > 0 and all ‖v‖V ≤ R.

Then S(t) : V → V , t ≥ 0 is asymptotically compact.
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Next we state a result from [33] which will enable us to estimate the dimension of the

global attractor for the system (1.1)–(1.3). This result is typically useful in the context of

nonlinear damped hyperbolic systems, when the damping term is not strong enough to control

the instabilities rising from the perturbed nonlinearity.

Theorem 2.2 (see [13, 33]) Let S(t), t ∈ R
+ be a semigroup generated by the problem

vt(t) = Φ(v(t)), v|t=0 = v0

in the phase space H, and let M ⊂ H be a compact invariant subset with respect to S(t). Let

S(t) and Φ( · ) be uniformly differentiable on M and let L(t, v0) be a differential of Φ at the point

S(t)v0, v0 ∈ M. Suppose that Lc(t, v0) := L(t, v0) + L∗(t, v0), v0 ∈ M satisfies the inequality

(Lc(t)u, u) ≤ −h0(t)‖u‖2 +
m∑

k=1

hsk
(t)‖u‖2

sk
(2.14)

for some numbers sk < 0 (k = 1, · · · , m) and some functions h0, hsk
∈ L1,loc(R), hsk

(t) ≥ 0,

h0(t) ≥ 0 for all t ∈ R
+. Then

dimH(M) ≤ dimf (M) ≤ N,

where N is such that

−h0(T ) +

m∑

k=0

hsk
(T )Nsk < 0

for some T > 0. Here hi(T ) := 1
T

∫ T

0
hi(τ)dτ .

3 Existence of Global Attractors

Applying the Helmholtz-Leray projector P to the system (1.1)–(1.2), we obtain the following

equivalent functional differential equation

vt + νAv + α2Avt + B(v, v) = h, h = Pf, (3.1)

v(0) = v0. (3.2)

The question of global existence and uniqueness of (3.1)–(3.2) first was studied in [41], where

actually it was established that the problem (1.1)–(1.3) generates a continuous semigroup S(t) :

V → V , t ∈ R
+. In [5] the authors proved also the global regularity for inviscid model of (3.1),

i.e., when ν = 0.

In this section we show that the semigroup S(t) generated by the problem (1.1)–(1.3) has an

absorbing ball in V and an absorbing ball in V2. Then we show that S(t) : V → V for t ∈ R
+

is an asymptotically compact semigroup, and deduce the existence of a global attractor in V .

Let us note that the formal estimates we provide below can be justified rigorously by using

a Galerkin approximation procedure and passing to the limit, by using the relevant Aubin’s

compactness theorem as for the NS equations (see, for example, [11, 15, 45] or [47]).

Absorbing ball in V Taking the inner product of (3.1) with v, and noting that (B(v, v), v)

= 0 due to (2.1), we get

d

dt
[‖v(t)‖2 + α2‖v(t)‖2

1] + 2ν‖v(t)‖2
1 ≤ 2‖h‖−1‖v(t)‖1. (3.3)
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It is easy to see by Poincaré inequality (2.3) that

ν‖v(t)‖2
1 ≥ ν

2
[λ1‖v‖2 + ‖v(t)‖2

1] ≥ d0[‖v(t)‖2 + α2‖v(t)‖2
1],

where d0 := ν
2 min{ 1

α2 , λ1} = νd1. Hence (3.3) implies

d

dt
[‖v(t)‖2 + α2‖v(t)‖2

1] + d0[‖v(t)‖2 + α2‖v(t)‖2
1] ≤

1

ν
‖h‖2

−1.

By Gronwall’s inequality, we have

‖v(t)‖2 + α2‖v(t)‖2
1 ≤ e−d0(t−s)

[
‖v(s)‖2 + α2‖v(s)‖2

1 −
‖h‖2

−1

νd0

]
+

1

νd0
‖h‖2

−1. (E1)

Therefore

lim sup
t→∞

[‖v(t)‖2 + α2‖v(t)‖2
1] ≤

‖h‖2
−1

νd0
. (E2)

The last inequality implies that the semigroup S(t) : V → V , t ∈ R
+ generated by the problem

(1.1)–(1.3) (or equivalently (3.1)–(3.2)) has an absorbing ball

B1 :=
{
v ∈ V : ‖v‖1 ≤ 2√

να2d0

‖h‖−1

}
. (3.4)

Hence, the following uniform estimate is valid:

‖v(t)‖1 ≤ M1, (3.5)

where M1 = 2
να

√
d1

‖h‖−1 for t large enough (t ≫ 1) depending on the initial data.

Asymptotic compactness By using the Galerkin procedure, it is not difficult to prove

the following propositions.

Proposition 3.1 Let s ∈ R. If w0 ∈ Vs, g ∈ L2([0, T ); Vs−2), then the linear problem

zt + α2Azt + νAz = g(t), z(0) = 0 (3.6)

has a unique weak solution which belongs to C([0, T ); Vs) and the following inequality holds:

sup
t∈[0,T )

‖z(t)‖s ≤ C‖g‖L2(0,T ;Vs−2), s ∈ R.

Proposition 3.2 Let h ∈ H be time independent. Then the semigroup S(t), t ≥ 0 is

asymptotically compact semigroup in V .

