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1 Introduction and Main Results

Consider the stationary incompressible Euler equations

(v-V)v+Vp=0, z€Q, (1.1)
dive=0, z€Q (1.2)

with the boundary condition
n-v=f, x€cdf, (1.3)

where Q(C R?) is a bounded, simply connected domain, v € C'(2,R?) denotes the velocity
and p € C*(Q,R) the pressure of the flow, n denotes the exterior unit vector field normal to
the boundary 9€). The given function f is assumed to satisfy

- fdS, =0. (1.4)

It is well-known that for simply connected domains 2 problem (1.1)—(1.3) has an irrotational
solution (v, p), which is unique up to addition of constants to the pressure. Based on a solution
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(vo,po) to problem (1.1)—(1.3), Alber [1] constructed solutions with nonvanishing vorticity to
problem (1.1)—(1.3). Under some assumptions, for suitable & and g, he proved that problem
(1.1)—(1.3) has a unique steady solution in a neighborhood of (vg, po) satisfying the additional
boundary conditions

n(x) - curlv(x) = h(x) + n(z) - curl vo(z)

and
S@)? + p(z) = g(x) + 3 luo(@)? + po(z)

for all x € 90—, where
0N ={ze€d| f(x) <0}, 90 ={zxed] f(z)>0}.

In this paper, we will establish the well-posedness of the solution to problem (1.1)—(1.3)
satisfying the following additional boundary conditions

curlv =av +b forall z € 902_

with suitable given a and b.

Incompressible flows with nontrivial vorticity are important topics for fluid dynamics (see
[16, 17]). There exist huge literatures dealing with the stationary incompressible Euler equa-
tions, such as exact solutions (see [19, 30] and references therein), the existence of solutions (see
(2, 3, 5-7, 11, 12, 14, 16, 20-25, 27, 31, 32] and references therein), symmetry of solutions (see
[13] and references therein), stability of solutions (see [15, 16] and references therein), topologi-
cal properties of solutions (see [10]) and numerical approximations of solutions (see [8, 9, 28, 35]
and references therein). For proving the existence of solutions, there are various methods, such
as the variational methods (see [2, 3, 5, 12, 14, 20, 31, 32] and references therein), the statistical
mechanics methods (see [6, 7]), the pseudo-advection method (see [22, 24, 25]), the magnetohy-
drodynamic approach (see [21, 23]), the fixed points method (see [1]) and some other methods
in [29, 34]. Most of them can only be used to the two-dimensional or the axisymmetric cases,
except for [1, 4, 23, 36]. In [21] a measure-valued solution is found for three-dimensional steady
Euler equations with nontrivial vorticity, while in [4, 34] the problem has been well studied in
the special case that v and curl v are parallel.

Motivated by the results in [1], we establish the well-posedness of classical solutions for
problem (1.1)—(1.3) without any reference solutions. The main result is the following theorem.

Theorem 1.1 Suppose that § is a bounded, simply connected domain of R? with C? bound-
ary 0. Assume that f € H?(0Q,R) satisfies (1.4).
Let v € H3(Q,R3) and o, Bo, Y0, Lo € (0,+00), which satisfy that
div vy = 0, x €,
n-vg=f, x€d,
lvo(z)| > 2cg  for all x € Q (1.5)

and .
[volls,e < 550, (1.6)
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where vy does not have closed stream lines, the lengths of all stream lines of vy in Q are less

than L,
dist (092, x + tvg(z))

lim inf 0 1.7
e t - D
uniformly for all x € 00Q_ and

i inf dist (094, & — tvg(z)) 50

t—0t t

uniformly for all x € 00§y, where

000 = 9L N (00 090y )

1s the boundary of 004 in OS2.

Then there exists a constant
Yo = Yo(ao, Bo, Lo) > 0
and for every 0 < vy <~ there exist constants
K; = K;(«o, fo, Lo,7y) >0, i=1,2,3
such that for all a € H*(02_,R), b € H*(0Q_,R?) with

b-n=

div (fb) =

Vreon., (1.8)

0,
0, Vaedn._, (1.9)

(where div(fb) is the divergence of the vector-valued function fb on 0Q_ defined as
1
div (fb) = limE /l(fb) < (n x dl),
where s is a surface lying on OQ_ with smooth boundary 1) and vy with

llall + [16l] + [lcurlvo[lo,0 < K, (1.10)

problem (1.1)~(1.3) has a solution (v,p) € H3(Q,R3 x R) with

curlv(z) = a(z)v(x) + b(x) (1.11)
for all z € 02—, and
ﬁ [ pleydz =1, (1.12)
where
lall = [I1f]"all Loy + 1 f1%all 200y + 1117 Vral 2oy + I1f172Viall L2 ),

1Bl = 111726l ooy + I1F1 bl 2200 ) + I1FI°Vrbllrzoa_y + I11f172VEbl L2060 ),

|| is the Lebesgue measure of Q, Vra is the tangential gradient of the function a and Via =
VT(VTCL).
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Furthermore, v satisfies
[v—wolls,0 <7, (1.13)
and (v,p) is the only solution to (1.1)~(1.3), (1.11) and (1.12) in H3(,R? x R) satisfying
(1.13).
In addition, if (¢, bM) and (a,b) are two sets of boundary data on OQ_ both satisfying
(1.10), and (v, pM), (v,p) are solutions of (1.1)~(1.3), (1.11) and (1.12) with the boundary
data (M, bM) and (a,b), respectively, both satisfying (1.13), then it holds that

0™ —]l1,0 < Ka(la™ = aflo,on_ + (16 = bllo,s0_ ), (1.14)
1P = pllre < Ks(lla™ — allo,pa_ + (6% = bllo,00_ ) (1.15)

Remark 1.1 Compared with the main results in [1], Theorem 1.1 in this paper has several
advantages. First, we do not require that vy be a velocity field of a solution to problem (1.1)—
(1.3) in contrast to [1]. Second, Theorem 1.1 requires less regularity on vy than the ones required
in [1]. And finally, there is no requirement that 9Q_ is a manifold with Lipschitz boundary as
in [1].

Remark 1.2 As motivated by the approach in [1], we prove Theorem 1.1 by a fixed point
argument. The key in our analysis is to solve a boundary value problem for a nonlinear first
order transport system satisfied by the vorticity field.

The rest of the paper is organized as follows. In Section 2, we give the proof of Theorem
1.1 by the contraction mapping principle provided that we can solve a boundary value problem
for a linear first system. The solvability, the necessary estimates and properties of the solutions
for this linearized problem are carried out in details in Sections 2-6.

