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Abstract Two approaches for the efficient rational approximation of the Fermi-Dirac
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1 Introduction

Given an effective one-particle Hamiltonian H, the inverse temperature β = 1
kBT

and the

chemical potential µ, the finite temperature single-particle density matrix of the system is given

by the Fermi operator

ρ = 2(1 + exp(β(H − µ)))−1 = 1 − tanh
(β

2
(H − µ)

)
, (1.1)

where tanh is the hyperbolic tangent function.

In the last decade or so, the development of accurate and numerically efficient representations

of the Fermi operator has attracted a great deal of attention in the quest for linear scaling

electronic structure methods based on effective one-electron Hamiltonians. These approaches

have a numerical cost that scales linearly with N , the number of electrons, and thus hold

the promise of making electronic structure analysis of large systems feasible. Achieving linear

scaling for realistic systems is very challenging. Formulations based on the Fermi operator are

appealing since this operator gives directly the single particle density matrix without the need

for diagonalizing the Hamiltonian.
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From a computational viewpoint, one main issue is that the right hand side of (1.1) is an

operator-valued function. To evaluate this function, we have to replace or approximate it by

something which can be computed directly without diagonalization. Obvious candidates are

polynomial or rational approximations. Such an approach was first introduced by Baroni and

Giannozzi [1] and Goedecker and co-workers [4, 5] (see also the review article [6]). Several

improvements have been made since then, for example, in [2, 3, 9–11, 14]. These are put

broadly under the umbrella of “Fermi operator expansion” (abbreviated as FOE).

From the viewpoint of efficiency, a major concern is the cost for representing the Fermi

operator as a function of β∆E (for finite temperature) or ∆E
Eg

(for gapped systems) where β is

the inverse temperature, ∆E is the spectral width of the discretized Hamiltonian matrix and

Eg is the spectrum gap of the Hamiltonian around the chemical potential. Consider a finite

temperature gapless system for example, the cost of the FOE proposed by Goedecker et al

scales as β∆E. The fast polynomial summation technique introduced by Head-Gordon et al

[10, 11] reduces the cost to (β∆E)
1
2 . The cost of the hybrid algorithm proposed by Parrinello

et al in a recent preprint [2] scales as (β∆E)
1
3 . The cost was brought down to logarithmic

scaling ln(β∆E) in [12] by using a multipole representation of the Matsubara expansion of the

Fermi-Dirac function.

The purpose of this article is to introduce two alternative rational expansions of the Fermi-

Dirac function that use only simple poles and have computational cost that scales logarithmi-

cally. The first strategy is to use the contour integral and conformal mapping idea proposed

recently in [8]. This will be presented in the next section. The other strategy is to borrow ideas

from [15] and use a version of multipole expansion [12] that only involves simple poles. This

will be discussed in Section 3. Numerical examples illustrating the efficiency and accuracy of

the representations are discussed in Section 4.

2 Rational Expansions Based on Contour Integral

Our first approach is an adaptation of the ideas proposed recently in [8] based on contour

integral representation and conformal mapping. Let us first briefly recall the main idea of [8].

Consider a function f that is analytic in C \ (−∞, 0] and an operator A with spectrum in

[m,M ] ⊂ R+. One wants to evaluate f(A) using a rational expansion of f by discretizing the

contour integral

f(A) =
1

2πi

∫

Γ

f(z)(z − A)−1dz. (2.1)

The innovative technique in [8] was to construct a conformal map that maps the stripe S =

[−K,K]× [0,K ′] to the upper half (denoted by Ω+) of the domain Ω = C \ ((−∞, 0]∪ [m,M ]).

This special map from t ∈ S to z ∈ Ω+ is given by

z =
√
mM

(k−1 + u

k−1 − u

)
, u = sn(t) = sn(t|k), k =

√
M
m

− 1
√

M
m

+ 1
. (2.2)

Here sn(t) is one of the Jacobi elliptic functions and the numbers K and K ′ are complete elliptic

integrals whose values are given by the condition that the map is from S to Ω+.

