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Abstract The roots of hyperbolic polynomials satisfy the linear inequalities that were

previously established for the eigenvalues of Hermitian matrices, after a conjecture by

A. Horn. Among them are the so-called Weyl and Lidskĭı inequalities. An elementary

proof of the latter for hyperbolic polynomials is given. This proof follows an idea from

H. Weinberger and is free from representation theory and Schubert calculus arguments, as

well as from hyperbolic partial differential equations theory.
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1 Introduction

We introduce the notations first. We deal with n-uplets of real numbers, indexed by

{1, · · · , n}. The set In
r of parts I ⊂ {1, · · · , n} of cardinality r has itself cardinality

(
n

r

)
=

n!

r!(n − r)!
.

We order In
r in the following natural way. Each element I ∈ In

r consists in indices (1 ≤) i1

< · · · < ir (≤ n). We say that I ≺ J if i1 ≤ j1, · · · , ir ≤ jr, and we say that I is lower

than J , or that J is higher than I. Given two elements I and K in In
r , we form the segment

[I, K] of elements J ∈ In
r such that I ≺ J ≺ K; it is void unless I ≺ K. Likewise, (I, K],

[I, K) and (I, K) are the segments where we require additionally that either J 6= I or J 6= K

or both. Although ≺ is not a total order, the class In
r has a lowest element minr = {1, · · · , r}

and a highest one maxr = {n − r + 1, · · · , n}. Unless ambiguity, we simply write min and

max for minr and maxr. The “open” segment (min, max) also has a lowest element supmin :=

{1, · · · , r − 1, r + 1} and a highest one submax := {n − r, n − r + 2, · · · , n}. We define the

order-reversing involution π over {1, · · · , n} by πj := n + 1 − j; π acts likewise on In
r by

π{i1, · · · , ir} := {n− ir + 1, · · · , n − i1 + 1}.

For instance, we have π min = max and π supmin = submax.
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In this paper, we deal with ordered families of n real-valued continuous functions v 7→

λ1(v) ≤ · · · ≤ λn(v) defined over a real vector space V . If I ⊂ {1, · · · , n} is a set of indices, we

denote

ΛI(v) :=
∑

i∈I

λi(v).

If I ≺ J , we have ΛI(v) ≤ ΛJ(v).

1.1 The sum of Hermitian matrices

We briefly recall some facts about the eigenvalues γ1 ≤ γ2 ≤ · · · ≤ γn of the sum of two

n× n Hermitian matrices A and B. Denoting by α1 ≤ α2 ≤ · · · ≤ αn the eigenvalues of A and

β1 ≤ β2 ≤ · · · ≤ βn those of B, the trace identity gives

γ1 + · · · + γn = α1 + · · · + αn + β1 + · · · + βn. (1.1)

This equality is the only one satisfied by the spectra of every triplet (A, B, A + B). In 1912,

Weyl [19] used the Rayleigh-Ritz ratio to prove the following inequalities:

(k + 1 = i + j) ⇒ (γk ≥ αi + βj). (1.2)

A special case (i = j = k = 1) tells that the smallest eigenvalue A 7→ α1 is a concave function.

Using the fact that αi(−A) = −αn+1−i(A), we also have the elementary fact that αn is convex,

which comes from its expression as the supremum of the linear forms A 7→ x∗Ax as x runs over

the unit sphere.

It is not hard to verify that if n = 2, every triple α, β, γ ∈ R
2 satisfying (1.1) and (1.2)

can be realized as the spectra of three Hermitian (and even real symmetric) matrices A, B and

A + B. This is not true however when n ≥ 3 and it turns out that the number of independent

inequalities increases with n. In 1949, Fan [4] discovered the following inequality

γ1 + · · · + γr ≥ α1 + · · · + αr + β1 + · · · + βr, ∀ r ≤ n, (1.3)

which tells that A 7→ α1 + · · ·+αr is concave, and consequently A 7→ αr+1 + · · ·+αn is convex.

Then Lidskĭı [17] founded in 1950 the necessary condition that the vector γ ∈ R
n must lie in

the convex hull of vectors α + βσ as σ runs over the symmetric group, where

βσ := (βσ(1), · · · , βσ(n)).

A few years later, Wielandt [20] remarked that Lidskĭı’s property is equivalent to the set of

inequalities

∑

i∈I

γi ≥
∑

i∈I

αi +

r∑

i=1

βi, ∀ r ≤ n, ∀ I ⊂ {1, · · · , n}, card I = r. (1.4)

In short, (1.4) writes γI ≥ αI + βmin, with

αI(v) :=
∑

i∈I

αi, γI(v) :=
∑

i∈I

γi.
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When I = {1, · · · , r}, this inequality reduces to Fan’s.

During the next decade, other inequalities were found, all having the form

∑

k∈K

γk ≥
∑

i∈I

αi +
∑

j∈J

βj , (1.5)

for some subsets I, J and K of {1, · · · , n} with equal cardinality r, r < n. For instance, Freede

and Thompson obtained (1.5) whenever kp + p = ip + jp for every p = 1, · · · , r, with still the

ordering i1 < · · · < ir, j1 < · · · < jr and k1 < · · · < kr.

In 1962, Horn [9] established a large (but finite for every n) list of inequalities of the form

(1.5) in a recursive way, and conjectured that they describe exactly the attainable set of γ’s

when α and β are given. He proved this equivalence for low values of n, but a full proof was

given only in the late nineties. For a full account of this exciting mathematical saga, where

Fulton-Klyachko [11] and Knutson-Tao [12] made definitive contributions, see the review articles

by Fulton [5] and Bhatia [2].

