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Abstract According to the Ringel-Green theorem, the generic composition algebra of the

Hall algebra provides a realization of the positive part of the quantum group. Furthermore,

its Drinfeld double can be identified with the whole quantum group, in which the BGP-

reflection functors coincide with Lusztig’s symmetries. It is first asserted that the elements

corresponding to exceptional modules lie in the integral generic composition algebra, hence

in the integral form of the quantum group. Then it is proved that these elements lie in

the crystal basis up to a sign. Eventually, it is shown that the sign can be removed by the

geometric method. The results hold for any type of Cartan datum.
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1 Introduction

Let ∆ be a symmetrizable generalized Cartan matrix, or ∆ = (I, (−,−)) a Cartan datum in

the sense of Lusztig [6], and g the corresponding symmetrizable Kac-Moody algebra. We have

the Drinfeld-Jimbo quantized enveloping algebra, or the quantum group, U = Uq(g) attached to

the Cartan datum ∆. Lusztig gave it a series of important automorphisms, now called Lusztig’s

symmetries. By using Lusztig’s symmetries and the induced action of the braid group on U+,

Lusztig found an algebraic approach to construct the canonical basis of U+ in finite type. If

∆ is of infinite type, there are much more root vectors beyond the set obtained by using the

braid group action on Chevalley generators of U+. However, Lusztig’s geometric method by

using perverse sheaves and intersection cohomology to construct the canonical bases works for

general infinite type. A different algebraic approach due to Kashiwara works for arbitrary type.

He constructed the crystal basis and the global crystal basis (= canonical basis) of the negative

part U− of the quantum group. Roughly speaking, the crystal basis is a good basis of the

quantum group at q = 0.

Given a Cartan datum ∆, there is a finite dimensional hereditary k-algebra Λ to realize it,

where k is a finite field. Then we have the corresponding Hall algebra H (Λ). According to the

Ringel-Green theorem (see [5, 13]), the generic composition algebra C (∆) of H (Λ), precisely

of the Cartan datum ∆, provides a realization of the positive part U+ of the quantum group

corresponding to ∆. With the comultiplication of H (Λ) given by Green [5], it is natural to
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obtain a Hopf algebra structure of H (Λ) by adding a torus, and then to consider the Drinfeld

double of the Hall algebra (see [20]). Therefore, the Drinfeld double of the generic composition

algebra DC (∆) provides a realization of the whole U . This realization builds up a bridge

between the quantum groups and the representation theory of hereditary algebras. Especially,

it connects Lusztig’s symmetries with BGP-reflection functors (see [21]), so these two important

operators can be considered simultaneously.

In this article, we consider a special family of elements {〈uλ〉 | λ ∈ E} in the Hall algebra,

where E is the set of isomorphism classes of all exceptioal Λ-modules. These elements are much

more than the elements obtained by using the braid group action on Chevalley generators

of U+. From the work of [3, 22], we know that these elements lie in the generic composition

algebra DC (∆). Our first result asserts in Theorem 6.1 that each 〈uλ〉 lies in the integral generic

composition algebra CZ(∆), hence in the integral form of the positive part of the quantum group

U+
Z (by identifying DC (∆) with U).

The main goal of us is to relate the exceptional modules with Kashiwara’s crystal bases. For

convenience, we use the the crystal structure (L(∞), B(∞)) in U+ instead of in U−. Our main

result is (see Theorem 6.2) that the image of 〈uλ〉 in L(∞)/qL(∞) lies actually in the crystal

basis B(∞) up to a sign. In the last section, we remove the sign by comparing with Lusztig’s

geometric method. Therefore the image of 〈uλ〉 in L(∞)/qL(∞) always belongs to B(∞).

The organization of this paper is as follows. In Section 2, we review some basic facts of

quantum groups and crystal bases. Then the polarization, which will be called Kashiwara’s

pairing, is defined in the positive part of quantum groups. For the details, see [6, 11]. In

Section 3, we first give the definitions of Hall algebras and composition algebras. Following

[20], we concisely restate the Drinfeld double structure of Hall algebras. Also, we get some

important operators r′i in the Hall algebras. Then r′i is the same as the derivation operators

f ′
i when we identify the generic composition algebra with U+. The aim of Section 4 is to

obtain 〈uλ〉 corresponding to preprojective or preinjective modules from the simple modules,

after establishing the isomorphism between Lusztig’s symmetries and reflection functors. The

results come from [1, 17, 21]. Section 5 gives a review of an algorithm in [3]. This algorithm

comes from a result of Crawley-Boevey [2], to state that any exceptional module can be obtained

inductively from simple modules using braid group actions on exceptional sequences. The main

results will be stated in Section 6. In Section 7, we prove the first main result by a combination

of algorithms in Sections 4 and 5. Then in Section 8, we introduce Ringel’s pairing in U+, and

compare it with Kashiwara’s pairing. Our second main result follows from direct calculations of

Ringel’s pairing. However, we need to remove the sign, which will be done by using geometric

methods in the last section.

2 Quantum Groups and Crystal Bases

2.1 Quantum groups

Let (I, (−,−)) be a Cartan datum in the sense of Lusztig, i.e., I is a finite set and (−,−) is

a symmetric bilinear form Z[I] × Z[I] → Z which satisfies the following conditions:

(a) (i, i) ∈ {2, 4, 6, · · · } for any i ∈ I,

(b) 2(i,j)
(i,i) ∈ {0,−1,−2, · · · } for any i 6= j in I.
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Let Q = Z[I] and Q+ = N[I]. Q is called the root lattice. For any i ∈ I, define si : Q → Q

by si(µ) = µ − 2(µ,i)
(i,i) i. si is called a simple reflection. The Weyl group W is defined to be the

group generated by all the simple reflections.

Note that we can identify a Cartan datum (I, (−,−)) with a symmetrizable generalized

Cartan matrix ∆ = (aij)i,j by setting aij = 2(i,j)
(i,i) . Let εi = (i,i)

2 , then (εi)i is the minimal

symmetrization. We have the corresponding Kac-Moody algebra g.

Let Q(v) be the function field in one variable v over Q. The Drinfeld-Jimbo quantum group

U = Uq(g) is defined to be the associative Q(v)-algebra with generators Ei, Fi, Kµ (i ∈ I and

µ ∈ Q) subject to the relations:

KνKµ = KµKν = Kµ+ν , K0 = 1,

KµEj = v(µ,j)EjKµ, KµFj = v−(µ,j)FjKµ,

EiFj − FjEi = δij

Ki − K−1
i

vi − v−1
i

,

1−aij∑

t=0

(−1)t

[
1 − aij

t

]

εi

Et
iEjE

1−aij−t

i = 0, i 6= j,

1−aij∑

t=0

(−1)t

[
1 − aij

t

]

εi

F t
i FjF

1−aij−t

i = 0, i 6= j,

where vi = vεi and we use the notations

[n] =
vn − v−n

v − v−1
= vn−1 + vn−3 + · · · + v−n+1,

[n]! =
n∏

r=1

[r],

[
n
r

]
=

[n]!

[r]![n − r]!
,

and for any polynomial f ∈ Z[v, v−1] and an integer a, we denote by fa the polynomial obtained

from f by replacing v by va.

The following elementary properties of U are well-known.

(a) U has a triangular decomposition

U ∼= U− ⊗ U0 ⊗ U+,

where U+ (resp. U−) is the subalgebra of U generated by Ei (resp. Fi), i ∈ I, and U0 is the

subalgebra generated by K±
i , i ∈ I.

