
Chin. Ann. Math.

30B(6), 2009, 831–844
DOI: 10.1007/s11401-009-0178-2

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2009

Approximating Stationary Statistical Properties∗∗

Xiaoming WANG∗

(Dedicated to Professor Andrew Majda on the Occasion of

his 60th Birthday with Admiration and Friendship)

Abstract It is well-known that physical laws for large chaotic dynamical systems are
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and natural criterions on numerical methods (temporal and spatial discretization) that are
able to capture the stationary statistical properties of the underlying dissipative chaotic
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1 Introduction

Many dynamical systems arising in physical applications possess very complex behavior with

abundant instability and sensitive dependence on initial data and parameters (see [2, 23, 33]).

The complex/chaotic/turbulent behaviors are not necessarily related to the possible loss of

regularity of the solution to the underlying equation (say the three dimensional Navier-Stokes

equations). Even the simple logistic map T (x) = 4x(1 − x) on the unit interval, the Lorenz 63

and Lorenz 96 model possess intrinsic chaotic behavior which renders approximation of single

trajectory extremely difficult over a long time. On the other hand, it is well-known that the

statistical properties of these kind of systems are much more important, physically relevant

and stable than single trajectories (see [10, 18, 20, 24, 25, 36]). Indeed, much of the classical

turbulence theories are formulated in statistical forms (via spatial and temporal averages), for

instance, the famous Kolmogorov U3

L
scaling law of the energy dissipation rate per unit mass

as well as the Kolmogorov k−
5

3 energy spectrum in the inertial range in three dimensional

homogeneous isotropic turbulence (see [10, 11, 25]).
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Therefore, for complex physical processes, due to the intrinsic stochasticity, it is necessary

to consider statistical properties (averaged quantities) of the system instead of properties of

individual orbit (see, for instance, [10, 11, 20, 24, 25, 36]). Then it is obvious that we need

probability measures on the phase space that respects the dynamics in order to discuss statistical

properties (statistical averages).

For a given abstract autonomous continuous in time dynamical system determined by a

semi-group {S(t), t ≥ 0} on a separable metric space H , we recall that if the system reaches a

statistical equilibrium in the sense that the statistics are time independent (stationary statistical

properties), the probability measure µ on H that describes the stationary statistical properties

can be characterized via either the strong (pull-back) or weak (push-forward) formulation (see

[10, 20, 24, 36, 37]).

Definition 1.1 (Invariant Measure (Stationary Statistical Solution)) Let {S(t), t ≥ 0} be

a continuous semi-group on a metric space H which generates a dynamical system on H. A

Borel probability measure µ on H is called an invariant measure (stationary statistical solution)

of the dynamical system if

µ(E) = µ(S−1(t)(E)), ∀ t ≥ 0, ∀E ∈ B(H), (1.1)

where B(H) represents the σ-algebra of all Borel sets on H. Equivalently, the invariant measure

µ can be characterized through the following push-forward weak invariance formulation
∫

H

Φ(u)dµ(u) =

∫

H

Φ(S(t)u)dµ(u), ∀ t ≥ 0, (1.2)

for all bounded continuous test functionals Φ.

Invariant measure (stationary statistical solution) for a discrete dynamical system generated

by a map Sdiscrete on a metric space H is defined in a similar fashion with the continuous time

t replaced by discrete time n = 0, 1, 2, · · · .

Another popular object utilized below associated with long time behavior of a dissipative

dynamical system is the global attractor. Recall that a compact set A is called the global

attractor of the dynamical system if it is invariant and attracts all bounded sets in the phase

space H (see [10, 13, 33]).

A dynamical system is called dissipative if it possesses a global attractor. It is easy to see,

thanks to the invariance and the attracting property, that the global attractor, when it exists,

is unique (see [13, 33]). The reader is cautioned that our definition of dissipativity may be

slightly different (weaker) from the traditional notation (see [13, 33]).

We are usually interested in
∫

H
Φ(u)dµ(u) (statistical average) for various test functionals

Φ. These averaged quantities are also called observables in physics literatures. One approach to

estimate these observables is to estimate the invariant measure µ directly. This is the so-called

directly approach (see [20, 30]). If the phase space is a finite dimensional Euclidean space, one

can try to approximate the probability density function (pdf) p associated with the invariant

measure by solving the Liouville equation (see [20])

∂

∂t
p(u, t) + ∇ · (F (u)p(u, t)) = 0, (1.3)

where the forcing term F (u) defines the dynamical system in the sense that d
dt
S(t)u = F (S(t)u).