Applying the trapezoidal rule with Q equally spaced points in (−K + iK′

2 ,K + iK′

2 ),

tj = −K +
iK ′

2
+ 2

(j − 1
2 )K

Q
, 1 ≤ j ≤ Q, (2.3)
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we get the quadrature rule (denote zj = z(tj))

fQ(A) =
−4K

√
mM

πQk
Im

Q∑

j=1

f(zj)(zj − A)−1cn(tj)dn(tj)

(k−1 − sn(tj))2
. (2.4)

Here cn and dn are the other two Jacobi elliptic functions in standard notation and the factor

cn(tj)dn(tj)(k
−1 − sn(tj))

−2
√

mM
k

comes from the Jacobian of the function z(t).

It is proved in [8] that the convergence is exponential in the number of quadrature points

Q and the exponent deteriorates only logarithmically as M
m

→ ∞:

‖f(A) − fQ(A)‖ = O(e−π2Q(log( M
m

)+3)−1

). (2.5)

To adapt the idea to our setting with the Fermi-Dirac function or the hyperbolic tangent

function, we face with two differences: First, the tanh function has singularities on the imaginary

axis. Second, the operator we are considering, β(H − µ), has spectrum on both the negative

and positive axis.

2.1 Gapped case

We first consider the case when the Hamiltonian H has a gap in its spectrum around the

chemical potential µ, such that dist(µ, σ(H)) = Eg > 0. Physically, this will be the case when

the system is an insulator.

Let us consider f(z) = tanh(β

2 z
1
2 ) acting on the operator A = (H − µ)2. Now, f(z) has

singularities only on (−∞, 0] and the spectrum of A is contained in [E2
g , E

2
M ], where

EM = max
E∈σ(H)

|E − µ|.

We note that obviously EM ≤ ∆E. Hence we are back in the same scenario as considered in

[8] except that we need to take care of different branches of the square root function when we

apply the quadrature rule.

More specifically, we construct the contour and quadrature points zj in the z-plane by using

parameters m = E2
g and M = E2

M . Denote g(ξ) = tanh(βξ

2 ), ξ±j = ±z
1
2

j and B = H − µ. The

quadrature rule is then given by

gQ(B) =
−2K

√
mM

πQk
Im

( Q∑

j=1

g(ξ+j )(ξ+j − B)−1cn(tj)dn(tj)

ξ+j (k−1 − sn(tj))2

+

Q∑

j=1

g(ξ−j )(ξ−j − B)−1cn(tj)dn(tj)

ξ−j (k−1 − sn(tj))2

)
, (2.6)

where the factors ξ±j in the denominator come from the Jacobian of the map from z to ξ. The

number of poles to be inverted is Npole = 2Q. After applying (2.5), we have a similar error

estimate for g(B)

‖g(B) − gQ(B)‖ = O(e
−π2Q(2 log(

EM
Eg

)+3)−1

). (2.7)

In Figure 1, a typical configuration of the quadrature points is shown. The x-axis is taken

to be E−µ. We see that in this case the contour consists of two loops, one around the spectrum

below the chemical potential and the other around the spectrum above the chemical potential.
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Figure 1 A typical configuration of the poles on a two-loop contour. Q = 30, Eg = 0.2,
EM = 4 and β = 1000. The red line indicates the spectrum. The inset shows the poles
close to the origin. The x-axis is E − µ with E the eigenvalue of H . The poles with
negative imaginary parts are not explicitly calculated.

Note further that as the temperature goes to zero, the Fermi-Dirac function converges to

the step function

η(ξ) =

{
2, ξ ≤ 0,

0, ξ > 0.
(2.8)

Therefore, the contribution of the quadrature points ξ+j on the right half plane (Re ξ+j > 0) is

negligible when β is large. In particular, for the case of zero temperature, one may choose only

the quadrature points on the left half plane. The quadrature formula we obtain then becomes

ηQ(B) =
−4K

√
mM

πQk
Im

( Q∑

j=1

(ξ−j − B)−1cn(tj)dn(tj)

ξ−j (k−1 − sn(tj))2

)
. (2.9)

The number of poles to be inverted is then Npole = Q.

We show in Figure 2 a typical configuration of the set of quadrature points. Only one loop

is required compared with Figure 1.