(b) U+ and U− are Q+-graded algebras, i.e.

U+ =
⊕

ν∈Q+

U+
ν , U− =

⊕

ν∈Q+

U−
−ν ,

where U±
ν = {u ∈ U± | KiuK−1

i = v±(i,ν)u for any i ∈ I}.
(c) U has a Hopf algebra structure (see [6]).

Lusztig introduced an important family of automorphisms T ′′
i,1 : U → U called the symme-
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tries. They are defined by

T ′′
i,1(Ei) = −FiK

εi

i ,

T ′′
i,1(Fi) = −K−εi

i Ei,

T ′′
i,1(Ej) =

∑

r+s=−aij

(−1)rv−rεiE
(s)
i EjE

(r)
i , i 6= j,

T ′′
i,1(Fj) =

∑

r+s=−aij

(−1)rvrεiF
(s)
i FjF

(r)
i , i 6= j,

T ′′
i,1(Kµ) = Ksiµ.

The inverse of T ′′
i,1 is T ′

i,−1 (see [6]).

2.2 Crystal bases of U+

We will briefly recall the definition of crystal bases following Kashiwara [11]. However, for

later convenience, we will state the results in U+ rather than U−.

There are two operators f ′
i and f ′′

i on U+. They can be defined inductively as

f ′
i(1) = f ′′

i (1) = 0,

f ′
i(Ej) = δij , f ′

i(EjP ) = v
aij

i Ejf
′
i(P ) + δijP,

f ′′
i (Ej) = δij , f ′′

i (EjP ) = v
−aij

i Ejf
′′
i (P ) + δijP.

According to [11], we have U+ =
⊕
n≥0

E
(n)
i ker f ′

i . Hence we can define the Q(v)-linear maps

Ẽi and F̃i of U+ by

Ẽi(E
(n)
i u) = E

(n+1)
i u,

F̃i(E
(n)
i u) = E

(n−1)
i u

for any u ∈ ker f ′
i .

F̃i and Ẽi are called Kashiwara’s operators.

Let A = Q[[v−1]] ∩ Q(v). A pair (L, B) is called a crystal basis of U+ if it satisfies the

following conditions:

(1) L is a free A-submodule of U+ such that U+ ∼= Q(v) ⊗A L.

(2) B is a basis of the Q-vector space L/v−1L.

(3) Let Lν = L ∩ U+
ν and Bν = B ∩ (Lν/v−1Lν), we have L =

⊕
ν∈Q+

Lν and B =
⊔

ν∈Q+

Bν .

(4) ẼiL ⊂ L and F̃iL ⊂ L for any i. (Therefore Ẽi and F̃i act on L/v−1L.)

(5) F̃iB ⊂ B ∪ {0} and ẼiB ⊂ B.

(6) For any b ∈ B such that F̃ib ∈ B, we have ẼiF̃ib = b.

The following theorem asserts the existence of the crystal basis in U+.

Theorem 2.1 (see [11]) Let L(∞) be the A-submodule of U+generated by Ẽi1 Ẽi2 · · · Ẽil
·1

and B(∞) be the subset of L(∞)/v−1L(∞) consisting of the nonzero vectors of the form

Ẽi1Ẽi2 · · · Ẽil
· 1. Then (L(∞), B(∞)) is the crystal basis of U+.
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2.3 A characterization of B(∞)

Kashiwara has given a nice characterization of the crystal basis using the Z-form and a

paring (−,−)K .

Proposition 2.1 (see [11]) (a) There is a unique non-degenerate symmetric Q(v)-bilinear

pairing (−,−)K on U+ such that

(1, 1)K = 1,

(Eix, y)K = (x, f ′
i(y))K .

(b) We have (L(∞), L(∞))K ⊂ A.

Part (b) of this proposition implies that the form (−,−)K induces a Q-bilinear form

(−,−)K,0 on L(∞)/v−1L(∞),

(x + v−1L(∞), y + v−1L(∞))K,0 = (x, y)K + v−1A

for any x, y ∈ L(∞).

Proposition 2.2 (see [11]) (a) For any b1, b2 ∈ B(∞), (b1, b2) = δb1b2 , i.e., B(∞) is an

orthogonal normal basis of L(∞)/v−1L(∞) with respect to the form (−,−)K,0. In particular,

(−,−)K,0 is positive definite.

(b) L(∞) = {u ∈ U+ | (u, u)K ∈ A}.

Set E
(n)
i = En

i /[n]ǫi
! and F

(n)
i = Fn

i /[n]ǫi
!. Denote by UZ the Z[v, v−1]-subalgebra of U

generated by F
(n)
i , E

(n)
i and Kµ (i ∈ I, µ ∈ Q). Let U+

Z (resp. U−
Z ) be the Z[v, v−1]-subalgebra

of U+ (resp. U−) generated by E
(n)
i (resp. F

(n)
i ). Then it is easy to see that

U−
Z = UZ ∩ U−, U+

Z = UZ ∩ U+.

Lusztig’s symmetries also act nicely on UZ, so actually T ′′
i,1 and T ′

i,−1 are automorphisms on

UZ (see [6, 37.1.3]).

We have that U+
Z is stable under f ′

i and Kashiwara’s operators Ẽi, F̃i.

Set LZ(∞) = L(∞) ∩ U+
Z , then LZ(∞) is stable under Ẽi and F̃i.

Proposition 2.3 (see [11]) (a) (−,−)K,0 is Z-valued on LZ(∞)/v−1LZ(∞).

(b) LZ(∞)/v−1LZ(∞) is a free Z-module with B(∞) as a basis.

(c) B(∞) ∪ (−B(∞)) = {u ∈ LZ(∞)/v−1LZ(∞) | (u, u)K,0 = 1}.

3 Hall Algebras and Drinfeld Double

3.1 The Hall algebra of a hereditary algebra

Let Λ be a finite-dimensional hereditary k-algebra, where k is a finite field of q elements.

Denote the set of isomorphism classes of finite-dimensional Λ-modules by P . We can choose a

representative Vα ∈ α for each α ∈ P . Given any Λ-modules M and N , we have the Euler form

〈M, N〉 = dimk HomΛ(M, N) − dimk ExtΛ(M, N).

〈M, N〉 depends only on the dimension vectors dimM and dim N since Λ is hereditary, so we

write 〈α, β〉 = 〈Vα, Vβ〉. The Euler symmetric form (−,−) is given by (α, β) = 〈α, β〉 + 〈β, α〉.



6 Y. Jiang, J. Sheng and J. Xiao

So the Euler form and the Euler symmetric form are both defined on Z[I], where I is the set

of isomorphism classes of simple Λ-modules. Then ∆ = (I, (−,−)) is a Cartan datum and any

Cartan datum can be realized by the Euler symmetric form of a finite-dimensional hereditary

k-algebra (see [16]).

For α, β, λ ∈ P , let gλ
αβ be the number of submodules B of Vλ such that B ∼= Vβ and

Vλ/B ∼= Vα.

Let v =
√

q , the Hall algebra of Λ is a free Q(v)-module whose basis consists of isomorphism

classes of Λ-modules with multiplication defined as

uαuβ = v〈α,β〉
∑

λ∈P

gλ
αβuλ for all α, β ∈ P .

We know H (Λ) is an associative N[I]-graded Q(v)-algebra with the identity element u0 and

the grading H (Λ) =
⊕

r∈N[I]

Hr, where Hr is the Q(v)-span of the set {uλ | λ ∈ P , dimVλ = r}.

