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1 Introduction

M. Gromov introduced the following notion of uniform embeddability of metric spaces into

Hilbert space.

Definition 1.1 (see [6]) A map f : X → H from a metric space X to a Hilbert space

H is said to be a uniform embedding if there exist two non-decreasing functions ρ1 and ρ2 on

[0, +∞), such that

(1) lim
r→+∞

ρ1(r) = +∞,

(2) ρ1(d(x, y)) ≤ ‖f(x) − f(y)‖ ≤ ρ2(d(x, y)) for all x, y ∈ X.

In the context of coarse geometry, a uniform embedding f : X → H is a large scale equiva-

lence of X and f(X) (see [6,17]). M. Gromov suggested that coarse embeddability of a discrete

group into Hilbert space might be relevant to solve the Novikov conjecture (see [6]). G. Yu

subsequently proved the coarse Baum-Connes conjecture (resp. the Novikov conjecture) for

bounded geometry discrete metric spaces (resp. groups) which are uniformly embeddable into

a Hilbert space (see [21]). This remarkable result leads to the verification of the coarse Baum-

Connes conjecture (resp. the Novikov conjecture) for large classes of discrete metric spaces

(resp. groups). In the same paper (see [21]), G. Yu introduced a property, called property A,
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on discrete metric spaces and groups, which is a weak form of amenability and which implies

uniform embeddability of a metric space.

Definition 1.2 (see [21]) A discrete metric space (X, d) is said to have property A if for

any R > 0 and ε > 0, there exists a family {Ax}x∈X of finite non-empty subsets of X ×N such

that

(1) for all x, y ∈ X with d(x, y) < R, we have

#(Ax △ Ay)

#(Ax ∪ Ay)
< ε;

(2) there exists S > 0 such that for each x ∈ X, if (y, n) ∈ Ax, then d(x, y) ≤ S.

Since the appearance of Yu’s work, uniform embeddability and property A have been in-

tensely studied, and many permanence properties on them for metric spaces and group oper-

ations have been established (see e.g. [1, 7, 8, 10, 15–17, 19–21]). It turns out that the class of

uniformly embeddable groups shares many permanence properties with the class of property A

groups. For instance, both classes are closed under taking subgroups, products, direct limits,

free products with amalgam, and extensions by property A groups (see [4]).

On the other hand, another notion introduced by M. Gromov (see [6]), called finite asymp-

totic dimension of a metric space, has also important applications in geometry and topology.

Recall that a metric space X is said to have finite asymptotic dimension if there is an integer

n ≥ 0 such that for any (large) number r > 0 the space X may be written as a union of n + 1

subspaces Xi, each of which may be further decomposed as an r-disjoint union:

X =

n
⋃

i=0

Xi, Xi =

∞
⊔

j=1

Xij , dist(Xij , Xij′) > r,

in which the metric family {Xij : i = 0, 1, 2, · · · , n, j = 1, 2, 3, · · · } is bounded, i.e., S :=

sup
i,j

diam(Xij) < ∞.

Inspired by the feature of finite asymptotic dimension, E. Guentner, R. Tessera and G. Yu

introduced very recently a measure of computational complexity of metric spaces under large

scale decompositions of finite depth to study the stable Borel conjecture (see [9]). This is the

so-called property Q.

Definition 1.3 A metric space X is said to have property Q if there is an integer m ≥ 0,

such that we have m levels of decomposition as follows:

(1) there exists an integer n0 ≥ 0 such that for any r1 > 0, we have

X =

n0
⋃

i1=0

Xi1 , Xi1 =
⊔

r1-disjoint

Xi1j1 ,

where the subscript j1 runs through a countable set;

(2) there exists an integer n1 = n1(n0, r1) ≥ 0 such that for any r2 > 0 and any Xi1j1 , we

have

Xi1j1 =

n1
⋃

i2=0

Xi1j1i2 , Xi1j1i2 =
⊔

r2-disjoint

Xi1j1i2j2 ,
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where the subscript j2 runs through a countable set;

· · · · · ·

(m) there exists an integer nm−1 = nm−1(n0, · · · , nm−2, r1, · · · , rm−1) ≥ 0 such that for

any rm > 0 and any Xi1j1···im−1jm−1
, we have

Xi1j1···im−1jm−1
=

nm−1
⋃

im=0

Xi1j1···im−1jm−1im
,

Xi1j1···im−1jm−1im
=

⊔

rm-disjoint

Xi1j1···imjm
,

and the family of metric spaces {Xi1j1···imjm
}i1,j1,··· ,im,jm

is uniformly bounded, i.e., S :=

sup
i1,j1,··· ,im,jm

diam(Xi1j1···imjm
) < ∞.