2 Proof of Theorem 1.1

Let Q C R™ be an open set and k be any nonnegative integer. Denote by H*(Q) =
H¥(Q,R™) the usual Sobolev space of functions from € into R™ with the norm

fulea=( Y [ ID7u@)dr)’,

BI<k <
where 8= (61, , ) is a multi-index. Set
1
lullere = (2 [ ID?u(@)l"dz)", r<.
1B1<k <

It follows from Sobolev embedding theorem and Sobolev’s trace theorem that there exists a

positive constant M such that

lolliao < M|v|iv1,a, |vlieo < M|v|iv1,0, i=0,1,2, 2.1)

[Pllcy e rey < M[0lliy2ms,  lv]

for all v € H3(Q,R3) and v € H3(R3,R3). Define

ci@ry < M|vlliv2,0, i=0,1

L2ORY) & {uec LR |divu =0, 2 €Q; n-u=0, x € 9Q},
V= L2(Q,R%) N H*(Q,R?),
Vy={ueV||ullzso <~} fory>0.
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For given v € vg + V,,, a € H2(9Q_, R) and b € H?(92_,R3) satisfying (1.8) and (1.9), we
consider the following boundary value problem:

(v-V)z=(2-V)v, z€Q, (2.2)
z=av+b, —x€IN_. (2.3)

The keys in the proof of Theorem 1.1 are the following lemmas which yield the solvability
of problem (2.2)—(2.3) and some necessary estimates.

Lemma 2.1 There exists a o > 0 such that for every 0 <y < 7o and every v € vg + V,
problem (2.2)~(2.3) has a unique solution z denoted by Av = Ala, b](v).

The proof of this lemma will be given in Section 3.

Lemma 2.2 For 0 < v < 7y, there exists a K = K(v) > 0 such that

[Av[lo.0 < K(||allo,oa_ + [[bllo,oa_), (2.4)
|Av]l2,0 < K(||a] + ||b]]), (2.5)
| Av® — Avllo.0 < K([|al| + [[b])[v® — v]l1,0 (2.6)

for all v,w € vy + V.
The next lemma shows that the solution to (2.2)—(2.3) is divergence free.

Lemma 2.3 For every v € vg + V5, one has
divAv=0, z€Q.

The proof of the two lemmas will be given in Section 6. We also need the following two

lemmas.
Lemma 2.4 (see [26, 33]) For every z € H*(Q,R?) with
divz=0, z€q,
there exists a unique w € V such that
z = curlw.
Moreover, there exists a constant My > 0, only depending on §2, such that
[wlls,0 < Miflz]l2,0.
Lemma 2.5 (see [36]) There exists a constant Ma > 0 such that
lull1,0 < Mal|curlul|o,o
for all uw € L2(,R3) N HY(Q,R3).
We now assume that Lemmas 2.1-2.3 hold and proceed to prove Theorem 1.1.

Proof of Theorem 1.1 Let

K —min{ i ! }
b Mi(K +1) 2MyK J°
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For v € vg + V,,, it follows from Lemma 2.3 that

div (Av — curlvg) = 0. (2.7)
Moreover, by Lemma 2.4, there exists a unique w € V' such that

Av — curlvg = curlw. (2.8)

Define
Bv = Bla, b](v) = vg + w. (2.9)

We shall prove that B : vy + V,(C H'(Q,R?)) — vg + V, is a contraction. In fact, by (2.9),
(2.8), (2.7), Lemma 2.4, (2.5) and (1.10), one may obtain

[Bv — voll3,0 = [lw]l3,0
< My ||curl w20
= M;||Av — curlvg|2,0
< My (|| Av||2,0 + |lcurlvo|l2,0)
< KMy ([lall + [|b]]) 4 My [lcurlvo[[2,0

<7

which implies that B is into. Next, it follows from (2.9), (2.8), (2.7), Lemma 2.5, (2.6) and
(1.10) that

1BvY — Bullya = [lw!) —wl

1,0
< Myljeurlw™ — curlwl|o.o

= MQ”A'U(l) - AU||Q7Q

< MaK (J|all + [[BI)I[v™ — v]l1,0

1
< Sl — ol

Hence B is a contraction on vy + V., (C H'(Q2,R?)). It follows from Banach’s fixed point theorem
that B has a unique fixed point v in vg + V5. By (2.9), we have

v=Bv=vy+w
for some w € V satisfying (2.8), which implies
curlv = curlvg + curlw = Av.

Due to the definition of A, we have

(curlv - V)v = (v-V)curlv, z €,

(2.10)
curlv = av + b, x €00 _.

Noting
curl (v X z) = vdivz — zdivo + (z- V)v — (v - V)z (2.11)
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and (2.10), one obtains
curl (v X curlv) =0, z €,

which implies that there exists a function g € C'(Q,R) such that
v X curlv =Vg, z€Q,

since § is simply connected. Set

1 2 )2
- = + d 1, Q)
p(z) =gz |Q|/ dzx 2|v )| 2|Q|/|v x)|*da + x €,

where || denotes the Lebesgue measure of 2. Then one has

1

— | p(x)dx =1
a Jo "

and
1
v(z) X curlv(z) = V(p(:c) + §|U($)|2), xr €,
which implies

(v-V)o+Vp=0, ze€Q

due to the relation that
1
(v-V)v = V(§|v|2) —vxcurly, xz €. (2.12)

Hence (v,p) is a solution of problem (1.1)-(1.3) with v € vy + V/, satisfying conditions (1.11)
and (1.12).

Next, we prove the uniqueness of the solution to problem (1.1)-(1.3) with v € vy + V,
satisfying conditions (1.11) and (1.12). Assume that (v, p) is another solution to problem (1.1)-
(1.3) with v € vy + V;, satisfying conditions (1.11) and (1.12). Then it follows from (1.1) and
(2.12) that

- ~ 1oy =
v x curlv = V(§|v|2 —l—p),
which implies
curl (v X curlv) = 0.

Moreover, by (2.11) and (1.2), it holds that
(curlv - V)v = (v - V)curlv.
This, together with (1.11), shows that
Av = curlw.