Horn actually described sets T n
r of triples (I, J, K), with I, J and K in In

r , satisfying the

restriction (1.7) below. The definition of T n
r involves the knowledge of the sets T r

s for every

1 ≤ s ≤ r−1. Horn conjectured that for given vectors α and β, all possible vectors γ of spectra

of matrices A+B as above, form the polytope defined by the inequalities (1.5) as (I, J, K) runs

over T n
r . There is however a gap between T n

r and the set Hn
r of all inequalities of the form (1.5)

satisfied by every sum of Hermitian matrices. When n ≥ 4, the inequalities associated to the

triples in T n
r imply other ones, actually many ones as n increases.

We do not list here all of Horn’s inequalities, but content ourselves to describe the triplets

(I, J, K) for r = 2. They consist in indices i1 < i2, j1 < j2 and k1 < k2 such that

i1 + j1 ≤ k1 + 1, i1 + j2 ≤ k2 + 1, i2 + j1 ≤ k2 + 1, i1 + j1 + i2 + j2 = k1 + k2 + 3. (1.6)

We point out that a repeated application of Weyl’s inequalities would only give triples in In
2

for which the last constraint in (1.6) is replaced by i1 + j1 + i2 + j2 = k1 + k2 + 2; it is not

hard to see that the replacement of the last 2 by a 3 yields an improvement, in the sense

that the inequalities of the form (1.5) corresponding to triplets of the form (1.6) cannot be

deduced form the inequalities of Weyl. Thus second-order Horn’s inequalities are independent

from first-order ones, the latter being nothing but Weyl’s. Remark that the triplets satisfying

(1.6) are independent of n ≥ 3, provided it is larger than kr of course. This is a general

fact that the triplets of cardinality r are independent of n > r. Of course, every admissible

triplet (I, J, K) gives rise to other inequalities by choosing lower indices i′ and j′ while choosing

higher indices k′, because of the monotonicity of the sets α, β and γ. However, we do not

regard such inequalities as new ones. For instance, when r = 2, it is enough to retain only the

triplets satisfying the constraint i1 + j1 + i2 + j2 = k1 + k2 + 3, although many triplets with

i1 + j1 + i2 + j2 ≤ k1 + k2 + 3 are valid for (1.5). More generally, triplets of cardinality r may

not be optimal unless
∑

i∈I

i +
∑

j∈J

j =
∑

k∈K

k +
r(r + 1)

2
. (1.7)
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Notice that the disjoint union of “optimal” admissible triplets is not optimal, as remarked

above in the case of Weyl’s triplets. We point out also that there is some redundency among

“optimal” inequalities, whenever n ≥ 6.

Horn’s conjecture, now a theorem, may be split into two parts. First, the set of spectra

γ, when α and β are given, is a convex polytope. Second, this polytope is defined by Horn’s

inequalities. The first part was proved by A. H. Dooley, J. Repka and N. J. Wildberger with the

help of convexity properties of the moment map of an action of a Lie group over a symplectic

manifold, a result by B. Kostant, improved by M. Atiyah. The second one involves Schubert

calculus and representation theory of the unitary group U(n). It was achieved by the papers of

A. Klyachko on the one hand, and of A. Knutson and T. Tao on the other hand.

As we shall see below, the Horn inequalities extend to the roots of every hyperbolic poly-

nomial, thanks to recent results in complex analysis, about Riemann curves. Together with

the much involved tools from Schubert calculus and representation theory, this makes the proof

of Horn inequalities extremely complex, even for the simplest of them, say those of Weyl and

Lidskĭı. However, the “extreme” Weyl inequalities (namely (1.2) with i = 1, k = j) were proved

by either PDE tools (see [14]) or elementary means (see [18]) as soon as in 1958. It is thus

desirable to design proofs whose complexity is comparable to that of the inequalities under

consideration. This is the purpose of our work, which extends Weinberger’s approach to all

Weyl inequalities, and also to Lidskĭı and sub-Lidskĭı inequalities. In passing, we fill a gap in

Weinberger’s proof, in the case where hyperbolicity is non-strict.

Our strategy is described in Section 3, which culminates with a combinatorial criterion (see

Theorem 3.1). Calculations made in Section 5 complete the proof of Theorems 1.2–1.6.

1.2 Hyperbolic polynomials

Given a homogeneous polynomial P over a real vector space V of dimension d (the degree of

P is denoted by n), we say that P is hyperbolic with respect to a vector e if P (e) 6= 0 (usually,

one normalizes P by P (e) = 1) and if, for every v ∈ V , the roots of the univariate polynomial

t 7→ P (te − v) are real. For a hyperbolic polynomial P , we denote the roots of P ( · e − v) by

λ1(v) ≤ · · · ≤ λn(v),

counting with multiplicity. Remark λi(v + ce) = λi(v) + c and λi(−v) = −λπi(v). The

polynomial is recovered by

P (v) =

n∏

i=1

λi(v).

The connection with Hermitian matrices is that the determinant is a hyperbolic polynomial

(with respect to the identity matrix In) over Hn, the space of Hermitian matrices. Its degree

is n, while d = n2. The roots λj(A) are nothing but the eigenvalues of A.