Guentner-Tessera-Yu [9] proved that the stable Borel conjecture holds for aspherical man-

ifolds whose fundamental groups have property Q, and that all countable solvable groups and

countable subgroups of SL2(K), where K is a field, have property Q.

In this paper, we shall regard the formation of the above property Q as an operation of

metric spaces, and study permanence properties of uniform embeddability and property A

under this large scale decomposition operation of finite depth. To do this, we shall introduce two

notions, called property QA and property QUE respectively, by replacing the requirement “the

family of metric spaces {Xi1j1···imjm
}i1,j1,··· ,im,jm

is uniformly bounded” in the above definition

by the requirements that this family has “equi-property A” or “equi-uniform embeddability”,

respectively. For a discrete metric space X of bounded geometry, we show in Section 2 that if X

has property QA then X has property A. For an arbitrary metric space X , we show in Section

3 that if X has property QUE then X is uniformly embeddable into Hilbert space. It turns

that the proofs of both permanence properties share again close similarities as with the case

for groups mentioned above. We remark that P. Nowak (see [14]) gave the first counterexample

of discrete metric space which is uniformly embeddable into Hilbert space but does not have

property A. However, this counterexample does not have bounded geometry. So far, no such

counterexample in the world of bounded geometry metric spaces has been known.

2 Property QA

In this section, we first briefly review an equivalent characterization of property A and the

notion of “equi-property A”, and then introduce the notion of property QA for metric spaces.

Finally, we show that if a bounded geometry discrete metric space X has property QA, then it

has property A.

Let X be a discrete metric space with bounded geometry, i.e., ∀ r > 0, ∃N(r) > 0, such

that ∀x ∈ X , the number of elements #BX(x, r) in the ball BX(x, r) is less than N(r). It

follows that X is countable. Denote

ℓ1(X)+ :=
{

f : X → R

∣

∣

∣
f(x) ≥ 0,

∑

x∈X

f(x) < ∞
}

.

Proposition 2.1 (see [10, 19]) Let X be a discrete metric space with bounded geometry.

Then X has property A if and only if for all R > 0 and ε > 0, there exist a map ξ : X → ℓ1(X)+,
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{ξx}x∈X , and a constant S > 0 such that for all x, y ∈ X, we have ‖ξx‖1 = 1, and

(1) d(x, y) ≤ R =⇒ ‖ξx − ξy‖1 ≤ ε;

(2) Supp ξx ⊂ BX(x, S).

The “degree” of property A was studied by G. Bell [1], and M. Dadarlat and E. Guentner [5].

Definition 2.1 (see [1, 5]) A family of metric spaces {Xi}i∈I is said to have equi-property

A if for all R > 0 and ε > 0, there exist a family of maps ξi : Xi → ℓ1(Xi)+ (i ∈ I) and a

common constant S > 0 such that for all i ∈ I and all x, y ∈ Xi, we have ‖ξi
x‖1 = 1, and

(1) d(x, y) ≤ R =⇒ ‖ξi
x − ξi

y‖1 ≤ ε;

(2) Supp ξi
x ⊂ BXi

(x, S).

Now we introduce our property QA as follows.

Definition 2.2 A discrete metric space (X, d) is said to have property QA if there exists

an integer m ≥ 0 such that we have m levels of decomposition as follows:

(1) there exists an integer n0 ≥ 0 such that for any r1 > 0, we have

X =

n0
⋃

i1=0

Xi1 , Xi1 =
⊔

r1-disjoint

Xi1j1 ;

(2) there exists an integer n1 = n1(n0, r1) ≥ 0 such that for any r2 > 0 and any Xi1j1 , we

have

Xi1j1 =

n1
⋃

i2=0

Xi1j1i2 , Xi1j1i2 =
⊔

r2-disjoint

Xi1j1i2j2 ;

· · · · · ·

(m) there exists an integer nm−1 = nm−1(n0, · · · , nm−2, r1, · · · , rm−1) ≥ 0 such that for

any rm > 0 and any Xi1j1···im−1jm−1
, we have

Xi1j1···im−1jm−1
=

nm−1
⋃

im=0

Xi1j1···im−1jm−1im
,

Xi1j1···im−1jm−1im
=

⊔

rm-disjoint

Xi1j1···imjm
,

and the family of metric spaces {Xi1j1···imjm
}i1,j1,··· ,im,jm

has equi-property A.

The main result of this section is the following permanence property for property A under

large scale decompositions of finite depth.