By the definition of B, one has
Bv =7.
It follows from the uniqueness of the fixed point of B in vg + V,, that

v =v.
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Hence
Vp = Vp,

which implies

S
|
i)

by (1.12).
Finally, we prove the stability of the solutions. From (2.9), (2.8), Lemma 2.5, (2.6) and
(2.4), we obtain
[v® = v]l1,0 = [|Bla™,bM]o) — Bla, blu]l10
< [IBla™, 6o — B[a™, 6M]v]1,0 + || Bla™ 60 = Bla, bv]1,0
< M (]| A[a™, M) = v)[lo.0 + [Ala™) = a,b™) — blv]lo.0)
< Mo(K (la™]| + 6P )][v™ = w10 + K (| = allopa- + 16T = bllo,an-))
< MoK Ko —of|1,0 + MK (|]a™ — allo,oa_ + 6™ = blo,on_)
1
< §||U(1) — |10+ MaK(la®) = allopa_ + |16 — bllo,oa_),
which implies
[0 —v]l1,0 < Ks(lla = alloao + [16%) = bllo,a0),

where Ko = 2M> K. Hence (1.14) holds. It follows from (1.1) that

V) = Vp| < (0 - V)pl) — (v V)l
<D —0) V)l + (- V) — )|

< o = ooy + follo® = ol

< (Bo + (oM = o] + [ —w]y),

which implies

VP — Vpllo.a < (Bo +Mv™ —vlli0
< (Bo + 7 K2(]|a™ — allo.o0_ + 1B —bllo.00_), (2.13)

where one has used the notation

ol = ol (a (iz_m% ?)”.

Q Q a2

Viz 1P = plloa < IVPY = Vpllo.a, (2.14)

where po > 0 is the first positive eigenvalue of the eigenvalue problem

[N

Due to

one has

—Au = pu, in §, % =0, on 99.
on



Existence of Solutions for Three Dimensional Fuler Equations 811

It follows from (2.13) and (2.14) that
1P = plhe < Ks(lla™ = allo.oa_ + B = bllo,oa_),
where K3 = ﬁKz(ﬁo +7). Hence (1.15) holds. Thus we have completed the proof of Theorem
1.1.
3 Solvability of (2.2)—(2.3)

We now prove Lemma 2.1 in this section. First, we give the following lemma, which shows
that the conditions (1.5) and (1.6) in Theorem 1.1 are invariant for small perturbations.

Lemma 3.1 Under the assumptions of Theorem 1.1, there exists a constant v1 > 0 such
that

[v(z)| > a0 (3.1)
for all x € Q, and
[vlls,2 < Bo (3.2)
for allv e vy +V,,.
Proof Set
’yl:min{%,%}. (3.3)

Then for v € vg + V4, , it holds that

lv(@)| = [vo(@)] — |v(x) — vo(2)] = 200 — [|v = voll o1 2
> 209 — M|lv—wol[3,0 > 200 — My > ag

for all x € Q by (1.5), (2.1) and (3.3), which proves (3.1). It follows from (1.6) and (3.3) that

Bo
lvllz.0 < [lvolls,o + v —volls,0 < > + 7 < Bo

for all v € vg + V;,. Hence (3.2) holds. This completes the proof of this lemma.

We will solve the boundary value problem (2.2)-(2.3) by the characteristic method. Thus
we consider the following initial value problem for ordinary differential equations

d
Ew(t, z,v) = v(w(t, z,v)),

w(07 x? ’U) - x?
where z € , v € C1(Q,R?). By the theory of the ordinary differential equations, this equation

has a unique solution w(t, z,v) which is continuously differentiable in (x,v) € Q x C*(Q,R?).
Let [0,T(x,v)) be the maximal existence interval of w(t, x, v) to right. Define

T(v) = sup T(x,v)
z€Q

for v € C1(Q,R3).
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By Calderd’s extension theorem there exists a constant M3 > 0 such that, for every w €
H3(Q,R3), there exists an extension to @ € H3(R?,R?) satisfying

[@][3,ps < Ms]lwl|s,q- (3.4)

Then w(t, z,v) can be extended to @(¢,z,v) which is defined on [0, 400).
To show that each stream line going through a point in 2 must exit ) in finite time, we
need the following lemma.

Lemma 3.2 Let L., be the least super bound of the lengths of all stream lines of v in £ with
v € vg + V,. Then there exists a constant v2 € (0,71] such that

L, < +o0.

Proof We first prove the continuity of the mapping (x,v) — &(t,x,0) at vg. By the mean
value theorem, (2.1), (3.4) and (3.2), one can get

< 1o(t,2,9) ~ B(t, 70, o) < it(a(t, 2.5) — 5(t, 20, 70))

[0(&(t, 2,0)) — Do(&(t, 20,00))]

< [o(@(t, 2, 0)) — 0o(@(t, 2,0))| + [0 (@(¢, z,V)) — Vo(W(L, o, Vo))
[P0l ey, ms rs)|D(E, 2, 0) — (¢t o, )| + |V — Vollcp r2 v2)

< Ml[vo|l3,rs|@(t, 2, 0) — (L, xo, Vo)| + M ||V — Vol|3,ra

< M Msllvol|s,ol@(t, z,0) — &(t, 0, Vo)| + M Ms|lv — volls.0

< M MsBy|6(t, x,0) — O(t, xo, Do) | + M Ms||v — vol|3.0,

which implies

|@(t, LL‘,%)\) — @(t, ,’Eo,ij\o)| S eMM3ﬁ“t(|@(0, {E,i)\) — @(0, ,’Eo,ij\o)| + MM3||U — ’UOH?,)Qt)

< MMsbot (13 — zo| + M M;||v — vol|3,0t). (3.5)

Let l(w(-,xz,v9)) be the length of the stream line w( -, x, vy) starting at . Then (3.1) yields

T(z,v0)
Lo > l(w(-,z,v9)) :/
0

Ew(t,x,vo) dt

T(z,v0)
- / oo (t, 2, v0))| dt = T(z, vo)ao,
0

which leads to I
T(v) < = (3.6)
ap

Then we claim that for every € > 0 there exists a positive constant . < 7, such that
T(v) <T(vg) +e¢ (3.7)

for all [[v — vo|l3.0 < 7Ye- Indeed, it follows from the definition of T'(vy) that there exists a
to = to(e, o) € (0,T(vo) + €) such that

B(to, zo,v0) & Q.
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By (3.5), there exists a d,, > 0 such that
O(to,z,0) & Q
for all x € Q with |2 — 20| < 0, and |Jv — vo||3.0 < 6z, Which implies
T(z,v) <T(vg) +e¢

for all z € Q with |z — 20| < 0y, and [[v — vo||3.0 < 6z, It follows from the compactness of
that there exist finite x1, s, -+, z} and positive constants 41,2, -+ , I such that