Proof Let v0 ∈ V . First we observe that S(t) has the representation

S(t)v0 = Y (t)v0 + Z(t)v0, (3.7)

where Y (t) is the semigroup generated by the linear problem

yt + νAy + α2Ayt = 0, y(0) = v0, (3.8)

and z(t) = Z(t)(v0) is the solution of the problem

zt + νAz + α2Azt = h − B(v(t), v(t)), z(0) = 0, (3.9)
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where v is the solution of (1.1)–(1.3) (or equivalently (3.1)–(3.2)) with the initial data v0.

Taking the H inner product of (3.8) with y, we obtain

d

dt
[‖y(t)‖2 + α2‖y(t)‖2

1] + d0[‖y(t)‖2 + α2‖y(t)‖2
1] ≤ 0,

where we recall that d0 = νd1 = ν 1
2 min{ 1

α2 , λ1}. This inequality implies that

‖y(t)‖2 + α2‖y(t)‖2
1 ≤ e−d0t[‖v0‖2 + α2‖v0‖2

1] for all t > 0. (3.10)

So the semigroup Y (t) : V → V is exponentially contractive.

Due to Hölder’s inequality and the Sobolev inequality (2.6), we have

‖B(v, v)‖− 1

2

= sup
φ∈V

‖A
1

4 φ‖=1

b(v, v, φ) = sup
φ∈V

‖A
1

4 φ‖=1

∫

Ω

P ((v · ∇)v) · φdx

= sup
φ∈V

‖A
1

4 φ‖=1

∫

Ω

(v · ∇)v · Pφdx

= sup
φ∈V

‖A
1

4 φ‖=1

∫

Ω

(v · ∇)v · φdx ≤ C sup
φ∈V

‖A
1

4 φ‖=1

‖v‖L6‖v‖1‖φ‖L3 .

Hence due to the Sobolev inequality ‖φ‖L3 ≤ C‖A 1

4 φ‖ and (2.6), we have

‖B(v, v)‖− 1

2

≤ C sup
φ∈V

‖A
1

4 φ‖=1

‖v‖2
1‖A

1

4 φ‖ ≤ C‖v‖2
1, (3.11)

and

B(v, v) ∈ L∞(R+; V− 1

2

).

The function v(t) as a solution of the problem (3.1)–(3.2) with v0 ∈ V belongs to L∞(R+; V ).

Thus due to the inequality (3.11) and Proposition 3.1, the solution of the problem (3.9) belongs

to C(R+; V 3

2

), that is the operator Z(t) maps V into V 3

2

. Since the embedding V 3

2

⊂ V

is a compact embedding, the operator Z(t) is a compact operator for each t > 0. Hence,

the semigroup S(t) satisfies the conditions of Theorem 2.1, and is an asymptotically compact

semigroup. The proof is completed.

Since each bounded dissipative and asymptotically compact semigroup possesses a compact

global attractor (see, e.g., [2, 19, 32, 47]), we have

Theorem 3.1 If h ∈ H, then the semigroup S(t) : V → V has an absorbing ball B1 = {v ∈
V : ‖v‖1 ≤ M1} and a global attractor A1 ⊂ V . The attractor A1 is compact, connected and

invariant.

Next we show that the global attractor A1 is a bounded subset of V2.

Taking the inner product in V 1

2

of the equation (3.9) with z, and remembering that v(t) =

y(t) + z(t) ∈ A1, we get

d

dt
[‖z(t)‖2

1

2

+ α2‖z(t)‖2
3

2

] + 2ν‖z(t)‖2
3

2

= 2(h, z(t)) 1

2

− 2(B(v(t), v(t)), z(t)) 1

2

. (3.12)
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The first term on the right-hand side has the estimate

|2(h, z(t)) 1

2

| ≤ 2‖h‖−1

2

‖z(t)‖ 3

2

≤ ν

2
‖z(t)‖2

3

2

+
2

ν
‖h‖2

−1

2

.

The second term, due to (3.11), has the following estimate

|2(B(v(t), v(t)), z(t)) 1

2

| ≤ C‖B(v(t), v(t))‖− 1

2

‖z(t)‖ 3

2

≤ ν

2
‖z(t)‖2

3

2

+
C

ν
‖B(v(t), v(t))‖2

− 1

2

≤ ν

2
‖z(t)‖2

3

2

+
C

ν
‖v‖4

1.

Taking into account the last two inequalities in (3.12), we obtain

d

dt
[‖z(t)‖2

1

2

+ α2‖z(t)‖2
3

2

] + 2d0[‖z(t)‖2
1

2

+ α2‖z(t)‖2
3

2

] ≤ C

ν
(‖v(t)‖4

1 + ‖h‖2
− 1

2

).