Theorem 2.1 Let X be a discrete metric space with bounded geometry. Then X has prop-

erty A if and only if X has property QA.

The necessity is immediate since any family of subspaces of a property A space has equi-

property A. To show the sufficiency, we need the following two lemmas.

Lemma 2.1 (see [1]) Let U = {U} be a cover of a metric space X with multiplicity at most

k + 1 (k ≥ 0) and Lebesgue number L > 0. For U ∈ U , define

φU (x) =
d(x, X \ U)

∑

V ∈U

d(x, X \ V )
.
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Then (φU )U∈U is a partition of unity on X subordinate to the cover U . Moreover, each φU

satisfies

|φU (x) − φU (y)| ≤
2k + 3

L
d(x, y), ∀x, y ∈ X,

and the family (φU )U∈U satisfies

∑

U∈U

|φU (x) − φU (y)| ≤
(2k + 2)(2k + 3)

L
d(x, y), ∀x, y ∈ X.

The finite union theorem and certain infinite union theorem for property A, established

by G. Bell [1], and M. Dadarlat and E. Guentner [5], played an important role in studying

permanence properties. Next, we prove a finer “quantitative version of finite union theorem”.

Lemma 2.2 Let X be a discrete metric space of bounded geometry, expressed as a union

of finitely many subspaces X =
n
⋃

i=0

Xi. If R > 0, ε > 0 and S > 0 are any constants such that

there exist n+1 maps ξi : Xi → ℓ1(Xi)+ (i = 0, 1, · · · , n) satisfying that for all i = 0, 1, 2, · · · , n

and all x, y ∈ Xi, we have ‖ξi
x‖1 = 1 and

(1) d(x, y) ≤ R + 2(L + R) =⇒ ‖ξi
x − ξi

y‖1 ≤ ε
2 , where

L =
2(2n + 2)(2n + 3)R

ε
;

(2) Supp(ξi
x) ⊂ BXi

(x, S).

Then there exists a map η : X → ℓ1(X)+ such that ‖ηx‖1 = 1 for all x ∈ X, and

(1) d(x, y) ≤ R =⇒ ‖ηx − ηy‖1 ≤ ε for all x, y ∈ X ;

(2) Supp(ηx) ⊂ BX(x, S + L + R).

Proof Let R > 0, ε > 0 and S > 0 be given as above. Set

NL(Xi) = {x ∈ Xi : d(x, Xi) ≤ L}.

Then we have

X =

n
⋃

i=0

NL(Xi),

the multiplicity of the cover {NL(Xi)}
n
i=0 is at most n + 1, and the Lebesgue number of

{NL(Xi)}
n
i=0 is at least L.

By Lemma 2.1, there is a partition of unity {φi}
n
i=0 subordinated to the cover {NL(Xi)}

n
i=0

such that
n

∑

i=0

|φi(x) − φi(y)| ≤
(2n + 2)(2n + 3)

L
d(x, y), ∀x, y ∈ X.

For each i = 0, 1, · · · , n and any x ∈ NL+R(Xi), choose a point p(x) ∈ Xi such that d(x, p(x)) ≤

2d(x, X) ≤ 2(L + R). Define a map

ηi : NL+R(Xi) → ℓ1(NL+R(Xi))+

by ηi
x = ξi

p(x). We have ‖ηi
x‖1 = ‖ξi

p(x)‖1 = 1 for all x ∈ NL+R(Xi), and

Supp(ηi
x) ⊂ BNL+R(Xi)(x, S + L + R).
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For any x, y ∈ NL+R(Xi) with d(x, y) ≤ R, we have d(p(x), p(y)) ≤ R + 2(L + R). Thus,

‖ηi
x − ηi

y‖1 = ‖ξi
p(x) − ξi

p(y)‖1 ≤
ε

2
.

Note that ℓ1(Xi)+ can be naturally regarded as a subspace of ℓ1(NL+R(Xi))+. Define

η : X → ℓ1(X)+

by

ηx =

n
∑

i=0

φi(x)ηi
x, ∀x ∈ X.

Then we claim that η is the desired map. Indeed, firstly we observe

‖ηx‖1 =
∥

∥

∥

n
∑

i=0

φi(x)ηi
x

∥

∥

∥

1
=

n
∑

i=0

φi(x)
∑

y∈NL+R(X)

ηi
x(y) =

n
∑

i=0

φi(x)‖ηi
x‖1 =

n
∑

i=0

φi(x) = 1,

and

Supp(ηx) ⊂

n
⋃

i=0

BNL+R(Xi)(x, S + L + R) = BX(x, S + L + R).