The terminology comes from the theory of partial differential equations. Hyperbolicity was

shown by G̊arding [6] to be the necessary and sufficient condition for local well-posedness of

the Cauchy problem

P (∇)u = f, in R
d,
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with initial data on a hyperplane e · x = constant. G̊arding proved a number of sound results,

among them the fact that the connected component ΓP of e within the complement of the

characteristic cone R
d \ {P = 0}, is a convex cone, and P is hyperbolic with respect to every

element of ΓP . This open set is called the forward cone of P . It turns out that ΓP is also the

set of vectors v satisfying λ1(v) > 0, and therefore its convexity is equivalent to the concavity

of λ1. Likewise, λn is a convex function over V , and v 7→ max{λn(v),−λ1(v)} is a semi-norm, a

norm in nondegenerate cases. The analogue of Fan’s results follows immediately, by considering

the polynomial

P (r)(v) :=
∏

I∈In
r

ΛI(v).

This polynomial is hyperbolic too: the symmetric polynomials in the numbers ΛI(v), when I

runs over In
r , are polynomials in σ1(λ(v)) := λ1 + · · ·+ λn, · · · , σn(λ(v)) := λ1 · · ·λn, and thus

P (r) is a homogeneous polynomial over V of degree Cr
n. If t ∈ R, we have

P (r)(te − v) :=
∏

I∈In
r

(rt − ΛI(v)),

and the ΛI ’s become the roots of P (r), a hyperbolic polynomial, in the normalized direction

e(r) := r−1e. The smaller root of P (r) is Λmin, which must be concave from G̊arding’s result.

An important case of hyperbolic differential operators is that of first-order operators acting

on vector fields. They write

L :=
d∑

i=1

Ai

∂

∂xi

,

where the Ai’s are n × n real or complex matrices. Let us define the symbol

A(ξ) :=
∑

j

ξjAj , ξ ∈ R
d.

Well-posedness (hyperbolicity) in direction ξ0 ∈ R
d is equivalent to the fact that A(ξ0) is non-

singular and A(ξ0)
−1A(η) has real eigenvalues for every η. It is always possible to transform

a first-order hyperbolic operator into an equivalent one L̃, the latter being hyperbolic in the

direction ξ̃0 = (1, 0, · · · , 0) and having Ã(ξ0) = In. Then the determinant is a hyperbolic poly-

nomial over the real vector space spanned by the matrices Ai, and its roots are the eigenvalues

of the matrices Ã(ξ). Lax [15] showed that when n ≥ 4, the space V is not conjugated to a

subspace of Hn in general.

In the same paper, Lax proved the “extremal” Weyl-type inequalities. By extremal, we

mean those Weyl inequalities that belong to Wielandt ones:

λk(u + v) ≥ λk(u) + λ1(v). (1.8)

They contain as a particular case G̊arding’s theorem that λ1 is concave. They also tell that

each root λk is weakly contractive:

|λk(v) − λk(u)| ≤ ‖v − u‖, ‖ · ‖ := max{λn,−λ1}.
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Applying (1.8) to the polynomial P (r) constructed above, with k = 2, k = N − 1 and k = N ,

where N = |In
r |, we also obtain inequalities of Wielandt’s form (1.4), for I = supmin, I =

submax and I = max. However, we shall obtain below much more general results.

Lax’s proof involves PDE tools, in particular the finite propagation velocity in the Cauchy

problem for hyperbolic equations. In a companion paper, Weinberger [18] gave an alternate and

PDE-free proof using only classical analysis, say, the intermediate value theorem. This is the

strategy that we use here and push forward. To begin with, we need to add an argument taken

from algebraic geometry, since the proof in [18] is valid only for so-called strictly hyperbolic

polynomials, namely those where the roots λj(u) are pairwise distinct when u 6= 0.

What about the other inequalities listed by Horn for DetHn
? The high complexity of

their proof in the Hermitian context, together with the lack of structure for general hyperbolic

polynomials, discourage anyone to find a direct proof in the latter framework. Even their

validity is far from obvious. We shall explain below that all of them actually do occur. To

begin with, we recall Lax’s conjecture that every homogeneous hyperbolic polynomial in three

variables P (ξ0, ξ1, ξ2) (say that P is hyperbolic in the direction (1, 0, 0)) can be written in the

form

det(ξ0A0 + ξ1A1 + ξ2A2)

for some Hermitian matrices A0, A1 and A2, with A0 being positive definite. As remarked

by Lewis et al [16], Lax’s conjecture follows from a deep result about Riemann surfaces by

Helton-Vinnikov [8]. Thus it has become a theorem, which can be applied for instance to the

restriction of a given hyperbolic polynomial over V to the subspace spanned by the elements

u, v and e. This restriction is still a hyperbolic polynomial, though in three variables only, and

its roots are the restriction of the functions λi’s. From the Hermitian case, we know that all of

the Horn inequalities apply to these restrictions. Therefore the vectors λ(u), λ(v) and λ(u + v)

satisfy the same inequalities. Whence

Theorem 1.1 The inequalities listed by Horn are valid for the roots of every homogeneous

hyperbolic polynomial.

We did not find a reference for this theorem, which is hardly a new result. According

to Lewis, the validity of Lidskĭı’s theorem for every hyperbolic polynomial was remarked by

Gurvits in 2004, who used the same argument as above. Although he did not mention such

consequences in his paper, Lax could have had something like that in mind when he made his

conjecture, even though only Weyl and Lidskĭı-Wielandt inequalities were known at that time.

For readers interested in the conjecture of Lax, we recall that its n-dimensional counterpart

becomes false for n ≥ 4; for instance, it is impossible to find Hermitian matrices A, · · · , D with

A positive definite, such that

X2
1 − X2

2 − X2
3 − X2

4 = det(X1A + X2B + X3C + X4D).