Integrating the last inequality, we obtain the estimate

‖z(t)‖2
3

2

≤ C

d0α2ν
(M4

1 + ‖h‖2
− 1

2

) = L0. (3.13)

Since the attractor A1 is invariant, S(t)A1 = A1, and due to (3.10) the inequality

‖v(t) − z(t)‖1 = ‖y(t)‖1 ≤ C(‖y(0)‖1)e
−d0t

holds, we deduce that for each u ∈ A1 there exists a sequence {z(tk)}, tk → ∞, corresponding

to vk(0) ∈ A1, such that

u = lim
k→∞

z(tk), vk(0) ∈ A1. (3.14)

Thanks to (3.13) the sequence {z(tk)} is belonging to a ball in V 3

2

, whose radius L0 depends

only on M1 and ‖h‖. Hence, the sequence {z(tk)} is weakly compact in V 3

2

. Thus, by using

(3.14) and the inequality ‖u‖ 3

2

≤ lim inf
tk→∞

‖z(tk)‖ 3

2

, we see that A1 is bounded in V 3

2

. Knowing

that A1 is bounded in V 3

2

, we can use similar arguments to show that A1 is also bounded in

V 5

3

and in V2.

V2 absorbing ball To show that the semigroup S(t) : V2 → V2 has an absorbing ball in

the phase space V2 = D(A), we take H inner product of (3.1) with Av(t):

d

dt
[‖v(t)‖2

1 + α2‖Av(t)‖2] + 2ν‖Av(t)‖2 + 2(B(v(t), v(t)), Av(t)) = 2(h, Av(t)). (3.15)

For the first term in the right-hand side of (3.15), we have

|2(h, Av(t))| ≤ 1

ν
‖h‖2 + ν‖Av(t)‖2. (3.16)

By using the Agmon’s inequality (2.9) and Young’s inequality (2.2) with p = 4
3 , we can estimate

the last term in the left-hand side of (3.15) as follows

2|(B(v, v), Av)| ≤ C‖v‖L∞(Ω)‖‖v‖1‖‖Av‖ ≤ C‖v‖
3

2

1 ‖‖Av‖ 3

2 ≤ 3

4
ǫ‖Av‖2 +

C

ǫ3
‖v‖6

1.

Employing (3.16) and the last inequality with ǫ = 2ν
3 , from (3.15) we obtain

d

dt
[‖v(t)‖2

1 + α2‖Av(t)‖2] + ν‖Av(t)‖2 ≤ 1

ν
‖h‖2 +

C

ν3
‖v(t)‖6

1. (3.17)
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It follows from (3.17) that

d

dt
[‖v(t)‖2

1 + α2‖Av(t)‖2] + d0[‖v(t)‖2
1 + α2‖Av(t)‖2] ≤ 1

ν
‖h‖2 +

C

ν3
‖v(t)‖6

1.

Let t0 be so that (3.5) holds for all t ≥ t0. Then integrating the last inequality over the interval

(t0, t), we get

‖v(t)‖2
1 + α2‖Av(t)‖2 ≤ [‖v(t0)‖2

1 + α2‖Av(t0)‖2]e−d0(t−t0) +
R2

d0
(1 − e−d0(t−t0)), (3.18)

where R2 := 1
ν
‖h‖2 + C

ν3 M6
1 . The last inequality implies the existence of an absorbing ball

B2 := {v ∈ V2 : ‖Av‖ ≤ M2}, (3.19)

where M2
2 = 2R2

(α2+λ−1

1
)d0

. That is, for all t ≫ 1, we have ‖Av(t)‖ ≤ M2.

Similarly, we can prove the following theorem.

Theorem 3.2 If h ∈ V1, then the semigroup S(t) : V2 → V2 has a global attractor A2 ⊂ V2.

The attractor A2 is compact, connected and invariant. Moreover, A2 is a bounded set in V3.

Remark 3.1 Let us note that in case we assume in Theorem 3.1 that h ∈ V1, instead of

h ∈ H , then the attractors A1 and A2 coincide.

4 Estimates for the Number of Determining Modes

It is asserted, based on physical heuristic arguments, that the long-time behavior of turbulent

flows is determined by a finite number degrees of freedom. This concept was formulated more

rigorously for 2D NS equations by introducing the notion of determining modes in [17]. In [17]

it was shown that there exists a number m such that if the first m Fourier modes of two different

solutions of the NS equations have the same asymptotic behavior, as t → ∞, then the remaining

infinitely many number of modes have the same asymptotic behavior.

In [32] it was shown that the semigroup generated by the initial boundary value problem for

the 2D NS equations with Dirichlet boundary condition has a global attractor which is compact,

invariant and connected. It was also established in [32] that there exists a number m such that

if projections of two different trajectories on the attractor on the m dimensional subspace of

H , spanned on the first m eigenfunctions of the Stokes operator, coincide for each t ∈ R, then

these trajectories completely coincide for each t ∈ R.

The results obtained in [17] and [32] were developed, generalized, and applied to various infi-

nite dimensional dissipative problems (see, e.g., [7–9,15,16,18,20,22–24,33,39,40] and references

therein).

In this section we are going to give estimates for the number of determining modes (both

asymptotic and for trajectories on the attractor) for 3D NSV equations.

Asymptotic determining modes Let us denote by Pm the L2-orthogonal projection

from H onto the m-dimensional subspace Hm = span{w1, w2, · · · , wm}. We set Qm = I − Pm.