2.2 Gapless case

The more challenging case is when the spectrum of H does not have a gap, i.e., Eg = 0.

Physically, this corresponds to the case of metallic systems. In this case, the construction

discussed in the last subsection does not work.

To overcome this problem, we note that the hyperbolic tangent function tanh(β

2 z) is analytic

except at poles (2l−1) π
βi , l ∈ Z on the imaginary axis. Therefore, we could construct a contour

around the whole spectrum of H which passes through the imaginary axis on the upper half
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Figure 2 A typical configuration of the poles for zero temperature (β = ∞). Q = 30,
Eg = 0.2 and EM = 4. The red line indicates the spectrum. The inset zooms into the
poles that is close to the origin. The x-axis is E − µ with E the eigenvalue of H . The
poles with negative imaginary parts are not explicitly calculated.

plane between the origin and π
βi and also on the lower half plane between the origin and − π

βi .

Thus, we will have a dumbbell-shaped contour as shown in Figure 3.

To be more specific, let us first construct the contour and quadrature points zj in the z-

plane as in the last subsection by using parameters m = π2

β2 and M = E2
M + π2

β2 . Denote

ξ±j = ±(zj − π2

β2 )
1
2 , g = tanh(βξ

2 ) and B = H − µ. The quadrature rule takes the following

form

gQ(B) =
−2K

√
mM

πQk
Im

( Q∑

j=1

g(ξ+j )(ξ+j − B)−1cn(tj)dn(tj)

ξ+j (k−1 − sn(tj))2

+

Q∑

j=1

g(ξ−j )(ξ−j − B)−1cn(tj)dn(tj)

ξ−j (k−1 − sn(tj))2

)
. (2.10)

When applying the quadrature formula, the number of poles to be inverted is Npole = 2Q.

Figure 3 shows a typical configuration of quadrature points for Q = 30. The map ξ(z) =

(z − π2

β2 )
1
2 maps the circle in the z-plane to a dumbbell-shaped contour (put two branches

together).

Actually, what is done could be understood as follows. Similarly to [8], we have constructed

a map from the rectangular domain [−3K,K]× [0,K ′] to the upper half of the domain

U = {z | Im z ≥ 0} \
(
[−EM , EM ] ∪ i

[π
β
,∞

))
.

The map is carried out in three steps, shown in Figure 4. The first two steps use the original

map constructed in [8], however with extended domain of definition. First, the Jacobi elliptic

function

u = sn(t) = sn(t|k), k =

√
M
m

− 1
√

M
m

+ 1
(2.11)
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Figure 3 A typical configuration of the poles on a dumbbell-shaped contour. Q = 30,
Eg = 0, EM = 4 and β = 1000. The inset zooms into the part close to the origin. The red
line indicates the spectrum. The black crosses indicate the positions of the poles of tanh
function on the imaginary axis. The poles with negative imaginary parts are not explicitly
calculated.

maps the rectangular domain to the complex plane, with the ends mapping to [1, k−1] and the

middle vertical line −K + i[0,K ′] to [−k−1,−1]. Then, the Möbius transformation

z =
√
mM

(k−1 + u

k−1 − u

)
(2.12)

maps the complex plane to itself in such a way that [−k−1,−1] and [1, k−1] are mapped to

[0,m] and [M,∞], respectively. Finally, the shifted square root function

ξ = (z −m)
1
2 (2.13)

maps the complex plane to the upper-half plane (we choose the branch of the square root

such that the lower-half plane is mapped to the second quadrant and the upper-half plane is

mapped to the first quadrant), in such a way that [0,m] is sent to i[0,
√
m ] and [M,∞) is sent to

(−∞,−
√
M −m ]∪ [

√
M −m,∞). The map can be extended to a map from [−7K,K]× [0,K ′]

to the whole U . In this case, the z-plane becomes a double-covered Riemann surface with branch

point at m.