However, computing the invariant measure (or the associated pdf in the finite dimensional case)
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is usually very hard and costly if the spatial dimension is high. One of the commonly used

alternative methods in calculating the statistical quantity is to substitute spatial average by

long time average under Boltzmann’s assumption of ergodicity (see [10, 20, 24, 37]),

∫

H

Φ(u)dµ(u) = lim
t→∞

1

t

∫ t

0

Φ(S(s)u)ds.

This is usually termed indirect method. Although the above relationship is true for each ergodic

invariant measure µ and almost all initial data with respect to µ, the relationship is in general

false for non-ergodic invariant measure since the long time average which exists for almost all

initial data (with respect to the given invariant measure) may depend on the initial data and

hence may not be a constant (the spatial average) (see [20, 37]). One way to circumvent this

difficulty is to replace the long time limit by Banach (generalized) limits (see [21, §4.2]), which

are bounded linear functionals on the space of bounded functions that agree with the usual

long time limit on those functions whenever the long time limit exists. One may show via the

so-called Bogliubov-Krylov argument that these generalized long time averages over trajectory

lead to invariant measures (may depend on the chosen Banach limit and initial datum u) of the

system for appropriate dissipative dynamical systems, and the spatial and temporal averages

are equivalent (see, for instance, [10, §4.3] or [40, Theorem 2]).

Due to the presumed complexity of the dynamics, the physically interesting stationary

statistical properties need to be calculated using numerical methods in generic case. Even under

the ergodicity assumption, it is not at all clear that classical numerical schemes which provide

accurate approximation on finite time interval will remain meaningful for stationary statistical

properties (long time properties) since small error will be amplified and accumulated over long

time except in the case that the underlying dynamics is asymptotically stable (see [12, 14, 19])

where statistical approach is not necessary since there is no chaos. Indeed, let Sk be the solution

operator of a one-step scheme with time step k = ∆t and assume that the scheme is of order

m so that the following type of error estimate holds: distH(S(nk)u, Sn
k u) ≤ C exp(αnk)km

where C > 0 and α are constants, which would induce on a time interval [0, T ], an a priori

error bound on the long time average of the order of km exp(αT )−exp(αk)
exp(αk)−1 which diverges for

positive α as T approaches infinity. The positivity of α follows from the existence of at least

one positive Lyapunov exponent (the existence of chaotic behavior). Even if the long time

averages of the scheme converge, the limit is not necessarily that of the original dynamical

system under approximation since the two limits of letting the time interval go to infinity and

the limit of letting the time step approach zero are not commutative in general. Extra work

is needed to verify that the limit is the desired one. Addressing issues like this is of great

importance in many real life applications such as numerical study of climate change since the

climate is customary estimated via long time integration of the system. Therefore, it is of

great importance and a challenge to search for numerical methods that are able to capture

stationary statistical properties of infinite dimensional complex dynamical system. We will

focus on dissipative systems and discuss both temporal and spatial discretisation.

There have been a lot of work in terms of approximating statistical properties of finite

dimensional dynamical systems (see [30] for a recent survey on the finite dimensional case, and

[31] for general questions related to approximating finite dimensional dynamical systems). Of

course, infinite dimensional dynamical systems may be approximated by finite dimensional ones
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(spatial discretisation of PDE for example). However, the associated question of convergence

of statistical properties for these approximation has not been addressed in the literature so far

(see Theorem 2.2 below for the case of dissipative system).

On the other hand, there are few results on the convergence of stationary statistical prop-

erties of numerical schemes for chaotic PDEs (see [4, 5, 41]), although there have been a lot of

work on temporal/spatial approximation of dissipative dynamical systems, such as the two di-

mensional incompressible Navier-Stokes system and the one-dimensional Kuramoto-Sivashinsky

equation (see [8, 9, 12, 15, 17, 28, 29, 34] among others). These authors were mostly interested

in the long time stability of the scheme in the sense of deriving uniform in time bounds on

the scheme (sometimes bound in the phase space H only which is not sufficient for uniform

dissipativity, although it may be sufficient for the convergence of the global attractors), and

approximation of various invariant sets (such as steady states, time periodic orbits, global at-

tractors, inertial manifolds, etc., see [15, 16, 28, 31–33] and the references therein). We would

like to point out that the convergence of invariant sets and the convergence of stationary statis-

tical properties are two related but very different issues associated with the long time behavior.