Let v and u be two solutions of NSV equations

vt + νAv + α2Avt + B(v, v) = h(t), v(0) = v0, (4.1)

ut + νAv + α2Aut + B(u, u) = g(t), v(0) = v0. (4.2)
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Definition 4.1 A set of modes {w1, · · · , wm} is called asymptotically determining (see

[15, 17]) if

lim
t→∞

‖v(t) − u(t)‖1 = 0

whenever

lim
t→∞

‖h(t) − g(t)‖−1 = 0 and lim
t→∞

‖Pm(v(t) − u(t))‖1 = 0.

Theorem 4.1 Assume that the following conditions are satisfied:

‖h(t)‖−1 ≤ h < ∞, ∀ t ∈ R, (4.3)

lim
t→∞

‖h(t) − g(t)‖−1 = 0 and lim
t→∞

‖Pm(v(t) − u(t))‖ = 0. (4.4)

Then the first m eigenfunctions of the Stokes operator are asymptotically determining for the

NSV equations with homogeneous Dirichlet boundary conditions, provided that m is large enough

such that

λm+1 > C
h4

α4ν8d2
1

. (4.5)

Proof It is clear that the function w = v − u satisfies

wt + νAw + α2Awt + B(v, w) + B(w, v) − B(w, w) = θ(t), v(0) = v0, (4.6)

where θ(t) = h(t) − g(t). It is clear from the proof of (E2) that

lim sup
t→∞

‖v(t)‖1 ≤ h

αν
√

d1

. (4.7)

Multiplying (4.6) by q(t) = Qmw(t) in H , we obtain

d

dt
[‖q‖2 + α2‖q‖2

1] + 2ν‖q‖2
1 + 2b(q, v, q)

=2(θ, q) − 2b(v, p, q) − 2b(p, v, q) − 2b(p, p, q) + 2b(q, p, q), (4.8)

where p = Pmw. Before estimating the terms of (4.8) we observe that for each φ ∈ V , we have

‖Qmφ‖1 ≥ λm+1‖Qmφ‖ and ‖Pmφ‖1 ≤ λm‖Pmφ‖. (4.9)

Due to the inequality (2.11) the term b(q, v, q) has the estimate

2|b(q, v, q)| ≤ C‖q‖ 1

2 ‖q‖
3

2

1 ‖v‖1 ≤ C

λ
1

4

m+1

‖q‖2
1‖v‖1. (4.10)

The first term in the right-hand side of (4.8) has the estimate

2|(θ, q)| ≤ 2

ν
‖θ‖2

−1 +
ν

2
‖q‖2

1. (4.11)

Employing the inequalities (2.12) and (4.9), we estimate the second term in the right-hand

side of (4.8) as follows

2|b(v, p, q)| ≤ ‖v‖1‖p‖1‖q‖
1

2 ‖q‖
1

2

1 ≤ Cλmλ
− 1

4

m+1‖p‖1(‖q‖2
1 + ‖v‖2

1). (4.12)
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Other terms in the right-hand side of (4.8) can be estimated in a similar way to (4.12). Using

estimates (4.10)–(4.12) and the estimates of other terms in the right-hand side of (4.8), we

obtain
d

dt
[‖q‖2 + α2‖q‖2

1] +
ν

2
‖q‖2

1 + ‖q‖2
1

(
ν − C

λ
1

4

m+1

‖v‖1

)
≤ b(t), (4.13)

where b(t) satisfies the corresponding condition of Lemma 2.1.

Let us choose t1 > 0 so large that we have ‖v(t)‖1 ≤ M1 for all t ≥ t1 and m so that

µ(m) := λm+1 − (CM1

ν
)4 > 0. Then it follows from the last inequality the following relation

d

dt
[‖q‖2 + α2‖q‖2

1] +
ν

2
‖q‖2

1 ≤ b(t) for all t ≥ t1,

or
d

dt
[‖q‖2 + α2‖q‖2

1] + dm[‖q‖2 + α2‖q‖2
1] ≤ b(t) for all t ≥ t1, (4.14)

where dm = ν
4 min{ 1

α2 , λm+1}. Thus, due to Lemma 2.1 the statement of the theorem follows.

Remark 4.1 Let us observe that the number m, for which λm+1 > Ch
4

ν8λ2

1

holds, is an upper

bound for the minimal number of asymptotically determining modes for weak solutions (i.e.,

solutions belonging to L∞(R+; H)∩Lloc(R
+; V )) of the initial boundary value problem for the

3D Navier Stokes equations. In fact, for weak solutions of NS equations instead of (4.13), we

have
d

dt
‖q‖2 + λ

3

4

m+1(νλ
1

4

m+1 − C‖v‖1)‖q‖2 ≤ b(t),

and instead of (4.7) we have for weak solutions of NS equations (see, e.g., [10, 11, 20, 47])

lim sup
t→∞

1

T

∫ t+T

t

‖v(τ)‖2
1 dτ ≤ h2

Tν3λ2
1

+
h2

ν2λ1
.

Hence

lim sup
t→∞

1

T

∫ t+T

t

‖v(τ)‖1 dτ ≤ h√
T ν

3

2 λ1

+
h

ν
√

λ1

.

Thus, the function a(t) := λ
3

4

m+1(νλ
1

4

m+1 − C‖v‖1) satisfies conditions of Lemma 2.1 provided

that T is large enough and

λm+1 > C
h4

ν8λ2
1

.