The Q(v)-subalgebra C (Λ) generated by ui, i ∈ I is called the composition algebra of Λ.

In this paper, we are dealing with exceptional modules. A Λ-module Vλ (λ ∈ P) is called

exceptional if ExtΛ(Vλ, Vλ) = 0, i.e., Vλ has no self-extension. For any exceptional module

Vλ, we set u
(t)
λ = (1/[t]!ε(λ))u

t
λ in the Hall algebra, where ε(λ) = dimk EndΛVλ. We have the

following identities: u
(t)
λ = (vε(λ))t(t−1)utλ, where utλ corresponds to the direct sum of t copies

of Vλ.

Now fix a Cartan datum ∆. Let k be the algebraic closure of k and for any n ∈ N, F (n)

be a subfield of k such that [F (n) : k] = n. Then we have a finite-dimensional hereditary

F (n)-algebra Λ(n) corresponding to ∆. Thus we have a series of Hall algebras H = H (Λ(n)).

Define a new ring Π =
∏

n>0
Hn, then v = (vn)n ∈ Π, where vn =

√
|F (n)| =

√
qn. Obviously

v is in the center of Π and transcendental over Q. Denote ui = (ui(n))n ∈ Π, where ui(n) is

the element of H (Λ(n)) corresponding to the simple Λ(n)-module which lies in the class i ∈ I.

The subring of Π generated by the elements v, v−1 and ui (i ∈ I), hence a Q(v)-algebra, is

called the generic composition algebra of the Cartan datum ∆. We will denote it by C (∆).

On the other hand, we have U+, the positive part of the Drinfeld-Jimbo quantum group

corresponding to the Cartan datum ∆. By Green [5] and Ringel [13], we know that C (∆) is

isomorphic to U+ as associative Q(v)-algebras, where ui is sent to Ei for each i ∈ I. Therefore,

corresponding to the Z-form of quantum groups, we can define CZ(∆) to be the Z[v, v−1]-

subalgebra of C (∆) generated by u
(t)
i (i ∈ I, t ∈ N), which will be called the integral generic

composition algebra of the Cartan datum ∆. Obviously CZ(∆) is isomorphic to U+
Z .

3.2 The Drinfeld double

In the Hall algebra H (Λ), we write 〈uα〉 = v− dimk Vα+ε(α)uα for each α ∈ P . Here ε(α) =

〈α, α〉, which is equal to dimk EndΛVα when Vα is exceptional. Then H (Λ) can be viewed as

a free Q(v)-algebra with basis 〈uα〉, α ∈ P . The multiplication formula can be replaced by

〈uα〉〈uβ〉 = v−〈β,α〉
∑

λ∈P

gλ
αβ〈uλ〉 for all α, β ∈ P .

Now we introduce the extended Hall algebra H(Λ) by adding a torus to H (Λ). Let H(Λ)

be the free Q(v)-module with the basis

{Kα〈uλ〉 | α ∈ Z[I], λ ∈ P},
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and extend the multiplication by

Kα〈uβ〉 = v(α,β)〈uβ〉Kα for all α ∈ Z[I], β ∈ P ,

KαKβ = Kα+β for all α, β ∈ Z[I].

Moreover, H(Λ) has been equipped with a Hopf algebra structure by Green’s comultiplication

and an antipode (see [5, 20]).

Let H+(Λ) be the Hopf algebra H(Λ) above, but we write 〈u+
λ 〉 for 〈uλ〉 for all λ ∈ P . Dually,

we can define H−(Λ) to be the free Q(v)-module with the basis {Kα〈u−
λ 〉 | α ∈ Z[I], λ ∈ P}.

H−(Λ) has a similar Hopf algebra structure (see [20] or [21]).

In view of [20], we obtain the reduced Drinfeld double D(Λ) coming from a Hopf algebra

structure of H+(Λ) ⊗ H−(Λ), by means of a skew Hopf paring on H+(Λ) × H−(Λ). Then

there exists the reduced Drinfeld double DC (∆) of the generic composition algebra which is

generated by u±
i (i ∈ I) and Kα (α ∈ Z[I]). Then DC (∆) has the triangular decomposition

DC (∆) = C −(∆) ⊗ T ⊗ C +(∆), where C−(∆) is the subalgebra generated by u−
i (i ∈ I),

C +(∆) the subalgebra generated by u+
i (i ∈ I), and T the torus algebra.

Theorem 3.1 (see [20]) The map θ : DC (∆) → U by sending

〈u+
i 〉 → Ei, 〈u−

i 〉 → −vε(i)Fi, Ki → K
ε(i)
i

for all i ∈ I induces an isomorphism as Hopf Q(v)-algebras.

3.3 Some derivations

For α ∈ P , we define the following operators on H (Λ):

rα(〈uλ〉) =
∑

β∈P

v〈β,α〉+(α,β)gλ
βα

aβaα

aλ

〈uβ〉,

r′α(〈uλ〉) =
∑

β∈P

v〈α,β〉+(α,β)gλ
αβ

aβaα

aλ

〈uβ〉

for all λ ∈ P , where aα = AutΛ(Vα).

The following lemma can be proved by direct calculation (similar to [3, Proposition 3.2]).

Lemma 3.1 For any i ∈ I and λ1, λ2 ∈ P, we have

ri(〈uλ1
〉〈uλ2

〉) = 〈uλ1
〉ri(〈uλ2

〉) + v(i,λ2)ri(〈uλ1
〉)〈uλ2

〉,
r′i(〈uλ1

〉〈uλ2
〉) = v(i,λ1)〈uλ1

〉r′i(〈uλ2
〉) + r′i(〈uλ1

〉)〈uλ2
〉.

By the lemma above, it is easy to see that

r′i(1) = r′i(〈u0〉) = 0, r′i(〈uj〉) = δij ,

r′i(〈uj〉〈uλ〉) = v(i,j)〈uj〉r′i(〈uλ〉) + δij〈uλ〉.

So if we restrict r′i to the composition algebra C (Λ), we have

r′i(〈uj〉P ) = v(i,j)〈uj〉r′i(P ) + δijP for any P ∈ C (Λ).

Lemma 3.2 When we identify U+ with the generic composition algebra, we have f ′
i = r′i.
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Proof Just compare the above formulas with the definition of f ′
i in Subsection 2.2.

Also, there are two other derivations on H (Λ) which have nice properties. Namely, define

αδ =
(v2)− dimk Vα+ε(α)

aα

r′α, δα =
(v2)− dimk Vα+ε(α)

aα

rα.

The key properties of αδ and δα are as follows (but note that here our definitions are slightly

different from the original ones).

Proposition 3.1 (see [3]) Consider the following linear maps:

φ1 : H (Λ) −→ HomQ(v)(H (Λ), H (Λ))

〈uλ〉 −→ λδ,

φ2 : H (Λ) −→ HomQ(v)(H (Λ), H (Λ))

〈uλ〉 −→ δλ.

Then

(1) φ1 is an anti-homomorphism, i.e., φ1(〈uλ1
〉〈uλ2

〉) = φ1(〈uλ2
〉)φ1(〈uλ1

〉),
(2) φ2 is a homomorphism, i.e., φ2(〈uλ1

〉〈uλ2
〉) = φ2(〈uλ1

〉)φ2(〈uλ2
〉).