It is easy to construct two dynamical systems with exactly the same global attractor or inertial

manifold but with totally different dynamics or stationary statistical properties.

It seems that the common theme of algorithms that are good at approximating long time be-

havior is the faithfulness to the original continuous dynamical system. In the finite dimensional

conservative Hamiltonian system case, the key is to preserve the geometric structure, which

implies the conservation of a slightly perturbed Hamiltonian and other conserved quantities,

so that the scheme is symplectic (see [22, 27] and the references therein). Indeed, we can show

that the preservation of the energy/Hamiltonian and the finite time convergence of the scheme

imply the convergence of stationary statistical properties (see Proposition 2.1 below) provided

that all the energy surfaces are bounded. In the case of dissipative dynamical system, the key

ingredient in the convergence of stationary statistical properties is again the faithfulness to

the original system in the sense that the numerical scheme must be uniformly dissipative for

small enough time step and/or spatial mesh size, and the scheme must converge on any finite

time interval (see the main theorems in the next section for more precise statement). These

criterions seem natural and the proof of our main results are straightforward. The criterion

must be verified in each application which itself may be nontrivial (this is a part of the design

of the algorithms). We hope that the main results here will provide clear guideline on how

to construct schemes that are able to capture the invariant measures or stationary statistical

properties of infinite dimensional dynamical systems. Many questions, such as convergence

rate, efficient approximation and selection of physically relevant ones, remain open.

The author learned much of the statistical way of thinking through collaborative work with

Andrew Majda. Hence it seems fit to dedicate this work to Andy on this special occasion with

sincere gratitude.

The rest of the manuscript is organized as follows. In Section 2, we present the main results,

namely the convergence of stationary statistical properties of numerical schemes (both temporal

and spatial discretization) for dissipative infinite dimensional system. In Section 3, we discuss

an application of the main results to the infinite Prandtl number model for convection and the

barotropic quasi-geosrophic equation with damping and forcing. We then provide conclusion

and remarks in Section 4.
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2 Main Results

Here we present our main results, namely, uniform dissipativity plus finite time uniform

convergence imply convergence of the stationary statistical properties/invariant measures.

Throughout this section, all semigroups are assumed to be continuous in the sense that

S(t), t ≥ 0, SN (t), t ≥ 0 and Sk are continuous operators on H .

We first recall the following convergence result on temporal approximation (see [41]).

Theorem 2.1 (Temporal Approximation) Let {S(t), t ≥ 0} be a continuous semi-group

on a separable Hilbert space H which generates a continuous dissipative dynamical system in

the sense of possessing a compact global attractor A. Let {Sk, 0 < k ≤ k0} be a family of

continuous maps on H which generates a family of discrete dissipative dynamical system (with

global attractor Ak). Suppose that the following three conditions are satisfied.

(1) (Uniform Dissipativity) There exists a k1 ∈ (0, k0) such that {Sk, 0 < k ≤ k1} is

uniformly dissipative in the sense that

K =
⋃

0<k≤k1

Ak (2.1)

is pre-compact in H.

(2) (Uniform Convergence on the Unit Time Interval) Sk uniformly converges to S on

the unit time interval (modulo an initial layer) and uniformly for initial data from the global

attractor of Sk in the sense that for any t0 ∈ (0, 1),

lim
k→0

sup
u∈Ak

nk∈[t0,1]

‖Sn
k u − S(nk)u‖H = 0. (2.2)

(3) (Uniform Continuity of the Continuous System) {S(t), t ≥ 0} is uniformly continuous

on K on the unit time interval in the sense that for any T ∗ ∈ [0, 1],

lim
t→T∗

sup
u∈K

‖S(t)u− S(T ∗)u‖H = 0. (2.3)

Then the invariant measures of the discrete dynamical system {Sk, 0 < k ≤ k0} converge to

invariant measures of the continuous dynamical system S. More precisely, let µk ∈ IMk where

IMk denotes the set of all invariant measures of Sk. There must exist a subsequence, still

denoted by {µk}, and µ ∈ IM (an invariant measure of S(t)), such that µk weakly converges

to µ, i.e.,

µk ⇀ µ, as k → 0. (2.4)