Moreover, for all x, y ∈ X with d(x, y) ≤ R, we have

‖ηx − ηy‖1 =
∥

∥

∥

n
∑

i=0

φi(x)ηi
x −

n
∑

i=0

φi(y)ηi
y

∥

∥

∥

1

≤
∥

∥

∥

n
∑

i=0

(φi(x) − φi(y))ηi
x

∥

∥

∥

1
+

∥

∥

∥

n
∑

i=0

φi(y)(ηi
x − ηi

y)
∥

∥

∥

1

≤

n
∑

i=0

|φi(x) − φi(y)| +

n
∑

i=0

φi(y)‖ηi
x − ηi

y‖1

≤
ε

2
+

n
∑

i=0

φi(y)
ε

2

≤ ε.

This completes the proof.

Proof of Theorem 2.1 Let X be a bounded geometry discrete metric space with property

QA. We show that X has property A.

Let R > 0 and ε > 0 be given. By the definition of property QA, there is an integer m ≥ 0

such that

(1) there exists an integer n0 ≥ 0 such that for the number r1 := R1+1 := R0+2(L1+R0)+1,

we have

X =

n0
⋃

i1=0

Xi1 , Xi1 =
⊔

r1-disjoint

Xi1j1 ,

where R0 = R, L1 = 2(2n0+2)(2n0+3)R0

ε
and R1 = R0 + 2(L1 + R0);

(2) there exists an integer n1 = n1(n0, r1) ≥ 0 such that for r2 := R2 + 1 := R1 + 2(L2 +

R1) + 1 and for any Xi1j1 , we have

Xi1j1 =

n1
⋃

i2=0

Xi1j1i2 , Xi1j1i2 =
⊔

r2-disjoint

Xi1j1i2j2 ,
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where L2 = 22(2n1+2)(2n1+3)R1

ε
and R2 = R1 + 2(L2 + R1);

· · · · · ·

(m) there exists an integer nm−1 = nm−1(n0, · · · , nm−2, r1, · · · , rm−1) ≥ 0 such that for

rm := Rm + 1 := Rm−1 + 2(Lm + Rm−1) + 1 and for any Xi1j1···im−1jm−1
, we have

Xi1j1···im−1jm−1
=

nm−1
⋃

im=0

Xi1j1···im−1jm−1im
,

Xi1j1···im−1jm−1im
=

⊔

rm-disjoint

Xi1j1···imjm
,

and the family of metric spaces {Xi1j1···imjm
}i1,j1,··· ,im,jm

has equi-property A, where

Lm =
2m(2nm−1 + 2)(2nm−1 + 3)Rm−1

ε
, Rm = Rm−1 + 2(Lm + Rm−1).

Hence, by the definition of equi-property A, for the constants Rm ≥ 0 and the above ε > 0,

there exist a constant S > 0 and a family of maps

ξi1j1···imjm : Xi1j1···imjm
→ ℓ1(Xi1j1···imjm

)+

such that for all x, y ∈ Xi1j1···imjm
, we have ‖ξi1j1···imjm

x ‖1 = 1 and

(1) d(x, y) ≤ Rm =⇒ ‖ξi1j1···imjm
x − ξi1j1···imjm

y ‖1 ≤ ε
2m ;

(2) Supp(ξi1j1···imjm
x ) ⊂ BXi1j1···imjm

(x, S).

Since

Xi1j1···im
=

⊔

rm-disjoint

Xi1j1···imjm
,

we naturally define

ξi1j1···im : Xi1j1···im
→ ℓ1(Xi1j1···im

)+ =
⊕

jm

ℓ1(Xi1j1···imjm
)+

by

ξi1j1···im

x =

{

ξi1j1···imjm
x , if x ∈ Xi1j1···imjm

,

0, otherwise

for all x ∈ Xi1j1···im
. Note that for any x ∈ Xi1j1···im

, there exists a unique X
i1j1···im

ejm
, such

that x ∈ X
i1j1···im

ejm
. Thus ‖ξi1j1···im

x ‖1 = ‖ξi1j1···im
ejm

x ‖1 = 1, and for all x, y ∈ Xi1j1···im
, we

have

(1) d(x, y) ≤ Rm = Rm−1 + 2(Lm + Rm−1) =⇒

‖ξi1j1···im

x − ξi1j1···im

y ‖1 = ‖ξi1j1···imjm

x − ξi1j1···imjm

y ‖1 ≤
ε

2m
;

(2) Supp(ξi1j1···im
x ) ⊂ BXi1j1···im

(x, S).