T(x,v) <T(vg) +e¢

for all € Q with |z — z;| < §; and ||v — vg||3,0 < §; for some 1 < j < k, and
k
Qc | B(;:9)),
j=1
where B(z;;d;) is the open ball in R? with center x; and radius d;. Set

Ve = min{517527 e 76k}'

Then
T(x,v) <T(vg) +e¢

for all z € Q and [lv — vo|[3,0 < 7. Hence one has
T(v) < T(vo) + ¢

for all v — vol|s,0 < 7e, which verifies (3.7).
It follows from (3.7) that there exists a positive constant v < 71 such that

T(v) <T(vg) +2 (3.8)
for all ||v — vol|s,0 < v2. Let l(w(-,x,v)) be the length of the stream line w( -, z,v) starting at
2. Then

T(x,v) T(z,v)
Hw(-,x,v)) = / —w(t,:t,v)’ dt < / [v(w(t,z,v))|dt
0 dt 0

< T(@,0)[vllor sy < (Two) +2)M o]ls.0

L
< (—0 n 2)M60 < oo
ao

by (3.8), (2.1), (3.6) and (3.2). Hence the lemma holds.
We are now ready to show

Lemma 3.3 There exists a positive constant ys < 2 such that, for every v € vo+V,,, every
integral curve of v that passes over a point in 0 meets the boundary in exactly two different
points, one point in 02—, the starting point of the integral curve, and another point in 0y,

the endpoint of this integral curve.
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Proof Assume that xg € 9Q. Set W(t) = ©(t,x0,0). It follows from the continuously
differential property of & and the implicit function theorem that the equation

W(t) —x = —pn(x)

has a unique continuously differentiable solution (x,p) from a suitable neighborhood of 0 to
09 x R such that

x(0) = zg, p(0) =0.

Hence

It follows that

B(@(1) — () = 0 (On(a(t)) — ()< (n(x(1))).
Taking the inner product of the above equation with n(x(t)) yields
J(t) = —5(@ (1) - nlw(t)). (3.9)

In the case that xg € 9€)_, it holds that

p'(0) = =0(@(0)) - n(x(0)) = —v(wo) - n(xo) = —f(x0) > 0.

Hence, there exists a constant 6 > 0 such that p(¢t) > 0 for all 0 < t < §. And so &(¢,z9,0) € 2
forall 0 <t < 4.
Consider now the case that z¢ € 9Q\ 9Q_. Due to (3.9), one may have

pl(t) = —0(@(t)) - n(x(t) +v(@(t) - n(z(t) — f(z(t))
= a(t)p(t) — f(z(1)),
where

1
la(®)] = m(—v(w(t)) -n(a(t) +v(a(t)) - n(z(t)))

< |lley @e pey < M[Vllzrs < MMs|vflz0 < MMsf

by the mean value theorem, (2.1), (3.4) and (3.2). Hence
t
p(t) — _efot a(‘l’)dT/ e~ Iy a(s)de(I(T)) dr.
0

In the case that zg € 9\ 90_, by the continuity of z(t), there exists a positive constant ¢
such that
z(t) € 00\ 0Q_

for all 0 <t < §, which implies

t
p(t) _ _ef[f a(T)dT/ e~ Iy a(s)de(x(T)) dr <0

0

for all 0 <t < §. Hence one has

G(t,20,0) ¢ Q, YO <t <4
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In the case that xg € 00Q_, by the fact that ©(0) = v(xg) and (2.1), one has

dist(02—, z(t)) > dist (00—, zo + tv(zo)) — |x(t) — xo — tv(zo)|
> dist(9Q—, zo + tvg(20)) — t|v(zo) — vo(zo)| — [z(t) — o — tv(2o)
> dist(0Q—, zo + tvo(z0)) — tl|lv — voll o) — [2(t) — zo — t£(0)]
= dist(9Q—, zo + tvo(zo)) — tM|[lv — volls,0 — [x(t) — zo — t2(0)],

which leads to

liminf — dlst(BQ_,x( )) > liminf %dist(BQ_,xo + tvg(z0)) —

t—0t t—0t

Hence there exists a positive constant 3 < 2 such that, for every v € vo+V,, and zg € 00§ _,

one has
liminf — dlst(aﬂ_, (t))>0

t—0+

by (1.7). Therefore, there exists a positive constant § such that
x(t) € 00\ 90_

for all 0 <t < §, which implies

t
p(t) _ _efot a(T)dT/ o I “(S)dsf(x(T)) dr <0
0
for all 0 <t < §. Thus one has
W(t,x0,0) ¢ Q, VO<t<.

Hence every integral curve of v that passes through a point « € Q can only start at exactly
one point in 9)_, the starting point of the integral curve. Similarly, every integral curve of v
that passes through a point z € € can only end in exactly one point in 9€2;, the endpoint of
this integral curve. It follows from (3.8) that every integral curve of v that passes through a
point z € £ must start at one point in 92_, the starting point of the integral curve, and must
end in one point in 9, the endpoint of this integral curve. Therefore 2 is completely covered
by integral curves of v starting at 9€2_.

Let w(s) = w(s,y) = w(s,y,v) be the solution of

d 1
d—sw(s,y,v) = mv(w(s,y,v)), w(0,y,v) =y € 0N_.

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1 Let 7y be 73 in Lemma 3.3. On one hand, assume that z is a
solution to (2.2)-(2.3). Set

2(s) = 2(s,y) = 2(s,y,v) = z(w(s,y,v))-

Then
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and
2(0,y) = av(0,y) +b.
That is, for every y € 9Q_, z(s) = z(w(s,y,v)) is a solution of the initial value problem for the

first order linear homogeneous ordinary differential equations

d 1
EZ(S) = (o)) (z(s) - V)u(s), (3.10)

2(0) = av(0,y) + b. (3.11)

On the other hand, assume that z(s) is a solution of the initial problem for the first order
linear homogeneous ordinary differential equations (3.10) and (3.11). Then Vz € €, by Lemma
3.3, there exists a unique (¢,y) = (s(x), y(x)) such that w(s,y,v) = z. Set

Then

It follows that d d
EZ(S) = (Ew(s) . V)z(s) =—

Moreover, by (3.10), it holds that

that is,
(v(x) - V)z(z) = (2(x) - V)v(z).