Moreover, extremal statistics converge in upper-semi-continuous fashion in the sense that for

any bounded continuous functional Φ on the phase space H, there exist ergodic invariant mea-

sures µk ∈ IMk and an ergodic invariant measure µ ∈ IM, such that

sup
u0∈H

lim sup
N→∞

1

N

N∑

n=1

Φ(Sn
k (u0)) =

∫

H

Φ(u)dµk(u)

= lim
N→∞

1

N

N∑

n=1

Φ(Sn
k (v0)), a.s. w.r.t. µk, (2.5)
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sup
u0∈H

lim sup
T∗→∞

1

T ∗

∫ T∗

0

Φ(S(t)u0)dt =

∫

H

Φ(u)dµ(u)

= lim
T∗→∞

1

T ∗

∫ T∗

0

Φ(S(t)v0)dt, a.s. w.r.t. µ, (2.6)

lim sup
k→0

sup
u0∈H

lim sup
N→∞

1

N

N∑

n=1

Φ(Sn
k (u0)) ≤ sup

u0∈H

lim sup
T∗→∞

1

T ∗

∫ T∗

0

Φ(S(t)u0)dt. (2.7)

The proof of this result is relatively straightforward. Roughly speaking, the uniform dissi-

pativity ensures the tightness of the set of invariant measures {µk} while the unit time uniform

convergence and the uniform continuity of the underlying system ensure that the limit is an

invariant measure of the underlying dynamical system. The interested reader is referred to [41]

for the details of this result and a related result on the convergence of global attractors.

Remark 2.1 In general, we only have an inequality in (2.7) rigorously although the equality

is expected for most system with enough mixing, such as the infinite Prandtl number model

for convection at large Rayleigh number (yet to be proved). However, if the system under

approximation is uniquely ergodic, i.e., there exists only one invariant measure, the equality

holds. This follows easily from the proof and the fact that the unique invariant measure must

be ergodic (since it is an extremal point). This also covers the case when the system has only

one ergodic invariant measure, since in this case the set of all invariant measures must consist of

one element only as all extremal points of the set must be ergodic (see [37, 40]). In the generic

case of a system with multiple ergodic invariant measures, it seems mathematically difficult to

separate the physically relevant ergodic invariant measures from the others, due to the lack of

Lebesgue measure in this infinite dimensional setting. One idea is to consider their stability

under random perturbation. But the concept of generic noise in this infinite dimensional setting

is also up to debate.

In application, the time discrete dynamical systems {Sk} are usually generated by one time

step discretization (numerical scheme) with time step k. In other words, un+1 = Sk(un) is the

solution to the numerical scheme. The uniform dissipativity of the numerical scheme is custom-

ary established via the existence of a uniform (in time step) absorbing ball in another separable

Hilbert space V which is compactly imbedded in H in the case of strongly dissipative system

(see the next section for an example). However, this may not be feasible for weakly dissipative

systems, such as the Darcy-Boussinesq system for convection in fluid saturated porous media,

or weakly damped driven Schrödinger equation. The finite time uniform convergence comes

with classical numerical analysis for reasonable schemes (see next section for an example). The

uniform continuity of the underlying continuous dynamical system is also easily verified for

reasonable systems.

Notice that boundedness implies pre-compactness in the finite dimensional case. An easy

consequence of the result above is the following convergence result for finite dimensional con-

servative system.

Proposition 2.1 Let {S(t)} be a continuous semi-group on a finite dimensional Rie-

mannian manifold M
N which conserves a continuous energy E. We also assume that all con-

stant energy surfaces EC := {u ∈ M
N | E(u) = C} are bounded. Let {Sk, 0 < k ≤ k0} be a

family of continuous maps on H = M
N which generates a family of discrete dynamical systems.
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Suppose that the following three conditions are satisfied.

(1) (Conservative of the Scheme) Sk conserves an approximate energy Ek such that

Ek(u) → E(u), ∀u ∈ M
N .