Remark 3.1 From the proposition above, we have αδ(C (Λ)) ⊆ C (Λ) and δα(C (Λ)) ⊆ C (Λ)

if 〈uα〉 ∈ C (Λ). Moreover, if 〈uα〉 is expressed as a combination of monomials of 〈ui〉 (i ∈ I),

then αδ (resp. δα) can be expressed as the corresponding combination of monomials of iδ (resp.

δi, i ∈ I).

4 Reflection Functors and Lusztig’s Symmetries

Given a Cartan datum ∆ as before, there is a valued graph (Γ, d) corresponding to it (where

Γ = (Γ0, Γ1), Γ0 is the set of vertices, and Γ1 the set of edges with |Γ0| = I). We obtain

(Γ, d, Ω) by prescribing an orientation Ω to (Γ, d), and always write Ω for simplicity. Then let

S = (Fi, iMj)i,j∈Γ0
be a reduced k-species of type Ω. Denote by rep-S the category of finite

dimensional representations of S over k. We know that the category rep-S is equivalent to the

module category of finite dimensional modules over a finite dimensional hereditary k-algebra

Λ. This hereditary k-algebra Λ is given by the tensor algebra of S (see [4]). Furthermore, any

finite dimensional hereditary k-algebra can be obtained in this way.

Let p be a sink or a source of Ω. We define σpS to be the k-species obtained from S by

replacing S by replacing rMs by its k-dual for r = p or s = p. Then σpS is a reduced k-species

of type σpΩ, where the orientation σpΩ is obtained by reversing the direction of arrows along

all edges containing p.

We have the Bernstein-Gelfand-Ponomarev reflection functors σ±
p : rep-S → rep-σpS

(see [1, 4]).

If i is a vertex of Γ, let rep-S 〈i〉 be the subcategory of rep-S consisting of all representations

which do not have Vi as a direct summand, where Vi is the simple representation corresponding

to i. If i is a sink, then σ+
i : rep-S 〈i〉 → rep-σiS 〈i〉 is an equivalence and it is exact and

induces isomorphism on both Hom and Ext. The assertion for σ−
i is the same if i is a source.

Let Λ just be the tensor algebra of a k-species S . We can identify mod-Λ with rep-S ,

therefore, H (Λ) can be viewed as being defined for rep-S . We also use σiΛ to denote the
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tensor algebra of σiS and σi∆ to denote the Cartan datum corresponding to the algebra σiΛ

(note that, in fact, σi∆ and ∆ denote the same Cartan datum). We define H (Λ)〈i〉 to be the

Q(v)-subspace of H (Λ) generated by 〈uα〉 with Vα ∈ rep-S 〈i〉. If i is a sink or a source, since

rep-S 〈i〉 is closed under extensions, H (Λ)〈i〉 is a subalgebra of H (Λ).

Proposition 4.1 (see [17]) Let i be a sink. The functor σ+
i yields a Q(v)-algebra isomor-

phism Ti : H (Λ)〈i〉 → H (σiΛ)〈i〉 with Ti(〈uα〉) = 〈uσ
+

i
α〉 for any Vα ∈ rep-S 〈i〉.

The isomorphism Ti can be extended to the whole reduced Drinfeld double D(Λ) as follows

(see [21]).

Let Ki = v−ε(i)Ki, 〈uα〉(t) = 〈uα〉t/([t]!)ε(α) for α ∈ P and t ∈ N.

For λ ∈ P , assume that Vλ = Vλ0
⊕ tVi and Vλ0

contains no direct summand isomorphic

to Vi. Then HomΛ(Vλ0
, Vi) = 0 and ExtΛ(Vi, Vλ0

) = 0 since i is a sink of S . Thus 〈u+
λ 〉 =

v〈λ0,ti〉〈u+
i 〉(t)〈u+

λ0
〉 in H +(Λ). We define Ti : H +(Λ) → D(σiΛ) as

Ti(〈u+
λ 〉) =

v〈λ0,ti〉

[t]!ε(i)
(〈u−

i 〉Ki )t〈u+

σ
+

i
λ0

〉 = v〈λ,ti〉Kti〈u−
i 〉(t)〈u+

σ
+

i
λ0

〉.

In particular, Ti(〈u+
i 〉) = 〈u−

i 〉Ki .

Symmetrically, we define a morphism Ti : H −(Λ) → D(σiΛ) as

Ti(〈u−
λ 〉) =

v〈λ0,ti〉

[t]!ε(i)
(K−i〈u+

i 〉)t〈u−

σ
+

i
λ0

〉 = v〈λ,ti〉K−ti〈u+
i 〉(t)〈u−

σ
+

i
λ0

〉

for all λ ∈ P , where Vλ = Vλ0
⊕ tVi and Vλ0

contains no direct summand isomorphic to Vi.

Also, we extend Ti to the torus algebra by setting Ti(Kα) = Ksi(α) for α ∈ Z[I]. Set

Ti(Kα〈u±
λ 〉) = Ti(Kα)Ti(〈u±

λ 〉).

Theorem 4.1 (see [21]) Let i be a sink. The operator Ti induces a Q(v)-algebra isomor-

phism DC (∆)
∼−→ DC (σi∆).

If i is a source of S , we can define T ′
i (via the reflection functors σ−

i ) in the Hall algebra and

extend it to D(Λ) similarly, which also induces a Q(v)-algebra isomorphism DC (∆) → DC (σi∆).

Recall that we have the isomorphism DC (∆)
∼−→ U in Theorem 3.1. So we have the canonical

isomorphism DC (∆)
∼−→ DC (σi∆) by mapping 〈u±

i 〉 7→ 〈u±
i 〉 and Ki 7→ Ki for a sink i ∈ I.

Therefore we can identify DC (σi∆) with DC (∆) under this canonical isomorphism. Then Ti

induces an automorphism DC (∆)
∼−→ DC (∆). Similarly, T ′

i can be viewed as an automorphism

DC (∆)
∼−→ DC (∆) for a source i ∈ I. The following theorem asserts that Ti and T ′

i coincides

with Lusztig’s symmetries (see Section 2).

Theorem 4.2 (see [21]) (1) Let i be s sink. Then the isomorphism Ti : DC (∆)
∼−→ DC (∆)

coincides with T ′′
i,1. Namely, Ti = T ′′

i,1, if we identify DC (∆) with U by Theorem 3.1.

(2) Let i be a source. Then the isomorphism T ′
i : DC (∆)

∼−→ DC (∆) coincides with T ′
i,−1.

We keep the notations before. Recall that a sequence i1, · · · , im is called a sink sequence for

Ω, provided that i1 is a sink for Ω, and for 1 < t ≤ m, the vertex it is a sink for the orientation

σit−1
· · ·σi1Ω. The definition of a source sequence is similar.

Proposition 4.2 (see [17]) If we identify DC (∆) with U , then
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(1) for any preinjective module Vα, there exists a source sequence i1, · · · , im for Ω such that

〈uα〉 = 〈uσ
+

i1
···σ+

im−1
im
〉 = Ti1 · · ·Tim−1

〈uim
〉 = T ′′

i1,1 · · ·T ′′
im−1,1(Eim

);

(2) for any preinjective module Vα, there exists a sink sequence i1, · · · , im for Ω such that

〈uα〉 = 〈uσ
−

i1
···σ−

im−1
im
〉 = T ′

i1
· · ·T ′

im−1
〈uim

〉 = T ′
i1,−1 · · ·T ′

im−1,−1(Eim
).