By Lemma 2.2, we obtain a family of maps

ξi1j1···im−1jm−1 : Xi1j1···im−1jm−1
→ ℓ1(Xi1j1···im−1jm−1

)+

such that for all x, y ∈ Xi1j1···im−1jm−1
, we have ‖ξ

i1j1···im−1jm−1

x ‖1 = 1 and

(1) d(x, y) ≤ Rm−1 =⇒ ‖ξ
i1j1···im−1jm−1

x − ξ
i1j1···im−1jm−1

y ‖1 ≤ ε
2m−1 ;
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(2) Supp(ξ
i1j1···im−1jm−1

x ) ⊂ BXi1j1···im−1jm−1
(x, S + Lm + Rm−1).

Now we have moved from the m-th level of decomposition back to the (m− 1)-th level, and

are in the situation as required by the assumption of Lemma 2.2. Repeating the above process

by using Lemma 2.2 for m-times, we conclude that, for any R > 0 and ε > 0, there exist a map

ξ : X → ℓ1(X)+

and a constant S′ = S +
m
∑

i=1

Lj +
m−1
∑

j=0

Rj such that for all x, y ∈ X , we have ‖ξx‖1 = 1, and

(1) d(x, y) ≤ R =⇒ ‖ξx − ξy‖1 ≤ ε;

(2) Supp(ξx) ⊂ BX(x, S′).

That is, X has property A, as expected. The proof is completed.

3 Property QUE

In this section, we first briefly review an equivalent characterization of uniform embeddabil-

ity (see [4]) and the notion of “equi-uniform embeddability” (see [5]) due to M. Dadarlat and

E. Guentner, and then introduce the notion of “property QUE” for arbitrary metric spaces

(without the assumption of bounded geometry). Finally, we show that if a metric space X has

property QUE, then X is uniformly embeddable into Hilbert space.

Proposition 3.1 (see [4]) Let X be a metric space. Then X is uniformly embeddable into

a Hilbert space if and only if for every R > 0 and ε > 0 there exists a Hilbert space valued map

ξ : X → H, (ξx)x∈X , such that ‖ξx‖ = 1 and, for all x, y ∈ X, we have

(1) d(x, y) ≤ R =⇒ ‖ξx − ξy‖ ≤ ε;

(2) lim
S→∞

sup{|〈ξx, ξy〉| : d(x, y) ≥ S, x, y ∈ X} = 0.

Definition 3.1 (see [5]) A family {Xi}i∈I of metric spaces is equi-uniformly embeddable

into Hilbert space if for every R > 0 and ε > 0 there exists a family {ξi}i∈I of Hilbert space

valued maps ξi : Xi → Hi for all i ∈ I, such that ‖ξi
x‖ = 1 for all x ∈ Xi, and

(1) ∀ i ∈ I, ∀x, y ∈ Xi, d(x, y) ≤ R =⇒ ‖ξi
x − ξi

y‖ ≤ ε;

(2) lim
S→∞

sup
i∈I

sup{|〈ξi
x, ξi

y〉| : d(x, y) ≥ S, x, y ∈ Xi} = 0.

Now we introduce our property QUE as follows.

Definition 3.2 A metric space (X, d) is said to have property QUE if there exists an integer

m ≥ 0 such that we have m levels of decomposition as follows:

(1) there exists an integer n0 ≥ 0 such that for any r1 > 0, we have

X =

n0
⋃

i1=0

Xi1 , Xi1 =
⊔

r1-disjoint

Xi1j1 ;

(2) there exists an integer n1 = n1(n0, r1) ≥ 0 such that for any r2 > 0 and any Xi1j1 , we

have

Xi1j1 =

n1
⋃

i2=0

Xi1j1i2 , Xi1j1i2 =
⊔

r2-disjoint

Xi1j1i2j2 ;

· · · · · ·
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(m) there exists an integer nm−1 = nm−1(n0, · · · , nm−2, r1, · · · , rm−1) ≥ 0 such that for

any rm > 0 and any Xi1j1···im−1jm−1
, we have

Xi1j1···im−1jm−1
=

nm−1
⋃

im=0

Xi1j1···im−1jm−1im
,

Xi1j1···im−1jm−1im
=

⊔

rm-disjoint

Xi1j1···imjm
,

and the family of metric spaces {Xi1j1···imjm
}i1,j1,··· ,im,jm

is equi-uniformly embeddable into

Hilbert space.

The main result of this section is the following permanence property of uniform embeddabil-

ity of metric spaces into Hilbert space under large scale decompositions of finite depth.

Theorem 3.1 A metric space X has property QUE if and only if X is uniformly embeddable

into Hilbert space.