Hence z(x) = z(s(z),y(z)) is a solution to (2.2)—(2.3). Therefore, z(z) is a solution to (2.2)-
(2.3) if and only if z(s) is a solution to the initial value problem for the first order linear
homogeneous ordinary differential equations (3.10) and (3.11).

By the theory of the ordinary differential equations, problem (3.10)—(3.11) has a unique
solution. Hence problem (2.2)—(2.3) has a unique solution. This completes the proof of Lemma
2.1.

4 Estimates of Solutions to (2.2)—(2.3)

For easy presentation, we use the following notations. For a function ¢ = (¢1,- - ,Gm) :
Q(C R3) — R™, set

[N

@) = (X 3 I0°aP)’,

i=1 |5|=k

0
%‘(95) = %qu

82
15() = e,

q(s) = q(s,y) = q(w(s,y,v)).

First we estimate the solutions to (2.2)—(2.3).
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Lemma 4.1 Suppose that v € vg + V., with v < . Assume that z is a solution to (2.2)-

(2.3). Then it holds that
|2(s)] < C1]2(0)]
for some positive constant C1 = Ci (o, Bo, Yo, Lo)-

Proof It follows from (2.1), (2.2), (3.1) and (3.2) that
d

Cla(s)] < | 2(6)] < I - Docs)]

< ag 2(s)llvfa(s) < agtz(s)llIvllor g gey
<ag'z(s)[M|v]ls.0 < ag ' MBo|z(s)],
which implies

|2(s)] < e MPos|z(0)] < %0 MPoLao|z(0)] £ Cy[2(0)].

Next, we estimate the first derivatives of the solution to (2.2)—(2.3).

Lemma 4.2 Suppose that z is a solution to (2.2)~(2.3). Then

[21(s) < Ca (121 (0) +12(0)] / lola(r)ar)

for some positive constant Cy = Ca(ayg, Bo, Yo, Lo).

Proof Differentiating (2.2) yields

(v-V)z; + (v); - V)z = (2; - V)v + (2 - V)yy;.

Hence

3

d d
— < iy
ds|z|1 - (;‘ ds

2. 1 3 1
) = (I @ V=)

3
- |v|_1(z (216 - Vv + (2 Vv — (v, - V)z|2)
=1

< ol 7 (el loly + [2lfvl2 + |zl lvh)

=

= |o| 7' @lzilvly + [2llv]2)

< 205" MpBolz|1 + ag ' C1[2(0)|[v]2,

which implies

#11(s) < 20 4 (1212(0) + 05" Cu[=(0)] [ Iola(r) )
0
< e M (121,(0) + a3 C1l=(0)] [ [ola(r)dr)
0

< Co(1sh(0) + 120 [ Pola(r)ar).

Now we estimate the second derivatives of a solution to (2.2)—(2.3).
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Lemma 4.3 Let z be a solution to (2.

2)~(2.3). Then

#42(5) < Ca (Joa(0) + 1510) + 1O [ Tola(r)dr) 4+ 1z00)] [ o) ar)

for some positive constant Cs = Cs(ag, Bo, Yo, Lo)-

Proof Due to (4.1), one has

It follows that

_| |2_(Z‘d Zlij

Nl=

V(3 bl a7

4,j=1 i,5=1
< (3 1 9) 4 (3 K D) (3 16 )
ij=1 ij=1 ij=1
+( Z G215~ V)wysl ) +( 23: I 'V)ZIQ)%
ij=1 ij=1
(Z|U|z )21 ) (ZMU )2l )
4,j=1 i,j=1

< ol 7 (zl2fvly + [zhfvle + [2llv]s + 2l1lvl2 + [vl2lzl + [vli]z]2 + Jvl]2]2)
= o7 Blzl2lvls + 3|zl ]v]2 + |2][v]s)

< a5 (3Mfhlzl2 + 3C2(J211(0) + |2(0) / [v]2() d7) [ola + C[2(0) o]y )
< 38Mag™ fo|z|2+3Chag M2} (0)+3C2a5 1 (0 |/ lola(r) drfolz +Crag H2(0)[o]3,
which leads to
) <08 0 (512(0) + 3Ca05 1 0)s + 3Ca05 5] [ [ ola(r) drlufar) ar
+Cla51|z(0)|/ |v|3(r)dr)
0

s 2
<05 b (|2 0) + 3Caag |2 (0) Ly, + 3Caa =(0) ([ Iola(r) dr)
0

+ Crag[2(0)] / Jol3(7) dr)

< a2k + () + O [ platryar) "+ 0] [ lola(r)dr).

In order to prove (2.6) we need the following lemma

Lemma 4.4 Let

[2] = Ao — Av,  [v] = 0O

— v
where v v € vy + V.. Then one has

)

16 < C(EIO + [ (Al + [ol140P ) dr)
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for some positive constant Cy = Cy(vo, Bo, Yo, Lo)-
Proof By (2.2), one has
(v- V)] = (- V) A — (o] - V) AV — (v- V) Av
= (AW - V) — ([v] - V) Ao — (Av - V)v
— (A D) o] — (o] - V) A + ([2] - Vo

o~ o~

Hence

el < | lal| < ol e R < g (4l + 121146 + [z ol)

< o Ml + 0 A [l + 0 1AW,

which implies

6 < C(EIO1+ [ (Al + 140 ) dr)

In order to obtain the L? estimate, we need the following lemmas.

Lemma 4.5 (see [1]) Assume g € LY(Q;R™). Then it holds that

frorae= [ [ seipanas,

where [(y) is the exit time of w(s,y,v).

Lemma 4.6 Suppose that v € vo + Vy with v < 7. Then there exists a positive constant
C = C(ao, Bo;70, Lo) such that

H / (e, < Cldloa, Ve @R, (1.2
H/O q(ﬂy(-))dTHO)&Q Vg e LA R™),
1200, y(- Nlloo < Cligllooa_, Vg€ L*(0Q_;R™), (4.3)
140, y(-)) Vqe L' (09_;R™).

Proof It follows from Lemma 4.5, (3.1), (2.1), (3.2) and Lemma 3.2 that

S o)
H/o T‘ ;(Q;Rm) B /Q ’/0 Q(T,y(ac))dT’de
- /BQ /l(y) | / a(ry)dr| |?|J{(y)|)| dsds,
/ /l(y)/|7y|2d7|()|dds
00— ( )|

l(y)
<ol /an / ()2 d7|f ()] S,

l(y’ Lf ()]
172 2
S
s L Mﬁo/asz / | (,y)|de !