5 The Elements in Hall Algebras Corresponding to

Exceptional Modules

Let Λ be a finite dimensional hereditary k-algebra as in Section 3. Denote by mod-Λ the

category of finite-dimensional Λ-modules.

Recall that a Λ-module Vα is called exceptional if Ext1Λ(Vα, Vα) = 0. A pair of inde-

composable exceptional modules (Vα, Vβ) is called an exceptional pair if HomΛ(Vβ , Vα) =

Ext1Λ(Vβ , Vα) = 0. A sequence of indecomposable Λ-modules (Vα1
, Vα2

, · · · , Vαn
) is called an

exceptional sequence if any pair (Vαi
, Vαj

) with i < j is exceptional. An exceptional sequence

(Vα1
, Vα2

, · · · , Vαn
) is said to be complete if n = |I|.

By Crawley-Boevey [2] and Ringel [14], we know that there is a nice braid group action on

the set of complete exceptional sequences by which we can obtain all exceptional modules from

an exceptional sequence consisting of simple modules. We will briefly recall the theory.

The braid group action is based on the following results. For any exceptional sequence

(Vα1
, Vα2

, · · · , Vαs
), let C(α1, α2, · · · , αs) be the smallest full subcategory of mod-Λ which con-

tains Vα1
, Vα2

, · · · , Vαs
and is closed under extensions, kernels of epimorphisms and cokernels

of monomorphisms. C(α1, α2, · · · , αs) is equivalent to mod-Λ′, where Λ′ is a finite dimensional

hereditary algebra with s isomorphism classes of simple modules. Furthermore, the canonical

embedding of C(α1, α2, · · · , αs) into mod-Λ is exact and induces isomorphisms on both Hom

and Ext.

In particular, the results above hold for any exceptional pair (Vα, Vβ). That is, C(α, β) is

equivalent to the module category of a generalized Kronecker algebra which has no regular

exceptional modules. Hence (Vα, Vβ) have to be slice modules in the preprojective component

or preinjective component of C(α, β) or the orthogonal pair, i.e., Vα is the simple injective and

Vβ is the simple projective. Thus, for an exceptional pair (Vα, Vβ), there are unique modules

L(α, β) and R(α, β) such that (L(α, β), Vα) and (Vβ , R(α, β)) are exceptional pairs in C(α, β).

Let V = (Vα1
, Vα2

, · · · , Vαs
) be an exceptional sequence in mod-Λ. For 1 ≤ i ≤ s, define

σiV = (Vβ1
, Vβ2

, · · · , Vβs
), where

Vβj
=





Vαi+1
, if j = i,

R(αi, αi+1), if j = i + 1,

Vαj
, if j /∈ {i, i + 1}.

Also, define σ−1
i V = (Vγ1

, Vγ2
, · · · , Vγs

), where

Vγj
=






L(αi, αi+1), if j = i,

Vαi
, if j = i + 1,

Vαj
, if j /∈ {i, i + 1}.
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Denote by Bs−1 the group generated by σ1, σ2, · · · , σs−1. The above definitions give an

action of Bs−1 on the set of exceptional sequences of length s. Moreover, σ1, σ2, · · · , σs−1

satisfy the braid relations:
{

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ s − 1,

σiσj = σjσi for |i − j| ≥ 2.

So Bs−1 is the braid group of s − 1 generators. In particular, in the case s = |I|, we have

the braid group action on the set of complete exceptional sequences. This action is transitive

according to Crawley-Boevey [2] and Ringel [14].

Since any indecomposable exceptional module can be enlarged to a complete exceptional

sequence, we could obtain all indecomposable exceptional modules via the braid group action

from any given complete exceptional sequence, in particular, the exceptional sequence consisting

of all the simple modules. In [3], an explicit inductive algorithm is given to express 〈uλ〉 as the

combinations of elements 〈ui〉 if Vλ is an indecomposable exceptional module. We write down

the formulas with some modifications, for the definition of αδ and δα in Section 3 is different

from that in [3].

Theorem 5.1 (see [3]) For 1 ≤ s ≤ |I|, let B = 〈σ1, σ2, · · · , σs−1〉 be the braid group on

s−1 generators, and V = (Vα1
, Vα2

, · · · , Vαs
) be any exceptional sequence of length s in mod-Λ.

Denote

m(i, i + 1) =
〈αi, αi+1〉

〈αi+1, αi+1〉
= 2

(αi, αi+1)

(αi+1, αi+1)
,

n(i, i + 1) =
〈αi, αi+1〉
〈αi, αi〉

= 2
(αi, αi+1)

(αi, αi)
,

and assume σiV = (Vβ1
, Vβ2

, · · · , Vβs
), σ−1

i V = (Vγ1
, Vγ2

, · · · , Vγs
) for 1 ≤ i ≤ s − 1. Then, in

the Hall algebra H (Λ), we have

(1) If m(i, i + 1)dimVαi+1
> dimVαi

, then

〈uβi+1
〉 =

m(i,i+1)−1∑

r=0

(−1)rv2 dim Vαi vε(αi)(v−ε(αi+1))(m(i,i+1)2−m(i,i+1)r+r)

× 〈uαi+1
〉(r)δαi

(〈uαi+1
〉(m(i,i+1)−r)).

(2) If 0 < m(i, i + 1)dimVαi+1
< dim Vαi

, then

〈uβi+1
〉 =

v2m(i,i+1) dim Vαi+1

[m(i, i + 1)]!ε(αi+1)
(αi+1

δ)m(i,i+1)(〈uαi
〉).

(3) If m(i, i + 1) ≤ 0, then

〈uβi+1
〉 =

−m(i,i+1)∑

r=0

(−1)r(v−rε(αi+1))〈uαi+1
〉(r)〈uαi

〉〈uαi+1
〉(−m(i,i+1)−r).

(1′) If n(i, i + 1)dimVαi
> dim Vαi+1

, then

〈uγi
〉 =

n(i,i+1)−1∑

r=0

(−1)rv2 dim Vαi+1 vε(αi+1)(v−ε(αi))(n(i,i+1)2−n(i,i+1)r+r)

× (αi+1
δ(〈uαi

〉(n(i,i+1)−r)))〈uαi
〉(r).
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(2′) If 0 < n(i, i + 1)dimVαi
< dimVαi+1

, then

〈uγi
〉 =

v2n(i,i+1) dim Vαi

[n(i, i + 1)]!ε(αi)
(δαi

)n(i,i+1)(〈uαi+1
〉).

(3′) If n(i, i + 1) ≤ 0, then

〈uγi
〉 =

−n(i,i+1)∑

r=0

(−1)r(v−rε(αi))〈uαi
〉−n(i,i+1)−r〈uαi+1

〉〈uαi
〉(r).

By this theorem, we can see that for any indecomposable exceptional module Vλ, 〈uλ〉 lies

in the generic composition algebra C (∆).

6 Main Results

We keep the notations as before. In this section, we will identify the quantum group U

(resp. the positive part U+, the Z-form U+
Z ) with the reduced Drinfeld double DC (∆) (resp.

the generic composition algebra C (∆), the integral generic composition algebra CZ(∆)).

In Section 5, we have seen that for any indecomposable exceptional Λ-module Vλ, 〈uλ〉 lies

in the quantum group. Our first result is a stronger assertion which says that 〈uλ〉 lies in

the integral form of the quantum group and here Vλ can be any (not only indecomposable)

exceptional module.

Theorem 6.1 Let Λ be a finite-dimensional hereditary k-algebra, and Vλ an exceptional

Λ-module. Then 〈uλ〉 lies in U+
Z .