(2) (Uniform Conservancy) There exists a k1 ∈ (0, k0) such that following set is bounded in

M
N for all C,

KC :=
⋃

0<k≤k1

Ek,C , Ek,C := {u ∈ M
N | Ek(u) = C}. (2.8)

(3) (Uniform Convergence on the Unit Time Interval) Sk uniformly converges to S on the

unit time interval (modulo an initial layer) and uniformly for initial data from any bounded ball

from M
N ,

lim
k→0

sup
u∈BR(MN )
nk∈[t0,1]

distM (Sn
k u, S(nk)u) = 0, ∀ t0 ∈ (0, 1). (2.9)

Then the invariant measures of the discrete dynamical system {Sk, 0 < k ≤ k0} converge to

invariant measures of the continuous dynamical system S. More precisely, let µk ∈ IMC
k where

IMC
k denotes the set of all invariant measures of Sk with energy level C. There must exist a

subsequence, still denoted by {µk}, and µ ∈ IMC (an invariant measure of S(t) with energy

level C), such that µk weakly converges to µ, i.e.,

µk ⇀ µ, as k → 0. (2.10)

Proof Since the discrete dynamical system Sk conserves approximate energy Ek (see con-

dition (1)), we see that the Sk must possess invariant measures for each nontrivial energy level

(Ek,C 6= ∅) via a Bogliubov-Krylov argument. Let µk be a microcanonical invariant measure of

Sk with energy level C, where C is a fixed arbitrary constant. Thanks to the uniform conser-

vancy assumption (2), we see that {µk, k ∈ (0, k1)} is tight in the space of all Borel probability

measures on H thanks to Prokhorov’s theorem (see [1, 10, 21]), since

supp(µk) ⊂ Ek,C ⊂ KC , ∀ k ∈ (0, k1)

is pre-compact. Hence it must contain a weakly convergent subsequence (still denoted by {µk})

which weakly converges to a Borel probability measure µ on H , i.e.,

∫

H

ϕ(u)dµk(u) →

∫

H

ϕ(u)dµ(u), as k → 0,

for all bounded and continuous functionals ϕ on H = M
N .

It is easy to see that µ must be supported on EC . Indeed, if this were not true, we would

have a δ > 0 neighborhood of EC such that there exists uk ∈ Ek,C with distM (uk, EC) ≥ δ,

∀ k. Without loss of generality, we may assume uk → u∞ since uk ∈ KC is pre-compact. Now

E(u∞) = lim
k→0

E(uk) = lim
k→0

Ek(uk) + lim
k→0

(E(uk) − Ek(uk)) = C,

where we have utilized the uniform convergence of Ek to E on the pre-compact set KC . This

implies u∞ ∈ EC , which is a contradiction.

Our goal now is to show that µ is invariant under S(t). For this purpose, we fix a T ∗ ∈ (0, 1]

and let nk = ⌊T∗

k
⌋ be the floor of T∗

k

(
the largest integer dominated by T∗

k

)
, and let ϕ be any
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smooth (C1) test functional (observable). We have
∣∣∣
∫

H

(ϕ(S(T ∗)u) − ϕ(u))dµ(u)
∣∣∣ = lim

k→0

∣∣∣
∫

H

(ϕ(S(T ∗)u) − ϕ(u))dµk(u)
∣∣∣

≤ lim
k→0

∣∣∣
∫

H

(ϕ(S(T ∗)u) − ϕ(S(nkk)u))dµk(u)
∣∣∣

+ lim
k→0

∣∣∣
∫

H

(ϕ(S(nkk)u) − ϕ(u))dµk(u)
∣∣∣

≤ lim
k→0

sup
u∈KC

‖ϕ′(u)‖ sup
u∈KC

distM (S(T ∗)u, S(nkk)u)

+ lim
k→0

∣∣∣
∫

H

(ϕ(S(nkk)u) − ϕ(Snk

k u))dµk(u)
∣∣∣

≤ lim
k→0

sup
u∈KC

‖ϕ′(u)‖ sup
u∈KC

distM (Snk

k u, S(nkk)u)

≤ lim
k→0

sup
u∈KC

‖ϕ′(u)‖ sup
u∈KC

nk∈[ T
∗

2
,T∗]

distM (Sn
k u, S(nk)u)

= 0,

where we have utilized the continuity of ϕ and ϕ ◦ S, and the weak convergence in the first

step, the triangle inequality in the second step, the mean value theorem and the invariance of

µk under Sk in the third step, the uniform continuity of the solution semigroup S on EC × [0, 1]

and the mean value theorem in the fourth step, and condition (3) in the last step.

This is exactly the weak invariance (1.2) for the smooth (C1) test functional (observable)

with T ∗ ∈ (0, 1]. A general bounded continuous test functional ϕ can be approximated by

smooth Friedrich’s mollifier as usual. This proves the short time weak invariance (1.2) for any

bounded continuous test functional φ and T ∗ ∈ (0, 1].