< Cllgl?20mm)
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for all ¢ € L?(£;R™) and some
C = max{ag ' My L?

ag 'MBoL2 ag MBoLn,, ag *MBoL., }.

Y07 Yo’

4 s(z) 4
- Ly(z))d ‘ d
[y = L[ atrstaar] s
1(y)
/ / / q(t,y)dr t W) dsdsS,
90

v(s,y)l
U(y)
ok ey e
<ag'L4 /m /l(y) (r, )| d7lf ()] dS,

l(y) lf ()l
174 4 drd
<o L Mﬁo/an/ I T,y 4745

Similarly,

H/S( )
0

< Cllgl 74 @smm)
for all ¢ € L*(;R™). For ¢ € L?(0Q2_;R™), one may get

(090D = [ 1009 do

l(y) )2 |f(y)]
/asz / ) (’y”dsty

<oy L70M50||Q||L2(asz,;Rm)

< Clldllzz o zm)-

Similarly,

10,90 Dl sy = [ laO.u(@)|*do

00
Ao IR

<oy L70M50||Q||L4(aﬂ,;w)
< Cllgllzaa0_mm)
for ¢ € LY(0Q_; R™).

Next, we estimate the solution of (2.2) and (2.4) and its derivatives in terms of their bound-
ary values.

Lemma 4.7 Suppose that v € vo + V., with v < . Assume that z is a solution to (2.2)—
(2.3). Then one has

[zllo.2 < C1Cllz[lo,00-,
1zlllo. < Ka([l[z[1llo.00- + [I2[l0,c0,00)

and
Hzl2llo. < Ks(ll|z]2llo.00- + lz|illo.oa_ + ||2]l0,00.00_)-
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Proof It follows from Lemmas 4.2 and 4.6 that

lizhloa < Ca(llzhO)on + loloson_| [ Tolatr)dr] )
0 ,

< C2C([l|zl1llo,00- + [12]l0,00,00_ [[|v]2]l0,0)
< C2C([lzl1llo.00- + [12]l0,00,00_ [|v]12,0)
< C2C([l|zl1llo,00- + [2]l0,00,00_ [[V]3,2)
< C2C([lzl1llo,00- + [12]l0,00,00- o)

< Ky(|llz]1llo,00- + [I12]l0,00,00- )-

Similarly, one deduces from Lemma 4.3 and Lemma 4.6 that

I1zl2ll0.0 < C3(|||Z|2(0)||0,Q + 1z[1(0)llo.2

#latoon (| [ 1a@ar) ]+ | [ ohmar] )

<Cy(llel®llo + lzh Ol
S 2 S
* A7) | [ 1 0], )
tlellmon (|| [ wbar| o+ [ kead]

< C3C(|lI2l2ll0,00- + l12lllo.00- + l[2llo,00,00_ ([10|21[5 4,0 + [l[0]3]l0.2))
< G30(|l|zl2llo,00- + [l1zl1llo.00- + I2ll0,00,00- (V]340 + [v]ls.2))
<C3C(112l2ll0,00_ + |l12]11l0,00_ + ||Z||0,oo,asz,(M2||U||§,Q +[[vlls.2))

< CsC([lzl2llo.0a- + lllzl1llo.0a- + lI2ll0.00.00_ (M?535 + B0))

< Ks(lllzlallo.00- + [l1z[1llo.00- + l[ll0,00.00-)-

Thus Lemma 4.7 is proved.

5 Boundary Estimates
In this section, we give the boundary estimates for the solution to (2.2)-(2.3). For ¢ =
(g1, ,qm) : 0Q_ — R™ set
qri = ei- (Vra)

forall 1 <1< m,1<i<3, where {ey, ez, e3} is the standard orthogonal basis of R3. Moreover,
we will use the following notations in this section:

ari; = ¢ - (Vrayr:)
forall 1 <l <m,1<14,5<3;
qTi = (QI\Tiv T an\Ti)
forall 1 <i < 3;
qTij = (QHTija T 7q1|Tij)

foralll1<i<m,1<1i,j5<3;

qu = (qulu o 7VTQ771)7
Via = (Vrayri, -, Vrars)
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forall 1 <1 <m, and
3 1 3 3 1
2 2
Via= (Vi Viam), [Vrdl = (Y lari?)", 193 = (3D lawl?) "
i=1 i=1 j=1
First, we have the following elementary facts:

Lemma 5.1 The tangential gradient NV has the following properties:

IVr(aq)| < |Vrallgl + al[Vrg|, Vye o, (5.1)

IVo(g-r)l < |Vrgllrl + [ql|Vor],  Vy e 00, (5.2)

[Vi(ag)| < [Viallgl + 2|Vral[Vrgl +a|[Vigl, VyeoQ-, (5.3)

IVr((vr - V)2)| < 2(|V| + |v]||[V7n|)|Vrz| + [v]|[VEz], YVye o, (5.4)

IVr((z- Vo) <|v|1|Vrz] + |z]|lv|2, Yy e oN_. (5.5)

Proof First we prove (5.1). By the multiplication formula of tangential gradient and

Minkowski inequality, one has

m

Vrlag)| = (3 Vr(aa)lt)’ (Zwm) + (X 1avraP)” = Vrald + el Vrdl,

=1 =1

which shows (5.1).
Next we prove (5.2). Due to

N

m

Z r(qirt) Z aVrr + Z rVrq (5.6)

=1 =1

and Cauchy inequality, one can obtain

V(g )| <D lallVerl + Y Inl[Vral

=1 =1

m 1 m 1 m 1 m 1

< (Z |QI|2) ’ (Z |VT7“1|2) T+ (Z |7"l|2) ’ (Z |VTQz|2) ’
=1 =1 =1 =1

= [Vrqllr| + lql[Vrr],

which is just (5.2).
To prove (5.3), we use Minkowski inequality, (5.2) and Cauchy inequality to get

1

Vi (aa) = (3 V3 (aa)?)”
=1

(zm: IVr( lvTa)|2)% + (i |VT(CLVTQl)|2)

=

=1 o
( 3 (IVrallVral) ) (zm:(MzIIVQTa)D?)%
=1 L
+(o0vralvra?) + (S tivha)?)’
=1 2

=|Viallgl + 2|Vral[ V| + |al|Vig|.
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Thus (5.3) follows.
Next, it follows from (5.3) and Minkowski inequality that