We point out that interesting nonlinear inequalities do occur in the theory of hyperbolic

polynomials. For instance, G̊arding [6] found the important fact that the restriction of P
1

n to
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its forward cone ΓP is concave. In terms of the roots, this means

( n∏

j=1

λj(u + v)
) 1

n

≥
( n∏

j=1

λj(u)
) 1

n

+
( n∏

j=1

λj(v)
) 1

n

, (1.9)

whenever λ1(u) and λ1(v) are non-negative. This inequality has sound implications in geom-

etry (Brunn-Minkowski inequality), combinatorics (Alexandrov-Fenchel and van der Waerden

inequalities) or elliptic PDEs (boundary value problems for generalized Monge-Ampère equa-

tions).

A special case of (1.9) concerns the determinant of positive definite Hermitian matrices.

The corresponding inequality

(det(A + B))
1

n ≥ (detA)
1

n + (det B)
1

n

is strictly better than the well-known concavity of A 7→ log detA. However, this latter property

is the best one to be independent of the size n. As such, it has an extension to suitable Hermitian

operators over Hilbert spaces.

1.3 Four series of admissible triples (I, J, K)

The theorems listed below follow directly from Theorem 1.1. We emphasize on their contents

only because we shall give an elementary proof of them, which follows Weinberger’s idea. Doing

this, we avoid more involved tools, like cohomology of Riemann surfaces (Helton-Vinnikov’s

paper) and Schubert calculus. Having a direct and elementary proof has also the advantage

that one can show that some triplets (I, J, K) satisfy an inequality

ΛK(u + v) ≥ ΛI(u) + ΛJ(v), ∀u, v ∈ V (1.10)

for every hyperbolic polynomial, without checking whether (I, J, K) ∈ T n
r . On the one hand,

the latter problem is NP-hard in terms of the degree n, and on the other hand, it might happen

that (I, J, K) belongs to Hn
r , though not to T n

r .

We shall develop in the sequel a technique that yields a sufficient condition for an inequality

of the form (1.5) to be valid for every hyperbolic polynomial. This condition has a combinatorial

nature. It is not versatile enough to give back the whole Horn list. However, our technique is

efficient enough to give the inequalities of Weyl and of Lidskĭı, together with some others. One

weakness of our method is that our condition depends on n, despite the fact that an inequality

valid for some degree n remains valid for a higher degree N . Here is the Weyl-type inequality:

Theorem 1.2 Let P be a hyperbolic polynomial of degree n over V , with roots λ1 ≤ · · · ≤

λn. If 1 ≤ i, j, k ≤ n satisfy k + 1 = i + j, then we have

λk(u + v) ≥ λi(u) + λj(v), ∀u, v ∈ V. (1.11)

Recall that the case j = 1, k = i was proved by Lax and Weinberger. Then we have the

analogue of Lidskĭı-Wielandt:
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Theorem 1.3 Let I ⊂ {1, · · · , n} have cardinality r, r < n. Then we have

ΛI(u + v) ≥ ΛI(u) + Λminr
(v), ∀u, v ∈ V. (1.12)

Again, Lax and Weinberger’s result is the case r = 1. Now a sub-Lidskĭı case, meaning that

we replace the minimal sequence (1, · · · , r) by the sub-minimal one (1, · · · , r − 1, r + 1):

Theorem 1.4 Let i1 < · · · < ir and k1 < · · · < kr be such that kp = ip, except for one

index q, for which kq = iq + 1. Then we have

ΛK(u + v) ≥ ΛI(u) + Λsubminr
(v), ∀u, v ∈ V. (1.13)

The last inequality of general breadth that we carry out is when J = πI. Then the optimality

condition (1.7) implies K = max.

Theorem 1.5 Given I ∈ In
r , the roots of an arbitrary hyperbolic polynomial of degree n

satisfy

Λmaxr
(u + v) ≥ ΛI(u) + ΛπI(v), ∀u, v ∈ V. (1.14)

Theorem 1.5 must have been known for a long time for Hermitian matrices. On the one

hand, inequality (1.14) is a rather natural generalization of Weyl’s

λn(A + B) ≥ λi(A) + λn+1−r(B).

On the other hand, it is equivalent to (1.12), taking into account the relation ΛI(−u) =

−ΛπI(u); just apply (1.12) to (u,−u − v) instead of (u, v). However, we shall give a direct

proof of Theorem 1.5. The same argument, applied to Theorem 1.4, gives the following theo-

rem.

Theorem 1.6 Let i1 < · · · < ir and j1 < · · · < jr be such that jp + ip = n + 1 (that is

jp = πip), except for one index q, for which jq + iq = n. Then we have

Λsubmaxr
(u + v) ≥ ΛI(u) + ΛJ(v), ∀u, v ∈ V. (1.15)

Let d be the g.c.d. of n and r. Given I in In
r , it is possible to find n

d
sets Iℓ in In

r such that

the disjoint union of the Iℓ’s be identical to the disjoint union of r
d

copies of {1, · · · , n}, while

I1 = I. Since each of the numbers

ΛIℓ
(u + v) − ΛIℓ

(u) − Λminr
(v)

is non-negative, each one is less than the sum of all of them. This gives the majorization

ΛI(u + v) − ΛI(u) − Λminr
(v) ≤

r

d
Tr(v) −

n

d
Λminr

(v).

In other words, we have

ΛI(u + v) ≤ ΛI(u) +
d + r − n

d
Λminr

(v) +
r

d
Λmaxn−r

(v). (1.16)
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Depending on the pair (n, r), (1.16) may or may not follow directly from the Lidskĭı-Wielandt

inequality

ΛI(u + v) ≤ ΛI(u) + Λmaxr
(v).