Now for a general T ∗∗ > 1, there exists a unique positive integer n and T∗ ∈ (0, 1] such that

T ∗∗ = n+ T∗. Hence
∫

H

ϕ(S(T ∗∗)u)dµ(u) =

∫

H

ϕ(Sn(1)S(T∗)u)dµ(u) =

∫

H

ϕ(S(T∗)u)dµ(u) =

∫

H

ϕ(u)dµ(u),

where we have utilized the semi-group property of S(t), the strong continuity of S(t) and the

short time weak invariance that we proved above with T ∗ = 1 n times and T ∗ = T∗ once.

This completes the proof of the theorem.

Next, we consider spatial discretization. The essential idea is similar: be faithful to the

original system. In the dissipative case, retain dissipativity. We have the following result which

may be suitable for spectral and finite element type discretization but would require more work

for finite difference type approximation.

Theorem 2.2 (Spatial Discretisation) Let {S(t), t ≥ 0} be a dissipative dynamical system

on a Hilbert space H with global attractor A. Let {SN (t), t ≥ 0} be a family of dissipative

dynamical systems on Hilbert spaces HN with global attractors AN ⊂ HN . Suppose that the

following three assumptions are satisfied:

(1) (Embedding) There is a continuous embedding of EN : HN →֒ H.

(2) (Uniform Dissipativity)

K =
⋃

∞>N≥N0

EN (AN )
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is pre-compact in H.

(3) (Finite Time Uniform Convergence) For any t ∈ (0, 1], we have

lim
N→∞

sup
u∈AN

‖EN (SN (t)u) − S(t)(ENu)‖ → 0.

Then for any sequence of invariant measures µN ∈ IMN of the dynamical system SN , there

must exist a subsequence, still denoted by {µN}, and an invariant measure µ ∈ IM of the S(t)

such that

E∗
NµN ⇀ µ,

where E∗
N is the lift operator induced by the continuous embedding EN in the sense that for any

bounded continuous test functional ϕ on H,

∫

H

ϕ(u)d(E∗
NµN )(u) :=

∫

HN

ϕ(EN (u))dµN (u). (2.11)

Proof Thanks to the definition of the lift of invariant measures of SN (2.11), the continuity

of the embedding operator EN (see assumption (1)), the uniform dissipativity assumption

(2), and the Kakutani-Riesz representation theorem (see [21]), we see that {E∗
NµN} must be

a sequence of Borel probability measures on H . Moreover, this sequence must be tight by

Prokhorov’s theorem (see [1, 21]) since the support of E∗
NµN must be included in the compact

set K. Hence it must have a convergent subsequence, still denoted by {E∗
NµN}, and a Borel

probability measure µ on H such that

E∗
NµN ⇀ µ.

Our goal is to show that µ ∈ IM, i.e., it is invariant under S(t).

For each t ∈ (0, 1] and each C1 test functional ϕ with compact support, we have

∣∣∣
∫

H

(ϕ(S(t)u) − ϕ(u))dµ(u)
∣∣∣ = lim

N→∞

∣∣∣
∫

HN

(ϕ(S(t)ENu) − ϕ(ENu))dµN (u)
∣∣∣

≤ lim
N→∞

∣∣∣
∫

HN

(ϕ(S(t)ENu) − ϕ(ENSN (t)u))dµN (u)
∣∣∣

+ lim
N→∞

∣∣∣
∫

HN

(ϕ(ENSN (t)u) − ϕ(ENu))dµN (u)
∣∣∣

≤ lim
N→∞

sup
u∈H

‖ϕ′(u)‖ sup
u∈AN

‖S(t)ENu − ENSN (t)u‖

=0,

where we have utilized the weak convergence of E∗
NµN , the lift (2.11), and the continuity of ϕ

and ϕ◦S(t) in the first step, the triangle inequality in the second step, the mean value theorem,

the fact that µN is supported on AN , the invariance of µN under SN in the third step, the

finite time uniform convergence assumption (3) and the assumption that ϕ is C1 with compact

support in the last step. A general bounded continuous test functional ϕ can be approximated

by C1 test functional with compact support through classical finite dimensional approximation

and mollifier technique. The interested reader is referred to [10, 41] for more details. This proves

the weak invariance of µ for t ∈ (0, 1]. For a general time t, we decompose t as t = n+ t∗, where

n is a non-negative integer and t∗ ∈ (0, 1). We apply the semigroup property of S(t) and the
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weak invariance n times with t = 1 and one time with t = t∗. We deduce the weak invariance

for arbitrary time.