3

V(- V)2) = (3 1Vr(er - 9)2)1)”
=1

1
= (X IVrler - Vra)P)’
=1
3 1 3 1
< (Y IVrvelIVealP) + (X lorPIVEal?)
=1 =1
= |Vrur||Vrz| + |UT||V%Z| (5.7)

Moreover, (5.1) and (5.2) imply that

[Vror| < [Vro[ + [Vo((v - n)n)|
< |Vo| +|Vr(v-n)|+|v-n||Vrn]
< |Vo| + |Vru| + [v||[Vrn| + [v]|[Vrn|
< 2(|Vu| + |v||[Vn]). (5.8)

Then (5.4) follows from (5.7) and (5.8).
Finally, we prove (5.5). From (5.2) and Minkowski inequality, one obtains

N|=

M«

V(2 9)o)l = (3 IVe((z - V)u)l)

=1

w |l
ol

< (Do(Vr2lIVal + 2V Tul)?)
=1

w |l

1 3

< (X 1wrPvul?)” + (3 Ve val?)
=1 =1

= |Vrz||Vu| + |2|| VT V|

< Vrzlfolr + [2][v]2.

N|=

Hence (5.5) holds. So the proof of this lemma is complete.

Lemma 5.2 Suppose that z is a solution to (2.2)~(2.3). Then it holds that
1210, 9) < Cs1f17 (|2 + |Vrz]), Vye€ o0 (5.9)
for some positive constant Cs.
Proof Note that for any y € 9Q_,
(z-Vo=(v-V)z=((vr+ (n-v)n)-V)z = (vp-V)z+ fOnz.

Thus
fopz=((v-n)n-V)z=(v-V)z—(vr-V)z=(z-V)v— (vr-V)z.
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Hence one has
[fllOnz] < lzllvh + [vr]|Vr2| < |zl[vh + [0l Vrz],
which implies
02 < 117 (2ol + Jo]|Vr2]). (5.10)

It follows that

1
2

= (S9aP) < (S veap) + (Slouap)?
=1 =1 =1

= [Vrz| + |0n2| < |Vrz| + |17 (|2llvh + [0]|Vrz])
< |Vrzl + |f17H (2| M Bo + M Bo|V72|)
< s fI7H(l2] + [Vr2]),

which leads to (5.9) with Cs = MGy + || f||co-

Lemma 5.3 Assume that z is a solution to problem (2.2)—(2.3). Then
1212(0, ) < Cel fI7° (12| + [Vr2l) + Col /172 (|2]Jv]2 + [VT2l), Yy €09 (5.11)

for some positive constant Cg.

Proof It follows from (5.4), (5.5), the proofs of (5.7) and (5.10), and (5.10) that

|fV1On2] < [V (fOnz)| + V1 f]|0n2]
< |Vr(z-V)v| 4+ |Vr(vr - V)z| + My|0p 2]
< |Vrz||Vo| + |2]|Ve V| 4 [V rur||Vrz| + |vr||VEz| + My|0,2|
< [Vrzlloly + [2]|v]2 + Ms|Vrz| + [v][ V2| + May|9nz]
< |zlJvla + Mg|VFz| + Mg| f| 1 (|2] + [Vrz]),

where one has used the estimates

IVrf| =|Vrn-vo| < [Vrn|lve| + Vvl < [Vrn|lvel + |vo|i < My,
[Vrur| = Vool + Vo (fn)] < ol + Vo fl + [ fI[Ven| < Jvli + My + [ fl|[Vrn| < Ms.

Hence
[Vronz| < Mzl f|7 (2] |v]2 + |VE2]) + M7|f]72(|2] + |[V72]). (5.12)
Note that
Vrz; = Vo((ei - V)z) = Vo((eir - V)z) + V(0 2).
We obtain

\Vrzi| < |[Vr(eir - Vz)| 4+ [V (nion?)|
< |\Vreir||Vrz| + leir||Vaz| 4 Vil |0nz| + |n| |V onz].
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Hence

(Srrat)! < (3 mreatrons)’ (Z|61T| v3p)*
=t i=1
3 1

. 2 ‘
+ (; |VTm|2|(9nz|2> + (; |nl|2|vTanZ|2>
’ 3
=19l (3 rer ) + 9213 ferl?)
=1 pt

+ |0nz| (i |VT”z'|2) fy V02| (i |ni|2) :
=1 i=1

< Mg(|Vrz| + V32| + |0nz| + [V 70,2]). (5.13)

N|=

By (4.1), it holds that

fanz\i =f(n- V)z“
=((v-n)n-V)z;
= (v-V)z; — (vr - V)2
= (2-V)v; + (2; - V)v = (v); - V)z = (vr - V)2,

which implies

| Fl10nz1i] < [(2 - V)| + (215 - V)v| + [(vgi - V)2| + [(vr - V)24
< lzllvjil + [zpallvle + vl 21 + [z [V 2]

Moreover, it follows from Minkowski inequality that

|f|(Z|a ) < (2Pl + (3 ulohlt)
=1 i=1
3

3 3
+ (S toul1eR)” + (X ler PV

=1 i=1

w

N|=

3
= [2llvlz + [olslzly + [=lulels + forl (Y 1Vr2:f?)

i=1
3 1
2
§|z||v|2+M9(|z|1+ (ZWTZIZ-P) ) (5.14)
i=1
Therefore, by Minkowski inequality, (5.9), (5.10) and (5.12)—(5.14), we have
3 3 3 1 3 3 1
2 2
|212(0, ) (ZZWZM | ) (ZZWTZMQ) + (ZZ|anZui|2)
=1 i=1 =1 i=1 =1 i=1

3 1 3 1
= (Z |VTZ|1'|2) + (Z |3n2|i|2>

i=1 i=1
< Mol fI7H (V2] + V32| +10p2] + [V 1dp2| + [2]0]2 + |2]1)
< Golf173(I2] + [Vr2)) + Col FI72(I2l[v]2 + [VE2)).
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Lemma 5.4 Let z be a solution to (2.2)—(2.3). Then the following estimates hold:

12010, 9) <Cr|fI7 (la] + o] + [Vral + Vb)), Vyed, (5.16)
1202(0,y) <C7|f1*(lal + [b] + [Vral + Vb))
+ Co | fI2(IV7al + V76| + (Ja] + [B)|v]2), Yy € dQ-. (5.17)
Proof Set

C7r = 2(Cs + Cg + 1) (M52 + MBy + 1).
By (2.1), (2.3) and (3.2), one has
121(0,y) < lallv] + [b < MBola| + |b| < Crlal +[b], Vy e Q.
Then (5.15) holds. It follows from (2.1), (2.3), (3.2) and (5.1) that

|VTZ| < |VT(0/U)| + |VTb|
< |Vrallv] + |a||v]1 + |Vrb]|
< (MBo 4+ 1)(IVral + |a] + [V1b]).