The necessity is immediate since any family of subspaces of a uniformly embeddable metric

space is equi-uniformly embeddable. To show the sufficiency, we need the following “quantitative

version of finite union theorem” for uniform embeddings.

Lemma 3.1 Let X be a metric space expressed as a union of finitely many subspaces, say,

X =
n
⋃

i=0

Xi. Let R > 0 and ε > 0 be any constants such that there exist Hilbert space valued

maps ξi : Xi → Hi (i = 0, 1, · · · , n) satisfying ‖ξi
x‖ = 1 for all x ∈ Xi, and

(1) for each i and all x, y ∈ Xi,

d(x, y) ≤ R + 2(L + R) =⇒ ‖ξi
x − ξi

y‖ ≤ ε,

where L = (2n+2)(2n+3)R
ε2 ;

(2) for each i, we have

lim
S→∞

sup{|〈ξi
x, ξi

y〉| : d(x, y) ≥ S, x, y ∈ Xi} = 0.

Then there is a map ζ : X → H =
n
⊕

i=0

Hi such that ‖ζx‖ = 1 for all x ∈ X, and

(1) for all x, y ∈ X, we have d(x, y) ≤ R =⇒ ‖ζx − ζy‖ ≤ 2ε;

(2) lim
T→∞

sup{|〈ζx, ζy〉| : d(x, y) ≥ T, x, y ∈ X} = 0.

Proof Let R > 0 and ε > 0 be given as in the assumption. Set NL(Xi) = {x ∈ X :

d(x, Xi) ≤ L}. Then

(1) X =
n
⋃

i=0

NL(Xi);

(2) multiplicity {NL(Xi)}
n
i=0 ≤ n + 1;

(3) Lebesgue {NL(Xi)}
n
i=0 ≥ L.

By Lemma 2.1, there exists a partition of unity {φi}
n
i=0 subordinate to the cover {NL(Xi)}

n
i=0

such that
n

∑

i=0

|φi(x) − φi(y)| ≤
(2n + 2)(2n + 3)

L
d(x, y), ∀x, y ∈ X.
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For any x ∈ NL+R(Xi), choose a point p(x) ∈ Xi satisfying d(x, p(x)) ≤ 2d(x, X) ≤ 2(L + R).

Define

ηi : NL+R(Xi) → Hi

by ηi
x = ξi

p(x). Then we have ‖ηi
x‖ = ‖ξi

p(x)‖ = 1 for any x ∈ NL+R(Xi).

Moreover, for each i = 0, 1, · · · , n and any x, y ∈ NL+R(Xi) such that d(x, y) ≤ R, we have

d(p(x), p(y)) ≤ R + 2(L + R) so that

‖ηi
x − ηi

y‖ = ‖ξi
p(x) − ξi

p(y)‖ ≤ ε.

Let

T = S + 2(L + R).

For any x, y ∈ NL+R(Xi) with d(x, y) ≥ T , we have d(p(x), p(y)) ≥ S. Hence, for each

i = 0, 1, · · · , n, we have

lim
T→∞

sup{|〈ηi
x, ηi

y〉| : d(x, y) ≥ T, x, y ∈ NL+R(Xi)} = 0.

Now, define ζ : X → H =
n
⊕

i=0

Hi by

ζx =
n

⊕

i=0

(φi(x)
1
2 ηi

x).

Then ‖ζx‖ = 1 for each x ∈ X . For any x, y ∈ X , consider α(x, y) =
n
⊕

i=0

αi(x, y) ∈ H and

β(x, y) =
n
⊕

i=0

βi(x, y) ∈ H with components

αi(x, y) = φi(x)
1
2 (ηi

x − ηi
y) ∈ Hi, βi(x, y) = (φi(x)

1
2 − φi(y)

1
2 )ηi

y ∈ Hi.

On one hand, ‖α(x, y)‖2 =
n
∑

i=0

φi(x)‖ηi
x − ηi

y‖
2. If d(x, y) ≤ R and x ∈ NL(Xi), then y ∈

NL+R(Xi), so that we obtain ‖α(x, y)‖ ≤ ε. On the other hand, since |a
1
2 − b

1
2 |2 ≤ |a − b|, we

have

‖β(x, y)‖2 =

n
∑

i=0

‖(φi(x)
1
2 − φi(y)

1
2 )ηi

y‖
2

≤

n
∑

i=0

|φi(x)
1
2 − φi(y)

1
2 |2

≤
n

∑

i=0

|φi(x) − φi(y)|

≤ ε2.