Likewise, since each of the numbers

Λmaxr
(u + v) − ΛIℓ

(u) − ΛπIℓ
(v)

is non-negative, each one is less than the sum of all of them. This gives the majorization

Λmaxr
(u + v) − ΛI(u) − ΛπI(v) ≤

n

d
Λmaxr

(u + v) −
r

d
Tr(u + v),

whence the inequality

(n − d)Λmaxr
(u + v) ≥ r(ΛI(u) + ΛπI(v)) + (r − d)(ΛI(u) + ΛπI(v)). (1.17)

Once again, (1.17) follows directly or not from Theorem 1.3, depending on the pair (n, r).

2 An Algebraic Fact About Hyperbolic Polynomials

The following auxiliary result is taken from our book with S. Benzoni-Gavage [1, §1.4.1].

Let P be a hyperbolic polynomial of degree n over V . Given two vectors u, v ∈ V , we define

a polynomial

R(X, Y ) := P (Xe − u − Y v),

which has partial degrees n with respect to X and at most n with respect to Y .

Proposition 2.1 Let (λ∗, µ∗) be a root of R. Then the multiplicity N of λ∗ as a root of

R( · , µ∗), and the multiplicity M of µ∗ as a root of R(λ∗, · ), satisfy

N ≤ M.

Proof Up to a translation, we may assume λ∗ = µ∗ = 0. We consider the Newton polygon

of R, which is the lower convex hull of integral points (l, m) ∈ N
2 associated to monomials

X lY m present in R. By assumption, the Newton’s polygon of R admits the vertices (N, 0) and

(0, M).

Let δ be the edge of the Newton’s polygon with vertex (N, 0). We denote its other vertex

by (j, k). The monomials of P whose degrees (a, b) belong to δ have the form cst · XpY q

with p = (1 − θ)N + θj and q = θk for some θ ∈ [0, 1]. When we substitute X 7→ akX and

Y 7→ aN−jY , such a monomial is multiplied by akN . Therefore the sum of all such monomials

of P has the form XjQ, where the polynomial Q has the following homogeneity:

Q(akX, aN−jY ) = ak(N−j)Q(X, Y ).

It is a basic fact in algebraic geometry (see [3, §2.8]) that, in the vicinity of the origin, the

algebraic curve R(x, y) = 0 is described by simpler curves corresponding to the edges of the

Newton polygon, up to analytic diffeomorphisms. In the present case, these diffeomorphisms
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have real coefficients (i.e., they preserve real vectors) since P has real coefficients. The “simple”

curve γ associated to δ is just that with equation Q(x, y) = 0. Hence points (x, y) in γ with a

real coordinate y must be real (because this is so in the curve P = 0).

Let ω be a root of unity, of order 2(N − j), that is ωN−j = −1. Because of the homogeneity,

the map (x, y) 7→ (ωkx,−y) preserves γ. If y is real, the map thus moves a real point into

an other one. Hence ωk is real, thus ω2k = 1. This implies that k is a multiple of N − j. In

particular, k ≥ N − j.

Since (j, k) is a vertex of the Newton polygon, lying between the vertices (N, 0) and (0, M),

we have
j

N
+

k

M
≤ 1.

Together with k ≥ N − j, this implies M ≥ N .

Let ρ denote k
N−j

, which is a positive integer. Then we find ρN ≤ M . In the equality case

M = N , we thus have ρ = 1 and j + k = N . Therefore the Newton’s polygon has only two

vertices (N, 0) and (0, N).

3 A Combinatorial Criterion

This section is the core of the article. We prove Theorem 3.1 below, from which Theorems

1.2–1.6 follow. Because the roots λi depend continuously on the polynomial itself, an inequality

of the form (1.10) is valid for every hyperbolic polynomial of degree n if, and only if, it is valid

for a polynomial in some dense subset of the class of hyperbolic polynomials in the direction e.

Because of Propositions 4.2 and 4.3, we may thus restrict to polynomials P with the property

that, for each 1 ≤ r ≤ n, there exists an algebraic subvariety Mr of R
d (a strict one: Mr 6= R

d),

such that the functions ΛI are pairwise distinct everywhere in Or, the complement of Mr, as

I runs over In
r .

Thus let P be such a hyperbolic polynomial. We denote by O the intersection of the Or’s,

a dense open subset of R
d. To prove that the inequality

ΛK(u + v) ≥ ΛI(u) + ΛJ(v)

holds for every u, v ∈ R
d, it is therefore enough to consider the case when u, v and u+ v belong

to O, because the roots λi(v) depend continuously on v. In the sequel, we shall need actually

only v ∈ O.

Following Weinberger [18], we proceed by contradiction. Given I, J, K ∈ In
r , we thus assume

that

ΛK(u + v) < ΛI(u) + ΛJ(v) (3.1)

holds true for some u and v in V , with v ∈ O. Let t ∈ R be given, and v′ defined by v′ = v− te.

Then

ΛI(u) − ΛK(u + v′) = ΛI(u) − ΛK(u + v) + rt = η − ΛJ(v′),

where

η := ΛJ(v) + ΛI(u) − ΛK(u + v)
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is positive by assumption. Let us choose t such that 0 < ΛJ(v − te) < η. Then, dropping the

prime, we are led to the situation where we have

ΛK(u + v) < ΛI(u), ΛJ(v) > 0. (3.2)

This argument allows us to make ΛJ(v) as small as desired. Since it does not change the

differences λj+1 − λj , and since the ΛR(v)’s are pairwise distinct, we may assume in addition

that

(R, S ∈ In
r , R 6= S) =⇒ (|ΛR(v) − ΛS(v)| > ΛJ(v)). (3.3)

In particular, we see that ΛR(v) 6= 0 for every R ∈ In
r , and

(R ≺ J, R 6= J) =⇒ (ΛR(v) < 0). (3.4)

We now choose a number λ∗ in the interval (ΛK(u + v), ΛI(u)). Given R in In
r , we define

the continuous function

µ 7→ φR(µ) := ΛR(u + µv),

and look for a lower bound mR of the number of roots µ of the equation

φR(µ) = λ∗. (3.5)

Whenever (R, µ) satisfies (3.5), one has

P (r)
(1

r
λ∗e − u − µv

)
= 0.