In Section 8, we will prove 〈uλ〉 ∈ L(∞). So 〈uλ〉 lies in LZ(∞). By abuse of language, we

denote the image of 〈uλ〉 in LZ(∞)/v−1LZ(∞) still by 〈uλ〉. Our second result is as follows.

Theorem 6.2 Let Λ be a finite-dimensional hereditary k-algebra. Then for any exceptional

module Vλ,

〈uλ〉 ∈ B(∞) ∪ (−B(∞)),

i.e., 〈uλ〉 lies in the crystal basis up to a sign.

7 Proof of Theorem 6.1

Theorem 5.1 provides an inductive method to express 〈uλ〉 as combinations of the Chevalley

generators. If we can prove that in each step the coefficients of the formulas are in Z[v, v−1], we

are done immediately for proving Theorem 6.1. Unfortunately, we could not achieve this since

the derivations αδ and δα are not UZ-stable. Instead, we will use Lusztig’s symmetries which is

known to be UZ-stable.

First we introduce some notations. For any exceptional pair (Vα, Vβ), the subcategory

C(α, β) (recall Section 5) is equivalent to mod-Λ′ for some finite dimensional hereditary k′-

algebra Λ′ which has two simple modules. Then the corresponding Hall algebra H (Λ′) is a

subalgebra of H (Λ) and the composition algebra C (Λ′) is a subalgebra of C (Λ) (note that

the simple Λ′-modules viewed as Λ-modules are exceptional). Denote the Cartan datum of Λ′

by ∆′. The generic composition algebra C (∆′) is also a subalgebra of C (∆). Now denote the
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quantum group associated to ∆′ by U ′. Then we have an embedding U ′+ →֒ U+. The discussion

here means that an exceptional pair gives a sub-Hall algebra of H (Λ) which corresponds to a

sub-quantum group (positive part) of U+.

Thus everything in Sections 3 and 4 works for Λ′. Suppose that k′ is a finite field with

q′ = (v′)2 elements where v′ = va for some positive integer a. For Vγ ∈ C(α, β), we use the

notation 〈uγ〉′ = (v′)− dimk′ Vγ+ε′(γ)uγ in H (Λ′), and the derivations δ′γ , γδ′ are well-defined.

Denote the two simple Λ′-modules by Vs1
and Vs2

, and the corresponding elements in H (Λ′)

by 〈us1
〉′ and 〈us2

〉′. We have the (relative) symmetries Ts1
, Ts2

and T ′
s1

, T ′
s2

as in Section 4.

Lemma 7.1 For any Vγ ∈ C(α, β), we have

(1) 〈uγ〉′ = 〈uγ〉,
(2) δγ |C(α,β) = δ′γ, γδ|C(α,β) = γδ′, where δγ |C(α,β) and γδ|C(α,β) denote the restrictions of

δγ and γδ to H (Λ′).

Proof (1) By definition,

〈uγ〉 = v− dimk Vγ+ε(γ)uγ .

The number

v− dimk Vγ+ε(γ) =

√
|EndΛ(Vγ)|√

|Vγ ||ExtΛ(Vγ , Vγ)|
is unchanged whether we consider Vγ as a Λ-module or a Λ′-module, since the embedding

C(α, β) →֒ mod-Λ induces isomorphisms on both Hom and Ext.

(2) We only prove the assertion for δγ . Recall the definition of δγ in Subsection 3.3

δγ(uλ) =
∑

ρ∈P

v〈γ,ρ〉gλ
γρ

aρ

aλ

uρ.

Since C(α, β) is closed under the kernels of epimorphisms, we can see that if Vλ ∈ C(α, β), those

Vρ with uρ occurring in the right-hand side must be in C(α, β).

Note that

v〈γ,ρ〉 =

√
|HomΛ(Vγ , Vρ)|√
|ExtΛ(Vγ , Vρ)|

.

Hence the numbers v〈γ,ρ〉, gλ
γρ, aρ and aλ are unchanged whether we consider Vγ , Vρ, Vλ as

Λ-modules or Λ′-modules.

The following lemma is the key point of the proof.

Lemma 7.2 For any indecomposable exceptional module Vλ, there exist a positive integer

n, subcategories Ci (1 ≤ i ≤ n) of mod-Λ and indecomposable exceptional Λ-modules Vαi

(1 ≤ i ≤ n + 1), where for each i, Ci ≃ mod-Λi (here Λi is a finite dimensional hereditary

algebra having exactly two simple modules Si,1 and Si,2), such that

〈uλ〉 = 〈uαn+1
〉,

and for each 1 ≤ i ≤ n,

〈uαi+1
〉 = TSi,i1

TSi,i2
· · ·TSi,idi

(〈uαi
〉) or 〈uαi+1

〉 = T ′
Si,i1

T ′
Si,i2

· · ·T ′
Si,idi

(〈uαi
〉),

Vαi
= Si,1 or Si,2, i.e., 〈uαi

〉 = 〈uSi,1
〉 or 〈uSi,2

〉,

where i1, i2, · · · , idi
∈ {1, 2} for each 1 ≤ i ≤ n.
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Proof If Vλ is simple, there is nothing to prove. So assume that Vλ is not simple. Then by

Ringel (see [17, Section 8]), there exists an exceptional sequence (Vλ, Vµ) or (Vµ, Vλ) such that

Vλ is not simple in C(Vλ, Vµ).

We know that C(Vλ, Vµ) is isomorphic to a finite dimensional hereditary algebra Λ′ with

just two simple modules and Vλ viewed as a Λ′-module is preprojective or preinjective. Denote

the simple Λ′-modules by VS1
and VS2

. By Proposition 4.2, we have

〈uλ〉 = TSi1
TSi2

· · ·TSim−1
(〈uSim

〉),

where i1, i2, · · · , im (ij ∈ {1, 2}, j = 1, · · · , m) is a source sequence of the graph of Λ′, or

〈uλ〉 = T ′
Si1

T ′
Si2

· · ·T ′
Sim−1

(〈uSim
〉),

where i1, i2, · · · , im (ij ∈ {1, 2}, j = 1, · · · , m) is a sink sequence of the graph of Λ′.

Note that in the formulas above we should use 〈 · 〉′, but Lemma 7.1(1) told us 〈 · 〉′ = 〈 · 〉.
The lemma follows by induction.

Now we can prove Theorem 6.1.

First let us see that Theorem 6.1 holds for any indecomposable exceptional module Vλ. By

the above lemma, in each step of the induction, we are in some sub-quantum group, say U ′. The

symmetries are U ′
Z-stable and the coefficient ring is Z[v′, v′−1], where v′ = va for some positive

integer a. Obviously Z[v′, v′−1] ⊂ Z[v, v−1]. Hence 〈uλ〉 lies in the integral composition algebra.

The only thing we may worry about is whether the calculation is generic. But Theorem 5.1 has

ensured it. Thus 〈uλ〉 is in U+
Z .

Next we consider the case Vλ ≃ sVρ, where Vρ is indecomposable exceptional (we also write

sVρ as Vsρ). It is well-known that (see [17] for example) we have

〈usρ〉 = 〈uρ〉(s).

Note that Lusztig’s symmetries are endomorphisms, hence the right-hand side is also in U+
Z by

Lemma 7.2.

Now we consider the general case. By induction we can reduce to the case that Vλ ≃
Vsµ ⊕ Vtν , where Vµ and Vν are non-isomorphic indecomposable exceptional modules.