This ends the proof of the theorem.

In application, the spatial discrete dynamical systems {SN} are usually generated by spatial

discretization (numerical scheme, with finite dimensional phase spaceHN) of the original infinite

dimensional dynamical system (generated by a time-dependent PDE). In other words, SN(u)

is the solution to the numerical scheme. For the case of spectral or finite element discretisation,

the embedding operator can be taken as the natural inclusion operator but the case with finite

difference discretisation is more challenging. The uniform dissipativity of the numerical scheme

can be established via the existence of a uniform (in mesh size) absorbing ball in discrete

form in another separable Hilbert space V which is compactly imbedded in H in the case of

strongly dissipative system (see the next section for an example). Similar difficulty exists for

weakly dissipative systems just as in the temporal discretisation case. The finite time uniform

convergence comes with classical numerical analysis for reasonable schemes (see next section

for an example).

3 Application

3.1 Infinite Prandtl number model for convection

Here we illustrate an application of the main result on temporal approximation to the

following (non-dimensional) infinite Prandtl number model for convection (see [3, 6, 7, 35, 38,

39]):

∇p = ∆u + RakT, ∇ · u = 0, u|z=0,1 = 0, (3.1)

∂T

∂t
+ u · ∇T = ∆T, T |z=0 = 1, T |z=1 = 0, (3.2)

where u is the Eulerian velocity of the fluid, p represents the kinematic pressure of the fluid,

T is the temperature of the fluid, k is the unit vector in the z direction, Ra is the Rayleigh

number measuring the ratio of differential heating over overall dissipation, and we assume that

the fluids occupy the (non-dimensionalized) region Ω = [0, Lx]× [0, Ly]× [0, 1] with periodicity

imposed in the horizontal directions for simplicity.

Since the temperature field T satisfies inhomogeneous boundary conditions, it is mathemat-

ically convenient to consider a perturbative temperature field

θ = T − τ(z), τ(0) = 1, τ(1) = 0,

where τ(z) is an appropriate smooth fixed background temperature profile (see [6, 7, 39]).

This decomposition is also in accordance with the mean (τ) and fluctuation (θ) decomposition

commonly used in the study of turbulent flows.

The system can be also written in terms of the perturbative temperature field θ as

∂θ

∂t
+ RaA−1(kθ) · ∇θ + RaA−1(kθ)3τ

′(z) = ∆θ + τ ′′(z), θ|z=0,1 = 0,

where A denotes the Stokes operator with the associated boundary conditions and viscosity

one, and A−1(kθ)3 represents the third component (vertical velocity) of A−1(kθ).
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The phase space of the problem is set to be H = L2(Ω). We then propose the following

family of semi-implicit (linear) schemes for the infinite Prandtl number model

θn+1
k − θn

k

k
+RaA−1(kθn

k )·∇θn+1
k +RaA−1(k(λθn

k +(1−λ)θn+1))3τ
′(z) = ∆θn+1

k +τ ′′(z), (3.3)

where λ ∈ [0, 1] is a free parameter. It can be verified that the conditions in Theorem 2.1 are

satisfied for these schemes (see [4, 5, 41]), so that the stationary statistical properties of the

time discrete scheme converge to those of the infinite Prandtl number model as the time step

approaches zero.

3.2 Barotropic quasi-geostrophic equation

Here we consider an application of the spatial discretisation method to the following barotropic

quasi-geostrophic equation with dissipation and external forcing (see [24]):

∂q

∂t
+ ∇⊥ψ · ∇q = Dψ + f, (3.4)

q = −∆ψ + Fψ + βy, F ≥ 0, β > 0, (3.5)

D = −
k∑

j=1

dj(−∆)j , dj ≥ 0, ∀ j,
k∑

j=2

dj > 0. (3.6)

Here ψ(x, y; t) represents the stream-function of the barotropic flow, q is the potential vorticity,

F > 0 is the F -plane constant related to the stratification of the fluid, β > 0 is the beta-plane

constant, d1 is the Ekman damping coefficient, d2 is the eddy/Newtonian viscosity coefficient,

dj , j ≥ 3 are the coefficients of various hyper-viscosity, and f represents external forcing.