Since the function g is analytic in the domain U , the composite function g(t) = g(ξ(z(u(t))))

is analytic in the stripe in the t-plane, and therefore, the trapezoidal rule converges exponentially

fast. Using a similar analysis that leads to (2.5), it can be shown that

‖g(B) − gQ(B)‖ = O(e−CQ log−1(βEM)), (2.14)

where C is a constant.
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Figure 4 The map from the rectangular domain [−3K, K] × [0, K′] to the upper-half of
the domain U . The map is constructed in three steps: t → u → z → ξ. The boundaries
are shown in various colors and line styles.

We remark that the construction proposed in this subsection also applies to the gapped

case. In practice, if the temperature is high (so that β is small) or the gap around the chemical

potential is small (in particular, for gapless system), the contour passing through the imaginary

axis will be favorable; otherwise, the construction in the last subsection will be more efficient.

3 Rational Approximations Based on the Multipole Expansion

Another strategy for obtaining an efficient rational approximation for the Fermi-Dirac func-

tion for finite temperature is based on the multipole expansion, proposed recently in [12]. Let

us first recall the construction of the multipole representation.

Using the Matsubara representation (pole expansion) of the Fermi-Dirac function, the den-

sity matrix is given by

ρ = 1 − 4 Re

∞∑

l=1

1

β(H − µ) − (2l − 1)πi
. (3.1)

The summation in (3.1) can be seen as a summation of residues contributed from the poles

{(2l − 1)πi}, with l a positive integer, on the imaginary axis. This suggests looking for a

multipole expansion of the contributions from the poles, as was done in the fast multipole

method (FMM, see [7]). To do so, we use a dyadic grouping of the poles, in which the n-th

group contains terms from l = 2n−1 to l = 2n − 1, for a total of 2n−1 terms. We decompose the

summation in (3.1) accordingly. Let x = β(H − µ). Then

∞∑

l=1

1

x− (2l− 1)πi
=

∞∑

n=1

2n−1∑

l=2n−1

1

x− (2l − 1)πi
=

∞∑

n=1

Sn. (3.2)

The basic idea is to combine the simple poles into a set of multipoles at l = ln, where ln is

taken as the midpoint of the interval [2n−1, 2n − 1]:

ln =
3 · 2n−1 − 1

2
. (3.3)
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Then the Sn term in the above equation can be written as

Sn =

2n−1∑

l=2n−1

1

x− (2ln − 1)πi − 2(l − ln)πi

=

2n−1∑

l=2n−1

1

x− (2ln − 1)πi

∞∑

ν=0

( 2(l − ln)πi

x− (2ln − 1)πi

)ν

=
2n−1∑

l=2n−1

1

x− (2ln − 1)πi

P−1∑

ν=0

( 2(l − ln)πi

x− (2ln − 1)πi

)ν

+

2n−1∑

l=2n−1

1

x− (2l − 1)πi

( 2(l − ln)πi

x− (2ln − 1)πi

)P

. (3.4)

Using the fact that x is real, the second term in (3.4) can be bounded by

2n−1∑

l=2n−1

∣∣∣
1

x− (2l − 1)πi

∣∣∣
∣∣∣

2(l − ln)πi

x− (2ln − 1)πi

∣∣∣
P

≤
2n−1∑

l=2n−1

1

|(2l − 1)π|
∣∣∣
2(l− ln)

2ln − 1

∣∣∣
P

≤ 1

2π

1

3P
.

Therefore, if we approximate the sum Sn by the first P terms, the error decays exponentially

fast with P :

∣∣∣Sn(x) −
2n−1∑

l=2n−1

1

x− (2ln − 1)πi

P−1∑

ν=0

( 2(l − ln)πi

x− (2ln − 1)πi

)ν∣∣∣ ≤ 1

2π

1

3P
. (3.5)

The above analysis is of course standard from the view point of the fast multipole method (see

[7]). The overall philosophy is also similar: given a preset error tolerance, one selects the value

of P , the number of terms to retain in Sn, according to (3.5).

Moreover, the remainder of the sum in (3.1) from l = Mpole + 1 to ∞ has an explicit

expression

Re
∞∑

l=Mpole+1

1

2x− (2l − 1)iπ
=

1

2π
Imψ

(
Mpole +

1

2
+

i

π
x
)
, (3.6)

where ψ is the digamma function ψ(z) = Γ′(z)
Γ(z) .