Hence, by (5.9), one has

12]1(0,y) < Cs|f| 1 (|z| + |Vr2|)
< Cs|f|"H (M Bola| + b + (MBo + 1)(|Vral + |a| + |Vrd|))
< Cr(lal + [b| + |Vral + |Vrb|)

for all y € 9Q_, which shows (5.16). Due to (2.1), (2.3), (3.2) and (5.3), one can obtain

V72| < [V (av)| + [V
< |VFa||lv] + 2|Vral|[Vrv| + |a]|[V3v| + |[V3b|
< |VZallv| + 2|Vralv]y + |a||[VEv| + | V2|
< MBo(IVZal + 2|Vral) + |allv]z + [VZD.
Then, by (5.11), we have
12120, y) < CslfI72(12] + [Vrzl) + Csl f172(|2lJv]2 + | V72])
< Gl f17* (M Bolal + [b] + (Mo + 1)(IVral + a| + [Vb]))
+ Cs|f12((MBolal + b])|v]2 + M Bo(|V7al + 2[Vral) + |al|v]z + [V7b])
< CrlfI72(lal + b + [Vra| + [V2b]) + Co| fI72(IVFal + [VZb] + (la] + [b])|v]2),

where we have used the fact that
[ flloo < llvoll < Mol < M fo.

So the proof of this lemma is complete.

Based on these estimates, we have the following desired boundary estimates.
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Lemma 5.5 Suppose that v € vo+V, with v < yy. Let z be a solution to (2.2)(2.3).
the following estimates hold:

[2ll0.00- < Cs(llallo.oa- + 10|

[Zll0.00.00- < Cs(llall + bl),

(

(

O,('?Qf)a

I12[1ll0,00_ < Cs(lla] + [[o]]),
0,00_ < Cs(|lall + ||b]).

12121

Proof Set
Cs = C7(M?B5 + MpBy + 1).
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Then

Then (5.18) and (5.20) are easily obtained from (5.15) and (5.16). It follows from (5.15) that

[12]l0,00,00_ < Crllallo,co,00_ + |16]l0,00,00_
< Crll 1% Nlall + (11110l
< Cr M55 |al| + M2 B3 0|
< Cs([[all + [b[])-

Then (5.19) holds. Finally, by (2.1), (3.2) and (5.17) one can obtain

[zl2llo,00_ < Cz(llall + 16I) (1 + [[[v]2]l0,00_)
< Crz([lall + oI (1 + [[v]l2,00)
(1+ Mvlls,0)

< Cr(L+ MpBo)(l[all + llb])

( )
( )
< Cr(llall + llol))
( (
< Gs(llall + l1ol),

which proves (5.21). Thus Lemma 5.5 is proved.

6 Proof of Lemmas 2.2 and 2.3

Based on the preparations in previous two sections, we are now ready to prove Lemmas 2.2

and 2.3. We start with the proof of Lemma 2.2.

Proof of Lemma 2.2 It follows from Lemmas 4.7 and 5.5 that
Izll0.0 < CiC|lzllo,00_ < C1CCs(|lallo,oa_ + |[bllo,oa_)-

Hence (2.4) holds.
Applying Lemmas 4.7 and 5.5 again shows that

[2ll2,0 < C1C| 20,00 + Ka(l[|z[1]l0,00- + [|2]l0,00,00)
+ K5(|||z]2ll0,00_ + llzl1ll0,00_ + l|2]l0,00,00_)
<CiC(Cs(llallo,oa- + [[bllo,00-)) + 2K4Cs([lal| + [[b]]) + 3K5Cs({[all + [|b])
< Cs(CCOLMP B + 2K4 4 3K5)(|lall + [1b])),

which implies (2.5).
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y (4.3), (1.11), Sobolev’s embedding theorem and Sobolev’s trace theorem (see (2.1)), we
have

11210, y(- Dllo.e < CI[21(0, y)llo,00-
< Clfall[v]llo,00-
< Cllalloo I [¥]llo,
< CMPllalllI[v]llr.q-

It follows from (4.2) and Sobolev’s embedding theorem that

H/ (Al (D) de]

< CHlAv(1 Il llo.g < CllAV® [l [[I]l1llo.e < CM | AV |20l ]Il
/| AvD) Nd H
| [ tena e nar,
< OlRlA D i lo.e < CllllloasllAv@llose < CM? )]0 40D |20.
Combining these estimates with Lemma 4.4 and (2.5) leads to
I(Av™) — Av)(s) 0.0

<Ci(IEOa+ | [ Ga®ipmar] + ] [delia® e )
0,Q 0,02
<@ &lalllvlle + OMI A gl o+ Ml ol 40O 0)

< Co(CMPB5 + OM (M + 1)Cs(COLM? 85 + 2K + 3K5))(Jlall + 6D [[2][].0.
which implies (2.6).
We now turn to the proof of Lemma 2.3.

Proof of Lemma 2.3 Due to (1.8), it holds that
x (bxn)=(n-n)b—(n-b)n="o.

This together with (2.3) yields
z=av+nx (bxn).

Hence
vxz=vx(nx(bxn)=@w-(bxn)n—(v-n)bxn)=(v-(bxn))n—(fb) xn. (6.1)
It follows from (2.2), (2.11) and dive = 0 that
curl (v X z) = vdiv z.
This together with (1.9) implies

. o 1
fdivz=(n-v)divz=n-curl (v x z) = llnioAS/(vxz) dl

1 .
=t [0 <)t = i A [i0) ar = aiv () =
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where S is a smooth surface lying in 9Q2_ with smooth boundary I. Thus we have

divz=0, ondQ_. (6.2)
Note that
3 3 3 3
div ((v-V)z) = Z Di(ZUijzi) = ZZ D;ivjDjz; + (v - V)div 2.
i=1 j=1 i=1 j=1

This together with (2.2) implies
(v-V)divz = (z-V)dive =0, z €.

Hence div z is a constant on the stream line of v. It follows from this and (6.2) that divz = 0,
x € €. So the proof of Lemma 2.3 is completed.
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