That is, ‖β(x, y)‖ ≤ ε. Therefore,

‖ζx − ζy‖ = ‖α(x, y) + β(x, y)‖ ≤ ‖α(x, y)‖ + ‖β(x, y)‖ ≤ 2ε,
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whenever d(x, y) ≤ R. Furthermore, since φi vanishes outside NL(Xi), for any x, y ∈ X with

d(x, y) ≥ T , we have

|〈ζx, ζy〉| ≤

n
∑

i=0

φi(x)
1
2 φi(y)

1
2 |〈ηi

x, ηi
y〉|

≤ max
i=0,1,··· ,n

sup{|〈ηi
x′ , ηi

y′〉| : d(x′, y′) ≥ T, x′, y′ ∈ NL(Xi)}.

Since for each i = 0, 1, · · · , n, we have

lim
T→∞

sup{|〈ηi
x, ηi

y〉| : d(x, y) ≥ T, x, y ∈ NL+R(Xi)} = 0,

it follows that

lim
T→∞

sup{|〈ζx, ζy〉| : d(x, y) ≥ T, x, y ∈ X} = 0,

as desired. This completes the proof.

We will actually need the following “equi-version” of Lemma 3.1 for a sequence of metric

spaces.

Lemma 3.2 Let n ≥ 0 be an integer. Let {Xj}
∞
j=0 be a sequence of metric spaces, each of

which can be expressed as a union of n+1 subspaces Xj =
n
⋃

i=0

Xji. Let R > 0 and ε > 0 be any

constants such that there exist Hilbert space valued maps ξji : Xji → Hji satisfying ‖ξji
x ‖ = 1

for all x ∈ Xji, and

(1) for all j, i and all x, y ∈ Xji,

d(x, y) ≤ R + 2(L + R) =⇒ ‖ξji
x − ξji

y ‖ ≤ ε,

where L = (2n+2)(2n+3)R
ε2 ;

(2) lim
S→∞

sup
j,i

sup{|〈ξji
x , ξji

y 〉| : d(x, y) ≥ S, x, y ∈ Xji} = 0.

Then there is a sequence of maps ζj : Xj → Hj :=
n
⊕

i=0

Hji such that ‖ζj
x‖ = 1 for all x ∈ Xj,

and

(a) for all j and all x, y ∈ Xj, we have

d(x, y) ≤ R =⇒ ‖ζj
x − ζj

y‖ ≤ 2ε;

(b) lim
T→∞

sup
j

sup{|〈ζj
x, ζj

y〉| : d(x, y) ≥ T, x, y ∈ Xj} = 0.

Proof Let R > 0 and ε > 0 be given as in the assumption. For any δ > 0, there exists a

constant S0 > 0 by condition (2) such that, for all j, i and all x, y ∈ Xji, we have

d(x, y) ≥ S0 =⇒ |〈ξji
x , ξji

y 〉| < δ.

Set T0 = S0 + 2(L + R). It follows from the above proof of Lemma 3.1 applied to all Xj that,

for all j and all x, y ∈ Xj , we have

d(x, y) ≥ T0 =⇒ |〈ζj
x, ζj

y〉| < δ.

The proof is completed.
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Proof of Theorem 3.1 Let X be a metric space with property QUE. We show that X

is uniformly embeddable into Hilbert space by using Proposition 3.1. Let R > 0 and ε > 0 be

given. By the definition of property QUE, there is an integer m ≥ 0 such that

(1) there exists an integer n0 ≥ 0 such that for the number r1 := R1+1 := R0+2(L1+R0)+1,

we have

X =

n0
⋃

i1=0

Xi1 , Xi1 =
⊔

r1-disjoint

Xi1j1 ,

where R0 = R, L1 = (2n0+2)(2n0+3)R0

( ε
2
)2 and R1 = R0 + 2(L1 + R0);

(2) there exists an integer n1 = n1(n0, r1) ≥ 0 such that for r2 := R2 + 1 := R1 + 2(L2 +

R1) + 1 and for any Xi1j1 , we have

Xi1j1 =

n1
⋃

i2=0

Xi1j1i2 , Xi1j1i2 =
⊔

r2-disjoint

Xi1j1i2j2 ,

where L2 = (2n1+2)(2n1+3)R1

( ε
4
)2 = (2n1+2)(2n1+3)R1

( ε

22
)2 and R2 = R1 + 2(L2 + R1);

· · · · · ·

(m) there exists an integer nm−1 = nm−1(n0, · · · , nm−2, r1, · · · , rm−1) ≥ 0 such that for

rm := Rm + 1 := Rm−1 + 2(Lm + Rm−1) + 1 and for any Xi1j1···im−1jm−1
, we have

Xi1j1···im−1jm−1
=

nm−1
⋃

im=0

Xi1j1···im−1jm−1im
,

Xi1j1···im−1jm−1im
=

⊔

rm-disjoint

Xi1j1···imjm
,

and the family of metric spaces {Xi1j1···imjm
}i1,j1,··· ,im,jm

is equi-uniformly embeddable into

Hilbert space, where

Lm =
(2nm−1 + 2)(2nm−1 + 3)Rm−1

( ε
2m )2

, Rm = Rm−1 + 2(Lm + Rm−1).