Different estimates of asymptotic determining modes for weak solutions of 3D NS equations

are obtained in [12] (see also [14, 15] and references therein). The estimate obtained in [12]

involves generalization of the so called mean rate dissipation of energy, per mass and time, i.e.,

it involves

ε = ν lim sup
t→∞

1

t

∫ t

0

sup
x∈Ω

‖∇v(x, τ)‖2dτ.

For other related results concerning estimates of the number of asymptotic determining degrees

of freedom for weak solutions of the 3D NS equations, see, e.g., [10, 20] and references therein.

Determining modes on the attractor Next we give an estimate of determining modes

for trajectories on the attractor.
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Definition 4.2 A set of modes {w1, · · · , wm} is called determining on the attractor (in the

sense of [32]) if for each two trajectories v(t) and u(t) on the attractor A1, the equality

‖Pm(v(t) − u(t))‖1 = 0 for all t ∈ R

implies

v(t) = u(t), ∀ t ∈ R.

Let v and u be arbitrary two trajectories in the attractor A1 of (3.1). Then w = v − u

satisfies

wt + α2Awt + νAw + B(w, v) + B(u, w) = 0. (4.15)

Taking the inner product of (4.15) with q = Qmw, we get

d

dt
[‖q‖2 + ‖q‖2

1] + 2ν‖q‖2
1 = −2b(w, v, q) − 2b(u, w, q). (4.16)

Assume that Pmw(t) = 0 for all t ∈ R. Then Qmw = q satisfies

d

dt
[‖q‖2 + ‖q‖2

1] + 2ν‖q‖2
1 = 2b(q, v, q). (4.17)

Due to (2.11) we have

|2b(q, v, q)| ≤ C‖q‖
1

2

1 ‖q‖
3

2

1 ‖v‖1.

Noting that on the attractor A1 we have ‖v‖1 ≤ M1, we employ the last inequality and in-

equality (4.9) to obtain from (4.16) that

d

dt
[‖q‖2 + α2‖q‖2

1] + ν‖q‖2
1 + ‖q‖ 1

2 ‖q‖
3

2

1 (νλ
1

4

m+1 − CM1) ≤ 0. (4.18)

Let us choose m, large enough, so that λm+1 ≥ (M1C
ν

)4. Then (4.18) implies

d

dt
[‖q‖2 + α2‖q‖2

1] + lm[‖q‖2 + α2‖q‖2
1] ≤ 0,

where lm = ν
2 min{λm+1,

1
α2 }.

Finally, we integrate the last inequality and get

‖q(t)‖2 + α2‖q(t)‖2
1 ≤ exp[−lm(t − s)][‖q(s)‖2 + α2‖q(s)‖2

1]. (4.19)

Passing to the limit as s → −∞, we obtain

‖q(t)‖2 + α2‖q(t)‖2
1 = 0 for all t ∈ R.

Thus, the following theorem is true.

Theorem 4.2 Let v and u be two solutions of the problem (1.1)–(1.3) from the attractor

A1. Assume that Pm(u(t)) = Pm(v(t)), ∀ t ∈ R, where m is so that

λm+1 ≥ C
‖h‖4

−1

α4ν8d2
1

. (4.20)

Then v(t) = u(t) for all t ∈ R.
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5 Estimates of Dimensions of the Global Attractor

In this section we show the differentiability of the semigroup with respect to the initial

data. This is to prepare for implementing Theorem 2.2 in order to estimate the dimension of

the global attractor.

Theorem 5.1 Let u0 and v0 be two elements of V . Then there is a constant K =

K(‖u0‖1, ‖v0‖1) such that

‖S(t)v0 − S(t)u0 − Λ(t)(v0 − u0)‖1 ≤ K‖v0 − u0‖2
1, (5.1)

where the linear operator Λ(t) : V → V , for t > 0, is the solution operator of the problem

ξt + α2Aξt + Aξ + B(ξ, v) + B(v, ξ) = 0, ξ(0) = v0 − u0, (5.2)

and v(t) = S(t)v0. That is, for every t > 0, the map S(t)v0, as a map S(t) : V → V is Fréchet

differentiable with respect to the initial data, and its Fréchet derivative Dv0
(S(t)v0)w0 = Λ(t)w0.

Proof It is easy to see that the function η(t) := v(t) − u(t) − ξ(t) = S(t)(v0 − u0) − ξ(t)

satisfies

ηt + α2Aηt + νAη + B(η, v) + B(v, η) − B(w, w) = 0,

where w = v − u. Taking the inner product of the last equation with η, we obtain

d

dt
[‖η‖2 + α2‖η‖2

1] + 2ν‖η‖2
1 = −2b(η, v, η) − 2b(w, w, η). (5.3)

By using inequalities (3.5) and (2.5) and Young’s inequality we can estimate the terms in the

right-hand side of (5.3) as follows.

By (2.11), we have

|2b(η, v, η)| ≤ C‖v‖1‖η‖
1

2 ‖η‖
3

2

1 ≤ CM1‖η‖
1

2 ‖η‖
3

2

1 ≤ CM1

4
(‖η‖2 + 3‖η‖2

1).