Let m :=
∑

{mR; R ∈ In
r }. If the m pairs (R, µ) have pairwise distinct µ’s, then the polynomial

X 7→ P ∗(X) := P (r)
(1

r
λ∗e − u − Xv

)

has m roots (actually m real roots) at least. However, it may happen that a µ occurs in several

pairs (R, µ). Let aµ be the number of such pairs, for each µ. We have

m =
∑

{aµ; µ ∈ R}.

By definition, λ∗

r
is a root of multiplicity aµ of the polynomial

Y 7→ P (r)(Y e − u − µv).

Proposition 2.1 tells us that µ is a root of multiplicity at least aµ of the polynomial P ∗. We

thus deduce that P ∗ admits at least m real roots, counting multiplicities.

To end with a contradiction, it will thus be enough to prove that

m >

(
n

r

)
, (3.6)

the right-hand side being the degree of P ∗. With such a contradiction, we shall have proven

the validity of

ΛK(u + v) ≥ ΛI(u) + ΛJ(v), ∀u, v ∈ V. (3.7)
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It thus remains to find the lower bounds mR, and to sum them. Each mR will be obtained

from the variations of φR, with the help of the intermediate value theorem. We shall use the

values of φR at µ = 0 (where it equals ΛR(u)) and at µ = 1 (where it equals ΛR(u + v)), as

well as its behavior at infinity, which is governed by the sign of µ and that of either ΛR(v) or

ΛπR(v).

At µ = 0, we can only say that

(R ≻ I) =⇒ (ΛR(u) > λ∗).

Likewise, at µ = 1, we have

(R ≺ K) =⇒ (ΛR(u) < λ∗).

To investigate the behavior of the φR’s at infinity, we need to split In
r into P , the set of parts

such that ΛR(v) < 0, and its complement Pc, for which ΛR(v) < 0. We recall that none of the

numbers ΛR(v) vanish. Although we do not know explicitly P , we can state a few properties

that it must satisfy. To begin with, we have [J, max] ⊂ P and [min, J) ⊂ Pc. If R ≺ S and

R ∈ P (resp. S ∈ Pc), then S ∈ P (resp. R ∈ Pc). Mind however that these observations do

not give a complete description of P . There remains much freedom, and we shall have to deal

with the worst possible case along our analysis.

Given R in In
r , the behavior at ±∞ of φR is given by

φR(µ) ∼ µ ×

{
ΛR(v), µ → +∞,

ΛπR(v), µ → −∞.

Therefore, φR is positive or negative at +∞ (resp. −∞) depending on whether R belongs to

P or Pc (resp. to πP or πPc).

The simplest situation is the case when R ∈ Pc∩πPc, for then φR(±∞) = ∓∞. Then there

must exist one root: mR = 1.

If R ∈ P ∩ πPc, then φR(±∞) = +∞. We can get a conclusion if moreover R ∈ [minr, K],

because then φR(1) < λ∗. There must exist at least two roots: mR = 2.

Likewise, if R ∈ Pc ∩πP ∩ [I, maxr], then φR(±∞) = −∞ and φR(0) > λ∗. Again, mR = 2.

If R ∈ P ∩ πP , the situation is slightly more elaborate. Since there holds φR(±∞) = ±∞,

we have mR = 1 at least. However, if moreover R ∈ [I, K], then we have φR(1) < λ∗ < φR(0),

and there are at least three roots: mR = 3.

The above analysis yields the following lower bound of the number of roots of P ∗, where

the bars stand for the cardinal of finite sets:

m = m(P) = |Pc ∩ πPc| + |P ∩ πP| + 2(|P ∩ πPc ∩ [minr, K]|

+ |Pc ∩ πP ∩ [I, maxr]| + |P ∩ πP ∩ [I, K]|).

The notation emphasizes that the bound m(P) depends on P , a set which, as said above,

is not exactly known. Thus an explicit lower bound is given by the infimum e(I, J, K) of m(P)

as P runs over all the subsets of In
r which satisfy the requirements already mentioned. The

determination of e(I, J, K) is a combinatorial problem that can be solved in finite time. When
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e(I, J, K) is strictly larger than the degree of P (r), we have our contradiction, since the number

of the roots of the univariate polynomial P ∗, counting with multiplicities, would be larger than

the degree. Therefore we can state our sufficient condition as follows.

Theorem 3.1 Let 1 ≤ r ≤ n be two integers and I, J , K be given in In
r . If

e(I, J, K) >

(
n

r

)
, (3.8)

then the inequality (3.7) is valid for every hyperbolic polynomial of degree n.

4 Density Results

The following statement is taken from [1, §1.5.4].

Lemma 4.1 Let P (X ; θ1, · · · , θd) be a homogeneous polynomial of degree n in 1 + d vari-

ables, with real coefficients. Assume that the coefficient of Xn is non-zero. Assume also that

for all θ in a non-void open subset O of R
d, the polynomial Pθ := P ( · , θ) has a root with

multiplicity ≥ 2. Then P is reducible in R[X, θ].