The phase space for the system is H = Ḣ1
per([0, 2π] × [0, 2π]), i.e. all H1 periodic functions

with period 2π in each direction and with average zero. The phase space can be characterized

easily via Fourier series as

Ḣ1
per([0, 2π] × [0, 2π]) :=

{
ψ =

∑

k 6=0

ψ̂keik·x
∣∣∣
∑

k

|k|2|ψ̂k|
2 <∞

}
.

It is obvious that Fourier spectral discretisation is the natural spatial discretisation for this

problem. We define the finite dimensional space

HN :=
{
ψN =

∑

N≥|k|2>0

ψ̂
k
eik·x

}
.

We also define the truncated dynamics on this finite dimensional space HN as

∂qN

∂t
+ PN (∇⊥ψN · ∇qN ) = DψN + PN (f), (3.7)

qN = −∆ψN + FψN + βy, (3.8)

where the projection operator PN is defined as

PN (ψ) =
∑

N≥|k|2>0

ψ̂keik·x, if ψ =
∑

k 6=0

ψ̂keik·x.

In this case, the embedding operator EN can be taken as the identity operator (natural inclu-

sion). The uniform convergence of the scheme on finite time interval as well as the uniform
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dissipativity of it are essentially the same as those of the two dimensional incompressible Navier-

Stokes equations and their spectral Galerkin approximation (see [32, 33]). In fact, one can show

the existence of an absorbing ball in Ḣ2
per which attracts all bounded sets in Ḣ1

per for the orig-

inal dynamical system and the truncated systems uniformly in the truncation number N . We

leave the detail to the interested reader. Therefore the stationary statistical properties of the

finite dimensional system converge to those of the barotropic quasi-geostrophic equation as the

truncation number N approaches infinity according to Theorem 2.2.

4 Conclusions and Remarks

We have presented simple and natural criterions on the convergence of stationary statistical

properties of temporal and spatial approximations of infinite dimensional dissipative dynamical

systems. The key ingredient that ensures the convergence of the invariant measures is the

faithfulness to the original system. In the case of dissipative systems under investigating, the

most important and natural assumption is the uniform dissipativity of the scheme. We have

also illustrated the application of the abstract results to the infinite Prandtl number model for

convection (temporal approximation) and the barotropic quasi-geostrophic equation (spatial

discretisation).

Despite the progress reported here, much remains to be done in terms of finding efficient

numerical methods that are able to capture the stationary statistical properties of infinite

dimensional dissipative dynamical systems.

(1) First, we should test and further validate our general approach on a few simple models

with known exact stationary statistical properties.

(2) For each application, we have to develop schemes that satisfy the postulated criterions.

In the temporal approximation case, fully implicit approach may not work since the scheme

may not generate a discrete dynamical system due to possible non-uniqueness of the solution

to the scheme (this is on top of the potential high computational cost associated with fully

implicit schemes). In the spatial approximation case, the finite difference approach may require

significant work.

(3) Many dissipative systems are small perturbation of conservative systems. What would

be the pros and cons of designing algorithms that are conservative for the conservative part

and dissipative for the dissipative part?

(4) Since we are interested in long time asymptotic statistical properties of large chaotic

dynamical systems, efficiency of the scheme is very important. The stability/dissipativity crite-

rion favors implicit approach while efficiency prefers explicit time stepping. How do we balance

the stability and efficiency?

(5) Related to efficiency, are there any efficient higher order schemes with guaranteed

convergence of the stationary statistical properties?

(6) Many applications involve disparate temporal and/or spatial scales. How do we develop

efficient schemes that take advantage of the separation of scales?

(7) We do not have a convergence rate here. It is perhaps not expected in general. Under

what circumstances, do we have convergence rate? Which scheme has better convergence rate?

How do we balance the accuracy and efficiency?

(8) The underlying physical system might have multiple invariant measures. How do we
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design numerical schemes that select the physically relevant ones? Would noise perturbation

work? What kind of noise perturbation works better?

(9) Many physical systems are under periodic or quasi-periodic influence of the environment.

How do we generalize the current theory to the non-autonomous case?

(10) We encounter uncertainty in many parameters and data of the underlying dynamical

system in application. How do we utilize the current theory to quantify the uncertainty in long

time statistics (the climate)? Would a combination with linear response/fluctuation dissipation

theory (FDT) be useful? Is there any implication to the study of model errors?

(11) Can we further develop this theory and combine it with fluctuation dissipation theory

to study climate change in climate models?

(12) Many physical models involve randomness. How do we generalize the current theory

to infinite dimensional dissipative random dynamical systems?
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