Hence, by the definition of equi-uniform embeddability, for the constant Rm ≥ 0 and the

above ε > 0, there exists a family of Hilbert space valued maps

ξi1j1···imjm : Xi1j1···imjm
→ Hi1j1···imjm

such that for all x, y ∈ Xi1j1···imjm
, we have ‖ξi1j1···imjm

x ‖ = 1, and

(1) d(x, y) ≤ Rm =⇒ ‖ξi1j1···imjm
x − ξi1j1···imjm

y ‖ ≤ ε
2m ;

(2) lim
S→∞

sup
i1,j1,··· ,im,jm

sup{|〈ξi1j1···imjm
x , ξi1j1···imjm

y 〉| : d(x, y) ≥ S, x, y ∈ Xi1j1···imjm
} = 0.

Since

Xi1j1···im
=

⊔

rm-disjoint

Xi1j1···imjm
,

we naturally define

ξi1j1···im : Xi1j1···im
→ Hi1j1···im

=
⊕

jm

Hi1j1···imjm
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by

ξi1j1···im

x =

{

ξi1j1···imjm
x , if x ∈ Xi1j1···imjm

,

0, otherwise

for all x ∈ Xi1j1···im
. Note that for any x ∈ Xi1j1···im

, there exists a unique X
i1j1···im

ejm
such

that x ∈ X
i1j1···im

ejm
. Thus ‖ξi1j1···im

x ‖ = ‖ξi1j1···im
ejm

x ‖ = 1, and for all x, y ∈ Xi1j1···im
we have

(1) d(x, y) ≤ Rm = Rm−1 + 2(Lm + Rm−1) =⇒

‖ξi1j1···im
x − ξi1j1···im

y ‖ = ‖ξi1j1···imjm
x − ξi1j1···imjm

y ‖ ≤
ε

2m
;

(2) lim
S→∞

sup
i1,j1,··· ,jm−1,im

sup{|〈ξi1j1···im
x , ξi1j1···im

y 〉| : d(x, y) ≥ S, x, y ∈ Xi1j1···im
} = 0.

By Lemma 3.2, we obtain a family of maps

ξi1j1···im−1jm−1 : Xi1j1···im−1jm−1
→ Hi1j1···im−1jm−1

=

nm−1
⊕

im=0

Hi1j1···im−1jm−1im

such that for all x, y ∈ Xi1j1···im−1jm−1
, we have ‖ξ

i1j1···im−1jm−1

x ‖ = 1, and

(1) d(x, y) ≤ Rm−1 =⇒ ‖ξ
i1j1···im−1jm−1

x − ξ
i1j1···im−1jm−1

y ‖ ≤ ε
2m−1 ;

(2) lim
S1→∞

sup
i1,j1,···im−1,jm−1

sup{|〈ξ
i1j1···im−1jm−1

x , ξ
i1j1··· ,im−1jm−1

y 〉| : d(x, y) ≥ S1, x, y ∈

Xi1j1···im−1jm−1
} = 0, where the running variables S1 and S can be compared with each other

as in S1 = S + 2(Lm + Rm−1).

Now we have moved from the m-th level of decomposition back to the (m− 1)-th level, and

are in the situation as required by the assumption of Lemma 3.2. Repeating the above process

by using Lemma 3.2 for m-times, we conclude that, for any R > 0 and ε > 0, there exists a

map

ξ : X → H =

n0
⊕

i1=0

Hi1

such that for all x, y ∈ X , we have ‖ξx‖ = 1, and

(1) d(x, y) ≤ R =⇒ ‖ξx − ξy‖ ≤ ε;

(2) lim
Sm→∞

sup{|〈ξx, ξy〉| : d(x, y) ≥ Sm, x, y ∈ X} = 0, where the running variable Sm is

related with the previous running variables S0 = S, S1, · · · , Sm−1 by

Sm = Sm−1 + 2(L1 + R0) = S0 + 2

m
∑

i=1

(Li + Ri−1).

Hence, by Proposition 3.1, X is uniformly embeddable into Hilbert space. The proof is com-

pleted.
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