Proof Let us denote by R := R[θ1, · · · , θd] the factorial ring of polynomials in d variables θ

and by k := R(θ1, · · · , θd) the field of rational fractions in θ. We first consider P as an element

of k[X ]. Let us recall that k[X ] is a Euclidean ring, which has therefore a g.c.d.

Let Q be the g.c.d. of P and P ′ in k[X ], a monic polynomial of X . Its coefficients, belonging

to k, are rational fractions of θ. We denote by Z the zero set of the product of denominators

of these fractions; Z is a closed set with empty interior.

When θ ∈ O \ Z (this is a non-void open set), Qθ := Q( · , θ) has a non-trivial root, which

means that either Qθ ≡ 0 or d◦Qθ ≥ 1. However, the condition Qθ ≡ 0 defines a non-trivial

algebraic manifold M (the intersection of the zero sets of the coefficients of Q), again a closed

set with empty interior. Therefore, there exists a θ for which d◦Qθ ≥ 1, and consequently

d◦XQ ≥ 1.

Since Q divides P in k[X ], we write P = QT , with T ∈ k[X ]. Multiplying by the l.c.m. of

the denominators of all coefficients of Q and T (an l.c.m. and a g.c.d. do exist in the factorial

ring R), we have g(θ)P = Q1T1, where g ∈ A, Q1, T1 ∈ R[X ] and 0 < d◦XQ1 < n. We recall

that the contents of a polynomial S ∈ R[X ], denoted by c(S), is the g.c.d. of all its coefficients.

From Gauss’ lemma, c(Q1T1) = c(Q1)c(T1) and therefore g = c(Q1)c(T1), since c(P ) = 1 by

assumption. We conclude that P = Q2T2, where Q2 := c(Q1)
−1Q1 ∈ R[X ] and similarly

R2 ∈ R[X ]. Moreover 0 < d◦XQ2 < n, which shows that P is reducible in R[X ] = R[X, θ].

Let P be a homogeneous polynomial, hyperbolic in a direction e. Let us write P as a

product of irreducible factors

P =

r∏

k=1

P
α(k)
k ,

where the Pk’s are pairwise distinct. Each Pk is homogeneous and hyperbolic in the direction e.

The polynomial X 7→ Pk(Xe−ξ) has distinct roots away from the zero set Vk of its discriminant
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Dk(ξ). Since Dk is a polynomial, Vk is either the whole R
d or a codimension-1 algebraic variety.

From Lemma 4.1, the latter case holds true. Away from V :=
⋃
k

Vk, the roots of X 7→ P (Xe−ξ)

are of constant multiplicities α(k).

In particular, we have the following property.

Proposition 4.1 Let P be a homogeneous hyperbolic polynomial. Assume that P is square-

free (that is, P does not have a factor Q2, where Q is a non-constant polynomial ). Then the

roots of X 7→ P (Xe− ξ) are simple for every ξ ∈ O, an open dense set in R
d.

We now show that square-free polynomials are dense within hyperbolic ones. We proceed

by induction on α(P ), the largest of the α(k)’s in the factorization above. Because each Pk in

the factorization above is hyperbolic in the same direction e, it is enough to assume P = pα,

where p is irreducible. It will be enough to consider the case of a square p2, since then we may

write

P = pα−2p2, p2 = lim pℓ,

where pℓ is e-hyperbolic and square-free. The primitive factors P
β
j of pα−2pℓ have degree

less than that of P . The induction assumption ensures thus that pα−2pℓ is approximated by

square-free hyperbolic polynomials. By the diagonal procedure, it is also true for P .

There remains therefore the case P = p2 with p irreducible. We recall that if R(t) is a

univariate polynomial with real roots, then

Rγ(t) := R(t) + γR′(t) = e−γt(eγtR)′

has real roots too, for every γ ∈ R. Let f be a linear form, vanishing at e; we may therefore

approximate P by the homogenous polynomials

Pǫ(v) := P (v) + ǫf(v)DP (v) · e,

where we denote

DP (v) · e :=
d

dt

∣∣∣
t=0

P (te + v).

Since

Pǫ(te− v) = P (te − v) − ǫf(v)DP (te− v) · e

is of the form Rγ , with γ = ǫf(v), the equation Pǫ(te − v) = 0 has only real roots: Pǫ is

hyperbolic. Of course, Pǫ is divisible by p, but not by p2. Then we conclude with the induction

assumption.

We have thus proven the following proposition.

Proposition 4.2 The set of square-free homogeneous polynomials, hyperbolic in direction

e, is open and dense in the set of homogeneous polynomials, hyperbolic in direction e. For such

polynomials, the λj ’s are pairwise distinct over a dense open subset O1 of R
d.

We now consider the sums ΛI when I runs over In
r , and ask ourselves whether they are

distinct over a dense open subset of R
d.
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Let P be a polynomial as in Proposition 4.2. Let us fix a vector v ∈ O1. Since e is an

interior point of ΓP , the polynomial remains hyperbolic in the direction of eρ := e − ρv for

every small enough ρ ∈ R. Let us denote θj(ρ; z) the roots of P with respect to eρ:

P (µeρ − z) = 0.

For a small z, we have the implicit relations

θj(ρ; z) = λj(θj(ρ; z)ρv + z).

For z = v, this gives

θj(ρ; v) =
λj(v)

1 − ρλj(v)
.