We need two lemmas. One gives the calculation of the filtration number gγ
αβ , which is due

to Riedtmann [18] and Peng [12].

Lemma 7.3 For any Λ-modules Vα, Vβ and Vγ , we have

gγ
αβ =

aγ |ExtΛ(Vα, Vβ)Vγ
|

aαaβ|HomΛ(Vα, Vβ)| ,

where ExtΛ(Vα, Vβ)Vγ
is the set of exact sequence in ExtΛ(Vα, Vβ) with middle term Vγ .

The other one tells us how to compute the automorphism groups of decomposable modules

(see [3] or [22]).

Lemma 7.4 (1) Let Vλ be an indecomposable Λ-module with dimk EndΛ(Vλ) = s and

dimk radEndΛ(Vλ) = t. Then

aλ = (v2(s−t) − 1)v2t.
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(2) Let Vλ
∼= s1Vλ1

⊕ · · · ⊕ stVλt
such that Vλi

≇ Vλj
for any i 6= j. Then

aλ = v2sas1λ1
· · · astλt

,

where s =
∑
i6=j

sisj dimk HomΛ(Vλi
, Vλj

).

(3) Let Vλ = sVρ with EndΛ(Vρ) = F and F is an extension field of k. Then

aλ =
∏

0≤t≤s−1

(ds − dt),

where d = |F | = v2[F :k].

Now we can see that

〈usµ〉〈utν〉 = v−〈tν,sµ〉gsµ⊕tν

(sµ)(tν)〈usµ⊕tν〉

= v−〈tν,sµ〉 asµ⊕tν

asµatν |HomΛ(Vsµ, Vtν)| 〈usµ⊕tν〉

= v−〈tν,sµ〉|HomΛ(Vtν , Vsµ)|〈usµ⊕tν〉.

Hence we have

〈uλ〉 = 〈usµ⊕tν〉 = v〈tν,sµ〉−2st dimk HomΛ(Vν ,Vµ)〈usµ〉〈utν〉,

which lies in U+
Z and we complete the proof of Theorem 6.1.

8 Proof of Theorem 6.2

8.1 The pairing (−, −)R

Define a pairing (−,−)R : H (Λ) × H (Λ) → Q(v) by

(〈uβ〉, 〈uβ′〉)R = v(β,β)a−1
β δββ′

for all β, β′ ∈ P . (This pairing was first proposed by Ringel [16].)

Now we have two non-degenerate symmetric bilinear forms on U+, namely (−,−)R and

(−,−)K (recall Section 2). We will deduce some properties of (−,−)R and compare it with

(−,−)K . Note that in Lemma 3.2, we have proved that the derivations r′i and f ′
i coincide.

Denote vε(i) by vi. We have the following lemma.

Lemma 8.1 For any i ∈ I and λ1, λ2 ∈ P, we have

(〈uλ1
〉, 〈ui〉〈uλ2

〉)R = (1 − v−2
i )−1(r′i(〈uλ1

〉), 〈uλ2
〉)R,

(〈uλ1
〉, 〈uλ2

〉〈ui〉)R = (1 − v−2
i )−1(〈uλ1

〉, ri(〈uλ2
〉))R.

Proof We only prove the first one. The proof of the second one is similar. By definition,

we know

〈ui〉〈uλ2
〉 = v−〈λ2,i〉

∑

λ∈P

gλ
iλ2

〈uλ〉.

So we have

(〈uλ1
〉, 〈ui〉〈uλ2

〉)R = v(λ1,λ1)−〈λ2,i〉
gλ1

iλ2

aλ1

.
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On the other hand, we have

r′i(〈uλ1
〉) =

∑

β∈P

v〈i,β〉+(i,β)gλ1

iβ

aβai

aλ1

〈uβ〉,

Thus we have

(r′i(〈uλ1
〉), 〈uλ2

〉)R = v〈i,λ2〉+(i,λ2)+(λ2,λ2)
gλ1

iλ2
ai

aλ1

.

Noting that

(λ1, λ1) = (λ2 + i, λ2 + i) = (λ2, λ2) + 2(λ2, i) + (i, i)

and

ai = (v2
i − 1) = v(i,i)(1 − v−2

i )−1,

we complete the proof.

By Lemma 8.1, we can compute the pairing (−,−)R inductively, similarly to Proposition

2.1.

Lemma 8.2 For any x, y ∈ U+, we have

(1, 1)R = 1,

(Eix, y)R = (1 − v−2
i )−1(x, f ′

i(y))R.

Proof By definition and Lemma 8.1, we have

(Eix, y)R = (〈ui〉x, y)R = (1 − v−2
i )−1(x, r′i(y))R

= (1 − v−2
i )−1(x, f ′

i(y))R.

Lemma 8.3 For any x, y ∈ U+, we have (x, y)K ∈ A if and only if (x, y)R ∈ A. In

particular,

(L(∞), L(∞))R ⊂ A.

Proof First we have

(1, 1)R = (1, 1)K = 1.

For any x, y ∈ U+, by Lemma 8.2, we know

(Eix, y)R = (1 − v−2
i )−1(x, f ′

i(y))R.

Since (1−v−2
i )−1 and 1−v−2

i are both in A, we have (Eix, y)R ∈ A if and only if (x, f ′
i(y))R ∈ A.

On the other hand, by Proposition 2.1,

(Eix, y)K = (x, f ′
i(y))K .

Now the assertion of this lemma follows immediately by induction.

Hence the form (−,−)R induces a Q-bilinear form (−,−)R,0 on L(∞)/v−1L(∞),

(x + v−1L(∞), y + v−1L(∞))R,0 = (x, y)R + v−1A

for any x, y ∈ L(∞). The next proposition says that the two pairings (x, y)R,0 and (x, y)K,0

coincide.
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Proposition 8.1 For any x, y ∈ L(∞), if we denote their images in L(∞)/v−1L(∞) still

by x, y, then we have

(x, y)R,0 = (x, y)K,0.

Proof Just compare Proposition 2.1 and Lemma 8.3, and note

1

1 − v−2
i

= 1 +
v−2

i

1 − v−2
i

∈ 1 + v−1A.

Thus we can use the pairing (−,−)R instead of (−,−)K to characterize the crystal bases.

Lemma 8.4 We have the following characterizations of L(∞) and B(∞) :

L(∞) = {x ∈ U+ | (x, x)R ∈ A},
B(∞) ∪ (−B(∞)) = {x ∈ LZ(∞)/v−1LZ(∞) | (x, x)R,0 = 1}.

Proof Recall Proposition 2.2(b) and 2.3(c). The assertion of this corollary is an easy

consequence of Lemma 8.3 and Proposition 8.1.

8.2 Proof of Theorem 6.2

We need to calculate the pairing (〈uλ〉, 〈uλ〉)R for each exceptional module Vλ.

First we assume that Vλ is indecomposable. In this case, the calculation is easy since the

endomorphism ring of Vλ is a division ring, namely

(〈uλ〉, 〈uλ〉)R =
v(λ,λ)

aλ

=
|EndΛ(Vλ)|
|AutΛ(Vλ)|

=
v2ε(λ)

v2ε(λ) − 1
=

1

1 − v−2ε(λ)

= 1 +
v−2ε(λ)

1 − v−2ε(λ)
∈ 1 + v−1A.