In summary, we arrive at the following multipole representation for the Fermi operator (see

[12]):

ρ = 1 − 4 Re

NG∑

n=1

2n−1∑

l=2n−1

1

β(H − µ) − (2ln − 1)πi

P−1∑

ν=0

( 2(l − ln)πi

β(H − µ) − (2ln − 1)πi

)ν

− 2

π
Imψ

(
Mpole +

1

2
+

i

2π
β(H − µ)

)
+ O

(NG

3P

)
, (3.7)

where NG is the number of groups in the multipole representation. Mpole = 2NG − 1 is the

number of poles that are effectively represented in the original Matsubara representation. In

practice, NG simple poles are first calculated, and then the NG(P − 1) multipoles can be

constructed through matrix-matrix multiplication.

A disadvantage of (3.7) is that one needs to multiply simple poles together to get the

multipoles before extracting the diagonal of Fermi operator. This prevents us from being able
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to directly apply the fast algorithms for extracting the diagonal of an inverse matrix, such as

the one proposed in [13]. Therefore, it is useful to find an expansion similar to (3.7) that uses

only simple poles. As we mentioned earlier, the key idea in deriving (3.7) is to combine the

poles in each group together to form multipoles as the distance between them and the real axis

is large. However, if instead we want an expansion that involves only simple poles, it is natural

to revisit the variants of FMM that only use simple poles, for example, the version introduced

in [15]. The basic idea there is to use a set of equivalent charges on a circle surrounding the

poles in each group to reproduce the effective potential away from these poles.

Specifically, take the group of poles from l = 2n−1 to l = 2n − 1 for example. Consider a

circle Bn with center cn = (3 · 2n−1 − 2)πi and radius rn = 2n−1π. It is clear that the circle

Bn encloses the poles considered. Take P equally spaced points {xn,k}P
k=1 on the circle Bn.

Next, one needs to place equivalent charges {ρn,k}P
k=1 at these points such that the potential

produced by these equivalent charges match with the potential produced by the poles inside Bn

away from the circle. This can be done in several ways, for example, by matching the multipole

expansion, by discretizing the potential on Bn generated by the poles, and so on. Here we

follow the approach used in [15].

We simply take a bigger concentric circle Bn outside Bn with radius Rn = 2nπ and match

the potential generated on Bn by the poles and by the equivalent charges on Bn. For this

purpose, we solve for ρn,k the equation

P∑

k=1

ρn,k

y − xn,k

=

2n−1∑

l=2n−1

1

y − (2l − 1)πi
, y ∈ Bn. (3.8)

Regularization techniques such as Tikhonov regularization are required here since this is a

first-kind Fredholm equation.

One can also prove that similar to the original version of the multipole representation, the

error in the potential produced by the equivalent charges decays exponentially in P . The details

can be found in [15]. Putting these all together, we can write down the following expansion of

the Fermi-Dirac function

ρ = 1 − 4 Re

NG∑

n=1

P∑

k=1

ρn,k

β(H − µ) − xn,k

− 2

π
Imψ

(
Mpole +

1

2
+

i

2π
β(H − µ)

)
+ O

(NG

3P

)
. (3.9)

The number of poles that are effectively represented in the original Matsubara representation

is still Mpole = 2NG − 1. Npole = NGP simple poles are now to be calculated in practice.

The tail part can be approximated using a Chebyshev polynomial expansion. Similar to the

analysis in [12], it can be shown that the complexity of the expansion is O(log β∆E). As we

pointed out earlier, the advantage of (3.9) over (3.7) is that only simple poles are involved in

the formula. This is useful when combined with fast algorithms for extracting the diagonal of

an inverse matrix (see [13]).

Note that in (3.7) and (3.9), for 2n−1 < P there would be no savings if we use P terms

in the expansion. They are written in this form just for simplicity. In practice the first P

simple poles will be calculated separately and the multipole expansion will be used starting

from the (P +1)-th term and the starting level is n = log2 P +1. We show in Figure 5 a typical

configuration of the set of poles in the multipole representation type algorithm.
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Figure 5 A typical configuration of the poles in the multipole representation type algo-
rithm. Mpole = 512 and P = 16 is used in this figure. The poles with negative imaginary
parts are not explicitly shown. The inset shows the first few poles. The first 16 poles are
calculated separately and the starting level is n = 5.