Let I and J be given, with the same cardinal and I 6= J . As far as we consider the difference

ΛI − ΛJ , we may assume I ∩ J = ∅; otherwise, we can replace them by I ′ = I \ (I ∩ J) (J ′

defined likewise), with a smaller cardinal. Since the λj(v)’s are pairwise distinct, the rational

function

ρ 7→
∑

i∈I

λi(v)

1 − ρλi(v)
−

∑

j∈J

λj(v)

1 − ρλj(v)

does not vanish identically. Its zero ρ = 0 is thus isolated, and we deduce that for arbitrary

small non-zero ρ, this difference is non-null. For such a ρ, the ΘI ’s are thus pairwise distinct

at v, and therefore on a dense open subset of R
d. Let us now choose a linear map w 7→ Mρw,

close to the identity, such that Mρe = eρ. Let us form the homogeneous polynomial

Pρ(w) := P (Mρw),

which tends to P as ρ → 0. The roots of Pρ( · e−w) are the numbers µi(ρ, Mρw). Therefore Pρ

is hyperbolic in the direction e, and its ΛI ’s are pairwise distinct at v. Finally, we have proved

the following proposition.

Proposition 4.3 In the set of homogeneous polynomials, hyperbolic in direction e, the

subset of polynomials for which the ΛI ’s, with I ∈ In
r , are pairwise distinct functions over a

dense open subset of R
d, is a dense subset.

5 Calculations in Specific Cases

5.1 Weyl-type inequalities

Set r = 1 and k = i + j − 1. Because In
1 is totally ordered, P = [j, n] is exactly known.

We thus have πP = [1, n + 1 − j], Pc = [1, j − 1] and πPc = [n + 2 − j, n]. By symmetry, we

may assume j ≤ i, so that j = k − i + 1 ≤ n − j + 1. The first line in the definition of m(P)

sums up to n + 2 − 2j. In the second one, the first term is (min(k, n + 1 − j) − i + 1)+. One

finds e(I, J, K) = m(P) = n + 2 > n, which satisfies (3.8) when r = 1. Whence the Weyl-type

inequalities, our Theorem 1.2.
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5.2 Lidskĭı-type inequalities

Set J = minr and K = I. Here, the only possible P is In
r itself. We have πP = In

r , while

Pc is void. A straightforward computation gives

e(I, J, K) = m(In
r ) = |In

r | + 2|[I, K]| =

(
n

r

)
+ 2.

Again, Theorem 3.1 tells that the corresponding inequality (3.7) is valid for every hyperbolic

polynomial of degree n. This is our Theorem 1.3.

5.3 Sub-Lidskĭı inequalities

Set J = supminr and I, K as mentioned in Theorem 1.4. The interval [I, K] consists in

exactly two elements I and K. Then P can be either In
r or [supmin, max]. Correspondingly,

we have either

πP = In
r , Pc = ∅, πPc = ∅

or

πP = [min, submax], Pc = {min}, πPc = {max}.

In the first case, we easily have

m = 2|[I, K]|+ |In
r | = 4 +

(
n

r

)
.

In the second one, we have

m = 2|[I, K]|+ |[supmin, submax]| = 4 +

(
n

r

)
− 2.

In both cases, m(P) is strictly larger than the degree |In
r | and we have the desired contradiction.

5.4 Case J = πI

When J = πI, we have K = maxr by the optimality condition (1.7). For every admissible

P , we have the following calculations:

m(P) = |P ∩ πP| + |Pc ∩ πPc| + 2(|P ∩ πPc| + |πP ∩ [I, maxr])

= |P| + |πPc| + 2|πP ∩ [I, maxr]|

= |In
r | + 2|πP ∩ [I, maxr]|.

Since P contains [J, maxr], πP contains [minr, πJ ]. Using πJ = I, we thus have

m(P) ≥ |In
r | + 2|[minr, πJ ] ∩ [I, maxr]| = |In

r | + 2|[I, πJ ] = |In
r | + 2.

In conclusion, we have e(I, πI, maxr) = |In
r | + 2, which is the contradiction we were looking

for.
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5.5 Gap with Horn’s inequalities

Here we show that e(I, J, K) does not exceed the degree |In
r | for some explicit Horn’s triplet.

For such triplets, our combinatorial approach is thus inefficient.

(1) A Freede-Thompson case When is + js = ks + s for every s = 1, · · · , r, the triplet

(I, J, K) is admissible, according to Freede & Thompson. One of the simplest such triplet which

does not belong to a Lidskĭı or to a super-Lidskĭı case is I = J = {2, 3} with K = {3, 4} where

we take n = 4. This example actually can be treated by using Theorem 3.1. However, if we set

n = 5 instead, then the strategy fails, because of the choice

P = [{1, 2}, {1, 5}],

for which we have

m(P) = 10 = |I5
2 |.

(2) Another Freede-Thompson case An other minimal example is I = J = {1, 4}, K =

{1, 6}, with n = 6. In the combinatorial criterion, we must consider the choice

P = [{1, 2}, {2, 3}],

with three elements. We leave the reader verifying that this choice yields

m(P) = 15 = |I6
2 |,

and therefore we cannot use Theorem 3.1.

This example is the first one in an infinite series, given by the following proposition, whose

proof is left to the reader.

Proposition 5.1 Assume 2 ≤ b ≤ c, a < c, b ≤ πb and a ≤ πb (the latter is a Horn

constraint when r = 2). Set I = (a, c), J = (1, b) and K = (a, b + c − 2) (a Freede and

Thompson triple, admissible according to Horn). Take P = [J, max2]. Then

m(P) =

(
n

2

)
+ (b − 1)(4 − b).

In particular, if b ≥ 4, then e(I, J, K) is less than or equal to |In
2 | and Theorem 3.1 does not

apply.
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