By (2.10),

|2b(w, w, η)| = |2b(w, η, w)| ≤ Cλ
− 1

2

1 ‖η‖1‖w‖2
1 ≤ ν‖η‖2

1 +
C

4νλ1
‖w‖4

1.

Hence, from (5.3) we obtain

d

dt
[‖η‖2 + α2‖η‖2

1] ≤
CM1

4
(‖η‖2 + 3‖η‖2

1) +
C

4νλ1
‖w‖4

1. (5.4)

The function w(t) = v(t) − u(t) = S(t)v0 − S(t)u0 satisfies

wt + α2Awt + νAw + B(w, v) + B(v, w) − B(w, w) = 0, w(0) = v0 − u0 := w0.

Taking the inner product of the last equation with w, and using (2.13) and (E1) we obtain

d

dt
[‖w‖2 + α2‖w‖2

1] + 2ν‖w‖2
1 = 2b(w, v, w) ≤ 2Cλ

1

4

1 ‖v‖1‖w‖2
1

≤ κ1‖v‖1[‖w‖2 + α2‖w‖2
1],
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where k1 = 2Cλ
1

4

1 α−4[‖v(0)‖2 +α2‖v(0)‖2
1 + 1

νd0
‖h‖2

−1]
1

2 . Integrating the last inequality we get

‖w(t)‖2
1 ≤

(
1 +

1

λ1α2

)
‖w(0)‖2

1 exp(κ1t). (5.5)

It follows from (5.4) and (5.5) that

d

dt
[‖η‖2 + α2‖η‖2

1] ≤ A1[‖η‖2 + α2‖η‖2
1] + A2‖w(0)‖4

1 exp(2κ1t).

Integrating and using Gronwall’s inequality, one has

‖η(t)‖2
1 ≤ A(t)‖w(0)‖4

1,

where A(t) := A2

2κ1α2 exp[(2κ1 + A1)t]. So we have

‖v(t) − u(t) − ξ(t)‖1

‖v0 − u0‖1
≤

√
A(t) ‖v0 − u0‖1.

Thus the differentiability of S(t) with respect to the initial data follows.

We rewrite (3.1) in the following form:

v̂t = − ν

α2
v̂ +

ν

α2
G−2v̂ − G−1B(G−1v̂, G−1v̂) + G−1h, (5.6)

where G2 = I + α2A, and v̂ = Gv. The equation of linear variations corresponding to (5.6) has

the form

wt = L(t)w, (5.7)

where

L(t)w := − ν

α2
w +

ν

α2
G−2w − G−1B(G−1w, G−1v̂) − G−1B(G−1v̂, G−1w).

Now we consider the quadratic form

(L(t)w, w) = − ν

α2
‖w‖2 +

ν

α2
‖G−1w‖2 − b(G−1w, G−1v̂, G−1w).

By using inequality (2.11) and the inequality ‖G−1u‖1 ≤ 1
α
‖u‖, we get

|b(G−1w, G−1v̂, G−1w)| ≤ 1

α
5

2

‖G−1w‖ 1

2 ‖w‖ 3

2 ‖v̂‖.

Employing Young’s inequality with p = 4
3 , ǫ = 2ν

3α2 and the fact that on the global attractor A1

the estimate ‖v̂‖ ≤ (λ1 + α2)
1

2 M1 holds, we obtain

|b(G−1w, G−1v̂, G−1w)| ≤ ν

2α2
‖w‖2 +

C(λ1 + α2)2M4
1

ν3α4
‖G−1w‖2.

Due to the last inequality the quadratic form (L(t)w, w) has the following estimate

(L(t)w, w) ≤ − ν

2α2
‖w‖2 +

( ν

α2
+

C(λ1 + α2)2M4
1

ν3α4

)
‖G−1w‖2. (5.8)

Thus, we can use Theorem 2.2 to get the desired estimate for the fractal dimension of the

attractor A1,

df (A1) ≤ C
(λ1 + α2)2M4

1

ν4α2
+ 2 ≤ C

(λ1 + α2)2‖h‖4
−1

ν8α6d2
1

+ 2. (5.9)

We recall that M1 = 2
να

√
d1

‖h‖−1, d1 = 1
2 min{α−2, λ1}. Let us note that in our situation

h0(t) =
ν

2α2
, s0 = 0, s1 = −1, hs1

(t) =
ν

α2
+

C(λ1 + α2)2M4
1

ν3α4

and hsk
(t) = 0, k ≥ 2.
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6 The Inviscid Limit

Here we show that when ν → 0 the weak solution of the initial boundary value problem for

the NSV system, i.e., of the problem (1.1)–(1.3), is tending to the weak solution of the initial

boundary value problem for the inviscid simplified Bardina model

ut − α2∆ut + (u · ∇)u + ∇p = f, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,
(6.1)

u(x, 0) = v0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0.
(6.2)

The problem of existence and uniqueness of solutions of the initial boundary value problem,

with periodic boundary conditions, for the 3D viscous and inviscid simplified Bardina models

was studied in [5]. In particular, it was shown in [5] that the problem (6.1)–(6.2) has a unique

solution u ∈ C1(R; V ), for initial value u0 ∈ V .