4 Numerical Results

We test the algorithms described above by using a two dimensional nearest neighbor tight

binding model for the Hamiltonian. The matrix components of the Hamiltonian can be written

as (in atomic units),

Hi′j′ ;ij =






2 + Vij , i′ = i, j′ = j,

−1

2
+ Vij , i′ = i± 1, j′ = j or i′ = i, j′ = j ± 1.

(4.1)

The on-site potential energy Vij is chosen to be a uniform random number between 0 and 10−3.

The domain size is 32 × 32 with periodic boundary condition. The chemical potential will be

specified later. The accuracy is measured by the L1 error of the electronic density profile per

electron

∆ρrel =
Tr |P̂ − P |
NElectron

. (4.2)

4.1 Contour integral representation: gapped case

The error of the contour integral representation is determined by Npole. At finite tempera-

ture Npole = 2Q, while at zero temperature Npole = Q, with Q being the quadrature points on

one loop of the contour. The performance of the algorithm is studied by the minimum number

of Npole such that ∆ρrel (the L1 error in the electronic density per electron) is smaller than

10−6. For a given temperature, the chemical potential µ is set to satisfy

TrP = NElectron. (4.3)
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In our setup the energy gap Eg ≈ 0.01 Hartree = 0.27 eV and EM ≈ 4 Hartree. Therefore,

this system can be regarded as a crude model for semiconductor with a small energy gap. The

number of Npole and the error ∆ρrel are shown in Table 1 with respect to β∆E ranging between

4, 000 and up to 270, 000. Because of the existence of the finite energy gap, the performance is

essentially independent of β∆E, as is clearly shown in Table 1.

Table 1 Npole and L1 error of electronic density per electron with respect to various β∆E.
The energy gap Eg ≈ 0.01. The contour integral representation for gapped system at finite
temperature is used for the calculation. The performance of the algorithm depends weakly
on β∆E.

β∆E Npole ∆ρrel

4, 208 40 5.68 × 10−7

8, 416 44 3.86 × 10−7

16, 832 44 3.60 × 10−7

33, 664 44 3.55 × 10−7

67, 328 44 3.57 × 10−7

134, 656 44 3.47 × 10−7

269, 312 44 3.55 × 10−7

When the temperature is low and therefore when β is large, as discussed before the finite

temperature result is well approximated by the zero temperature Fermi operator, i.e., the matrix

sign function. In such case the quadrature formula is given by (2.9). Only the contour that

encircles the spectrum lower than chemical potential is calculated, and Npole = Q.

In order to study the dependence of ∆ρrel on the number of poles Npole, we tune artificially

the chemical potential to reduce the energy gap to 10−6 Hartree. Figure 6 shows the exponential

decay of ∆ρrel with respect to Npole. For example, in order to reach the 10−6 error criterion,

Npole ≈ 50 is sufficient. The increase in Npole is very small compared to the large decrease

of energy gap and this is consistent with the logarithmic dependence of Npole on Eg given by

(2.7).
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Figure 6 The lin-log plot of the L1 error of electronic density per electron with respect to
Npole. The energy gap Eg ≈ 10−6. The contour integral representation for gapped system
at zero-temperature is used for calculation.
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4.2 Contour integral representation: gapless case

For gapless systems such as metallic systems, our quadrature formula in (2.10) exploits

the effective gap on the imaginary axis due to finite temperature. In the following results the

chemical potential is set artificially so that Eg = 0. EM ≈ 4 Hartree and the error criterion is

still 10−6 as in the gapped case. Table 2 reports the number of poles Npole and the error ∆ρrel

with respect to β∆E ranging from 4, 000 up to 4 million. These results are further summarized

in Figure 7 to show the logarithmic dependence of Npole on β∆E, as predicted in the analysis

of (2.14).

Table 2 Npole and L1 error of electronic density per electron with respect to various β∆E.
Eg = 0. The contour integral representation for gapless system is used for the calculation.