Secondly, for n-copies of an indecomposable Vλ, we get (using Lemma 7.4(3))

(〈uλ〉(n), 〈uλ〉(n))R = (〈unλ〉, 〈unλ〉) =
|EndΛ(Vnλ)|

anλ

=
v2n2ε(λ)

∏
0≤t≤n−1

(v2nε(λ) − v2tε(λ))

=
∏

0≤t≤n−1

1

1 − v−2(n−t)ε(λ)
∈ 1 + v−1A.

Now we can deal with any exceptional module Vλ. Assume Vλ
∼= s1Vλ1

⊕ · · · ⊕ stVλt
such

that Vλi
is indecomposable for any i and Vλi

≇ Vλj
for any i 6= j. Thus

|EndΛ(Vλ)| = v
2

tP
i=1

s2
i ε(λi)+2s

,

where s =
∑
i6=j

sisj dimk HomΛ(Vλi
, Vλj

).
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By Lemma 7.4(2), we have aλ = v2sas1λ1
· · · astλt

. Hence

(〈uλ〉, 〈uλ〉)R =
v
2

tP
i=1

s2
i ε(λi)+2s

v2sas1λ1
· · · astλt

=
v
2

tP
i=1

s2
i ε(λi)

as1λ1
· · ·astλt

=
v
2

tP
i=1

s2
i ε(λi)

t∏
i=1

∏
0≤ti≤si−1

(v2siε(λi) − v2tiε(λi))

=

t∏

i=1

∏

0≤ti≤si−1

1

1 − v−2(si−ti)ε(λi)
∈ 1 + v−1A.

Thus we have proved that for any exceptional module Vλ,

(〈uλ〉, 〈uλ〉)R ∈ A and (〈uλ〉, 〈uλ〉)R,0 = 1.

Hence by Theorem 6.1 and Lemma 8.4, we reach our goal.

Remark 8.1 (1) In the rank 2 case (i.e. |I| = 2 in the Cartan datum), the sign can be

removed (see [7, 19]). However, it seems that their methods do not work in general.

(2) The formulas given in Theorem 5.1 can be viewed as an inductive algorithm to obtain

certain crystal basis elements from the Chevalley generators.

9 Remove the Sign

We have shown by algebraic methods that the elements corresponding to exceptional mod-

ules lie in the crystal bases up to a sign. Intuitively, the sign should be removed since it does

for rank 2 case. In this section, we will remove the sign with geometric methods due to Lusztig.

For convenience, we only consider the case of symmetric Cartan datum.

So let us consider a quiver without cycles, that is Q = (I, H, s, t), where I is the vertex set,

H is the arrow set and two maps s, t indicate the start points and terminal points of arrows

respectively. Let Fq denotes a finite field of q = pe elements, where p is a prime number. As in

Subsection 3.1, we get a Hall algebra from the representation of Λ = FqQ, hence a realization

of U+.

Now we give a short review of two constructions by Lusztig. The first is the geometrical

construction of Hall algebras. For any finite dimensional I-graded Fq-vector space W =
∑
i∈I

Wi,

consider the moduli space of representation of Q:

EW =
⊕

ρ∈H

Hom(Ws(ρ), Wt(ρ)).

The group GW =
∏
i∈I

GL(Wi) acts on EW naturally. Let CG(EW ) be the space of GW -invariant

functions EW → C. For c ∈ NI, we fix an I-graded Fq-vector space Wc with dimWc = c ,

and denote Ec = EWc
, Gc = GWc

. Then the multiplication can be defined in the C-space

K =
⊕

a∈NI

CG(Ea ), which makes K an associative C-algebra. Corresponding to α ∈ P , let

Oα ⊂ Ea be the Ga-orbit of module Vα ∈ Ea . We take 1α ∈ CG(Ea ) to be the characteristic
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function of Oα, and set fα = v− dimOα
q 1α where vq =

√
q . Thus K is just the so-called Hall

algebra if fα is identified with 〈uα〉 for all α ∈ P .

The second is the construction of U+ in terms of perverse sheaves. EW can be defined

over an algebraic closure of the finite field Fp of p elements. EW has a natural Fpe -structure

with Frobenius map F e : EW → EW . Thus the Fq-rational points EF e

W of EW provide an Fq-

structure as above. Let D(EW ) = Db
c(EW ) be the bounded derived category of Ql -constructible

sheaves; here l is a fixed prime number distinct from p and Ql is an algebraic closure of the

field of l-adic numbers. Let PW be the set of isomorphism classes of simple perverse sheaves

subject to some extra condition (see [6]). Then we can associate PW a full subcategory QW of

D(EW ) and let KW be the Grothendieck group of QW . Hence
∐
W

KW gives a realization of U+

with
∐
W

PW as its bases, that is the canonical bases.

For an exceptional module Vλ, Oλ is the corresponding orbit. We know from [8] that the

intersection cohomology complex

IC(Oλ, Ql ) = j!∗(Ql )[dimOλ]

belongs to the canonical bases PW of KW , where j is the natural embedding Oλ → EW .

In [9], Lusztig considered the correspondence between functions on the moduli space and

the elements of the canonical bases. In other words, he showed what kind of functions lies in

the canonical bases when comparing the two constructions mentioned above. We will use the

notations in [9] from now on.

We only need to consider a special kind of canonical bases, i.e., b = IC(Oλ, Ql ). b corre-

sponds to (be)e≥1, be : EF e

W → Ql . Sometimes Ql can be identified with C. For x ∈ EF e

W , be(x)

is the alternative sum of the trace of the induced Frobenius map on the stalk at x of the i-th

cohomology sheaf of IC(Oλ, Ql ):

be(x) =
∑

i∈Z

(−1)i Tr(F e; Hi
x(j!∗(Ql )[dimOλ])).

Now that Oλ is an open dense subset of EW , we can deduce as follows.

Firstly, the result below is due to Gabber:

Tr(F e; Hi
x(j!∗(Ql )[dimOλ])) ∈ q−

dimOλ
2 Z[q−1].

For x ∈ EW and F e(x) = x ∈ Oλ, we have

Tr(F e; Hi
x(j!∗(Ql )[dimOλ])) = Tr(F e; Hi

x(Oλ, Ql[dimOλ])) = q−
dim Oλ

2 δi,dimOλ
.

While for y ∈ EW , F e(y) = y /∈ Oλ and any open neighborhood Uy of y,

Uy ∩Oλ = U ′
y 6= ∅ =⇒ Hi

y(j!∗(Ql )[dimOλ]) ∼= Hi
x(j!∗(Ql )[dimOλ]).

So be is actually a constant function

be = q−
dimOλ

2 (−1)dimOλ = (−q
1
2 )− dimOλ .

We remark that v = −q
1
2 in the literature of [9], so be = v− dimOλ . Let Oy be the orbit of

y. We obtain

be|Oλ
= v− dimOλ1Oλ

,

be|Oy
= v− dim EW 1Oy

= v−(dim EW −dimOy)v− dimOy1Oy
.
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This means that the image of be in LZ(∞)/v−1LZ(∞) is equal to that of 〈uλ〉 in LZ(∞)/v−1LZ(∞).

Hence we obtain the finally result, which is a stronger version of Theorem 6.2.

Theorem 9.1 Let Λ be a finite-dimensional hereditary k-algebra. Then for any exceptional

module Vλ, we have

〈uλ〉 ∈ B(∞),

i.e., the image of 〈uλ〉 in LZ(∞)/v−1LZ(∞) lies in the crystal basis.

Acknowledgement The authors thank Guanglian Zhang for his help in completing the

last section.
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