Applying to (6.1) the Helmholtz-Leray operator P we obtain the equivalent functional dif-

ferential equation

ut + α2Aut + B(u, u) = h, (6.3)

u(0) = v0. (6.4)

Let v(t) be the solution of (6.1) with initial v(0) = v0 ∈ V . Denote w = v−u. Then w satisfies

the relation

wt + α2Awt + B(w, v) + B(u, w) = −νAv, (6.5)

w(0) = 0, (6.6)

which holds in the space V ′. Taking the action of (6.5) on w, which belongs to V , and using

a lemma of Lions-Magenes concerning the derivative of functions with values in Banach space

(see [48, Lemma 1.2, Chapter III, p.169]), we obtain

d

dt
[‖w‖2 + α2‖w‖2

1] = −2ν(∇v,∇w) − 2b(w, v, w). (6.7)

For the first term in the right-hand side we have

|2ν(∇v,∇w)| ≤ ν2‖v‖2
1 + ‖w‖2

1.

We estimate the second term by using the inequality (2.13),

|2b(w, v, w)| ≤ Cλ
1

4

1 ‖v‖1‖w‖2
1.

Utilizing the last two inequalities in (6.7), we get

d

dt
[‖w‖2 + α2‖w‖2

1] ≤ ν2‖v‖2
1 + (1 + Cλ

1

4

1 ‖v‖1)‖w‖2
1

≤ ν2‖v‖2
1 + α−2(1 + 2Cλ

1

4

1 ‖v‖1)[‖w‖2 + α2‖w‖2
1].

Integrating the last inequality and using the standard Gronwall’s lemma, we get the estimate

‖w(t)‖2 + α2‖w(t)‖2
1 ≤ ν2

∫ t

0

‖v(τ)‖2
1 dτ exp

( t

α2
+

2Cλ
1

4

1

α2

∫ t

0

‖v(τ)‖1 dτ
)
. (6.8)
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Next we show that on each finite interval [0, T ], we can estimate ‖v‖1 by a constant depending

only on ‖v0‖, ‖v0‖1 and the parameter α. Indeed, (3.3) implies

d

dt
[‖v(t)‖2 + α2‖v(t)‖2

1] ≤ α−2‖h‖2
−1 + α2‖v(t)‖2

1.

Integrating the last inequality over (0, t) with respect to time variable, we obtain

‖v(t)‖2 + α2‖v(t)‖2
1 ≤ ‖v0‖2 + α2‖v0‖2

1 + tα−2‖h‖2
−1 +

∫ t

0

[‖v(τ)‖2 + α2‖v(τ)‖2
1]dτ.

By using the Gronwall inequality we get

‖v(t)‖2
1 ≤ DT eT for all t ∈ [0, T ].

Here DT := α−2[‖v0‖2 + α2‖v0‖2
1 + Tα−2‖h‖2

−1]. Hence (6.8) implies

‖w(t)‖2 + α2‖w(t)‖2
1 ≤ ν2TDT eT exp(α−2T + 2Cα−2λ

1

4 TD
1

2

T e
T
2 ). (6.9)

Remark 6.1 The problem of convergence of solutions of the NSV equations to solutions

of NS equations as α → 0 was studied in [42]. It was shown in [42] that strong solutions of

the NSV equations converge to strong solutions of the NS equations as α → 0, under specified

smallness conditions on the initial data of the problem.

Remark 6.2 The results obtained in this paper are valid also for the solutions of the initial

boundary value problem for the 3D NSV equations with periodic boundary conditions.

Finally we would like to notice that the results reported here can be extended to other

similar equations, a subject of future work. For instance, for the 3D equations of motion of

Kelvin-Voight fluids of order L ≥ 1,

vt + (v · ∇)v − µ0∆vt − µ1∆v −
L∑

l=1

βl∆ul + ∇p = f,

∂tul + αlul − v = 0, l = 1, · · · , L,

where µ0, µ1, βl, αl > 0, l = 1, · · · , L. Also for the generalized Benajamin-Bona-Mahony

(GBBM) equation

ut − α2∆ut + ν∆u + ∇ · ~F (u) = h, (6.10)

where a smooth vector field ~F (u) satisfies the growth condition

|~F (u)| ≤ C(1 + |u|2).

The problem of existence of a finite dimensional global attractor and estimates for the number of

determining modes on the global attractor of Kelvin-Voight fluids of order L ≥ 1 was established

in [28]. In [49] the existence of a finite dimensional global attractor was established for 1D

GBBM equation under periodic boundary conditions. The existence of a finite dimensional

global attractor for 3D GBBM under periodic boundary conditions was proved in [6]. In [46] it

was shown the existence of the global attractor for GBBM equation in H1(R3). Moreover, the

existence of a global attractor for a similar two-dimensional model describing the motion of a

second-grade fluid was established in [38].
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Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39, 1967, 1–34.

[18] Foias, C. and Titi, E. S., Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity,
4, 1991, 135–153.

[19] Hale, J. K., Asymptotic Behavior of Dissipative Systems, Math. Sur. Monographs, Vol. 25, A. M. S.,
Providence, RI, 1988.