β∆E Npole ∆ρrel

4, 208 58 1.90 × 10−7

8, 416 62 5.32 × 10−7

16, 832 66 8.28 × 10−7

33, 664 72 3.55 × 10−7

67, 328 76 3.46 × 10−7

134, 656 80 1.69 × 10−7

269, 312 84 8.89 × 10−8

538, 624 88 7.09 × 10−8

1, 077, 248 88 8.94 × 10−7

2, 154, 496 88 4.25 × 10−7

4, 308, 992 92 3.43 × 10−7
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Figure 7 Log-lin plot of Npole with respect to β∆E. The contour integral representation
for gapless system is used for the calculation.

4.3 Multipole representation

The approach (3.9) based on the multipole representation has three parts of error: the

finite-term multipole expansion, the finite-term Chebyshev expansion for the tail part, and the

truncated matrix-matrix multiplication in the Chebyshev expansion.

The error from the multipole expansion is well controlled by P in (3.9). When P = 16,
1

3P ∼ O(10−8). The number of groups NG is usually no more than 20, and therefore the
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error introduced by multipole expansion is around O(10−7), which is much less than the error

criterion 10−6.

The number of terms in the Chebyshev expansion for the tail part NCheb is O( β∆E

Mpole
), with

Mpole being the number of poles excluded in the tail part in the pole expansion. The truncation

radius for the tail part is O(exp(−C β∆E
Mpole

)). In order to reach a fixed target accuracy, we set

Mpole to be proportional to β∆E. Due to the fact that Mpole ≈ 2NG ≈ 2
Npole

P , Npole grows

logarithmically with respect to β∆E.

The target accuracy for the Chebyshev expansion is set to be 10−7 and the truncation radius

for the tail is set to be 4 for the metallic system under consideration. For β∆E = 4208, Mpole

is set to be 512 so that the error is smaller than 10−6. For other cases, Mpole scales linearly

with β∆E. The lin-log plot in Figure 8 shows the logarithmic dependence of Npole with respect

to β∆E. For more detailed results, Table 3 measures Mpole, Npole, NCheb, and ∆ρrel for β∆E

ranging from 4000 up to 1 million. For all cases, NCheb is kept as a small constant. Note that

the truncation radius is always set to be a small number 4, and this indicates that the tail part

is extremely localized in the multipole representation due to the effectively raised temperature.
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Figure 8 log-lin plot of Npole with respect to β∆E. The multipole representation is used
for the calculation.

Table 3 indicates that the error exhibits some slight growth. We believe that it comes from

the growth of the number of groups in the multipole representation (3.9) and also the extra

log log dependence on β∆E (see [12] for details). When compared with the results reported

in Table 2, we see that for the current application to electronic structure, the contour integral

representation outperforms the multipole representation in terms of both the accuracy and the

number of poles used.

5 Conclusion

We propose two approaches for the expansion of Fermi operator: a rational approximation

based on the contour integral idea introduced in [8] and a variant of the multipole representation

in [12] using only simple poles. Both approximations result in logarithmic scaling complexity

with respect to β∆ǫ with small prefactor. Fast algorithms for electronic structure calcula-

tions can be obtained by combining these approaches with the algorithm introduced in [13] for

extracting the diagonal of the inverse of a matrix.
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Table 3 The number of poles calculated Npole, the order of Chebyshev expansion for the
tail part NCheb, and the L1 error of electronic density per electron with respect to various
β∆E. The number of poles excluded in the tail part Mpole is chosen to be proportional to
β∆E.

β∆E Mpole Npole NCheb ∆ρrel

4, 208 512 96 22 4.61 × 10−7

8, 416 1, 024 112 22 4.76 × 10−7

16, 832 2, 048 128 22 4.84 × 10−7

33, 664 4, 096 144 22 4.88 × 10−7

67, 328 8, 192 160 22 4.90 × 10−7

134, 656 16, 384 176 22 4.90 × 10−7

269, 312 32, 768 192 22 6.98 × 10−7

538, 624 65, 536 208 22 3.20 × 10−6

1, 077, 248 131, 072 224 22 7.60 × 10−6
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