[20] Holst, M. J. and Titi, E. S., Determining projections and functionals for weak solutions of the Navier-
Stokes equations, Recent Developments in Optimization Theory and Nonlinear Analysis, Y. Censor and
S. Reich (eds.), Contemp. Math., Vol. 204, A. M. S., Providence, RI, 1997, 125–138.

[21] Ilyin, A. A., Attractors for Navier-Stokes equations in domains with finite measure, Nonlinear Anal., 27,
1996, 605–616.

[22] Ilyin, A. A. and Titi, E. S., Sharp estimates for the number of degrees of freedom for the damped-driven
2-D Navier-Stokes equations, J. Nonlinear Sci., 16(3), 2006, 233–253.

[23] Jones, D. A. and Titi, E. S., Determining finite volume elements for the 2D Navier-Stokes equations, Phys.

D, 60, 1992, 165–174.

[24] Jones, D. A. and Titi, E. S., Upper bounds on the number of determining modes, nodes, and volume
elements for the Navier-Stokes equations, Indiana Univ. Math. J., 42, 1993, 875–887.

[25] Kalantarov, V. K., Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem.

LOMI, 152, 1986, 50–54.

[26] Kalantarov, V. K., Global behavior of solutions of nonlinear equations of mathematical physics of classical
and non-classical type, Postdoctoral Thesis, St. Petersburg, 1988.



714 V. K. Kalantarov and E. S. Titi

[27] Kalantarov, V. K., Levant, B. and Titi, E. S., Gevrey regularity of the global attractor of the 3D Navier-
Stokes-Voight equations, J. Nonlinear Sci., 19, 2009, 133–152.

[28] Karazeeva, N. A., Kotsiolis, A. A. and Oskolkov, A. P., Dynamical systems generated by initial-boundary
value problems for equations of motion of linear viscoelastic fluids, Proc. Steklov Inst. Math., 3, 1991,
73–108.

[29] Khouider, B. and Titi, E. S., An inviscid regularization for the surface quasi-geostrophic equation, Comm.

Pure Appl. Math., 61, 2008, 1331–1346.

[30] Henshaw, W. D., Kreiss, H. O. and Yström, J., Numerical experiments on the interaction between the
large and small-scale motions of the Navier-Stokes equations, Multiscale Model. Simul., 1, 2003, 119–149.

[31] Ladyzhenskaya, O. A., On the dynamical system generated by the Navier-Stokes equations, Zap. Nauchn.

Sem. LOMI, 27, 1972, 91–114.

[32] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach
Science Publishers, New York, 1963.

[33] Ladyzhenskaya, O. A., Attractors for Semigroups and Evolution Equations, Lezioni Lincee, Cambridge
University Press, Cambridge, 1991.

[34] Ladyzhenskaya, O. A., Solonnikov, V. A. and Uraltseva, N. N., Linear and Quasilinear Equations of
Parabolic Type, Nauka, Moscow, 1967.

[35] Larios, A. and Titi, E. S., On the high-order global regularity of the three-dimensional inviscid α-
regularization of various hydrodynmaic models, preprint.

[36] Layton, R. and Lewandowski, R., On a well-posed turbulence model, Discrete Continuous Dyn. Sys. B,
6, 2006, 111–128.

[37] Levant, B., Ramos, F. and Titi, E. S., On the statistical properties of the 3D incompressible Navier-Stokes-
Voigt model, Commun. Math. Sci., 7, 2009, in press.

[38] Moise, I., Rosa, R. and Wang, X. M., Attractors for non-compact semigroups via energy equations, Non-

linearity, 11(5), 1998, 1369–1393.

[39] Olson, E. and Titi, E. S., Determining modes for continuous data assimilation in 2D turbulence, J. Stat.

Phys., 113(5–6), 2003, 799–840.

[40] Olson, E. and Titi, E. S., Determining modes and Grashof number in 2D turbulence — A numerical case
study, 2007, preprint.

[41] Oskolkov, A. P., The uniqueness and solvability in the large of boundary value problems for the equations
of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. LOMI, 38, 1973, 98–136.

[42] Oskolkov, A. P., A certain nonstationary quasilinear system with a small parameter, that regularizes the
system of Navier-Stokes equations, Problems of Mathematical Analysis, No. 4: Integral and Differential
Operators. Differential Equations, St. Petersburg University, St. Petersburg, 143, 1973, 78–87.

[43] Oskolkov, A. P., On the theory of Voight fluids, Zap. Nauchn. Sem. LOMI, 96, 1980, 233–236.

[44] Ramos, F. and Titi, E. S., Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-
Stokes limit, preprint.

[45] Robinson, J., Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cam-
bridge University Press, Cambridge, 2001.

[46] Stanislavova, M., Stefanov, A. and Wang, B. X., Asymptotic smoothing and attractors for the generalized
Benjamin-Bona-Mahony equation on R

3, J. Diff. Eqs., 219(2), 2005, 451–483.

[47] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New
York, 1997.

[48] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, Third Revised Edition, North-
Holland, Amsterdam, 2001.

[49] Wang, B. X. and Yang, W. L., Finite-dimensional behaviour for the Benjamin-Bona-Mahony equation, J.

Phys. A, 30(13), 1997, 4877–4885.


