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Abstract Property A and uniform embeddability are notions of metric geometry which
imply the coarse Baum-Connes conjecture and the Novikov conjecture. In this paper,
the authors prove the permanence properties of property A and uniform embeddability of
metric spaces under large scale decompositions of finite depth.
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1 Introduction

M. Gromov introduced the following notion of uniform embeddability of metric spaces into

Hilbert space.

Definition 1.1 (see [6])) A map f : X — H from a metric space X to a Hilbert space
H is said to be a uniform embedding if there exist two non-decreasing functions p1 and pa on
[0, +00), such that

(1) lim pa(r) = +oo,
(2) pr(d(z,y)) < |If(x) = FWI < p2(d(z,y)) for allz,y € X.

In the context of coarse geometry, a uniform embedding f : X — H is a large scale equiva-
lence of X and f(X) (see [6,17]). M. Gromov suggested that coarse embeddability of a discrete
group into Hilbert space might be relevant to solve the Novikov conjecture (see [6]). G. Yu
subsequently proved the coarse Baum-Connes conjecture (resp. the Novikov conjecture) for
bounded geometry discrete metric spaces (resp. groups) which are uniformly embeddable into
a Hilbert space (see [21]). This remarkable result leads to the verification of the coarse Baum-
Connes conjecture (resp. the Novikov conjecture) for large classes of discrete metric spaces
(resp. groups). In the same paper (see [21]), G. Yu introduced a property, called property A,
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on discrete metric spaces and groups, which is a weak form of amenability and which implies
uniform embeddability of a metric space.

Definition 1.2 (see [21]) A discrete metric space (X,d) is said to have property A if for
any R >0 and € > 0, there exists a family { Az }zex of finite non-empty subsets of X x N such
that

(1) for all x,y € X with d(x,y) < R, we have

#(A: A Ay)
#(A, UAY)

(2) there exists S > 0 such that for each x € X, if (y,n) € A, then d(z,y) < S.

<€

Since the appearance of Yu’s work, uniform embeddability and property A have been in-
tensely studied, and many permanence properties on them for metric spaces and group oper-
ations have been established (see e.g. [1,7,8,10,15-17,19-21]). It turns out that the class of
uniformly embeddable groups shares many permanence properties with the class of property A
groups. For instance, both classes are closed under taking subgroups, products, direct limits,
free products with amalgam, and extensions by property A groups (see [4]).

On the other hand, another notion introduced by M. Gromov (see [6]), called finite asymp-
totic dimension of a metric space, has also important applications in geometry and topology.
Recall that a metric space X is said to have finite asymptotic dimension if there is an integer
n > 0 such that for any (large) number r > 0 the space X may be written as a union of n + 1
subspaces X;, each of which may be further decomposed as an r-disjoint union:

n o0
X=JXi Xi=|]Xy, dist(Xi;,Xi;0) >,

i=0 j=1
in which the metric family {X;; : ¢ = 0,1,2,--- ,n,j = 1,2,3,---} is bounded, ie., S :=
sup diam(X;;) < oo.
0,J

Inspired by the feature of finite asymptotic dimension, E. Guentner, R. Tessera and G. Yu

introduced very recently a measure of computational complexity of metric spaces under large
scale decompositions of finite depth to study the stable Borel conjecture (see [9]). This is the
so-called property Q.

Definition 1.3 A metric space X is said to have property @Q if there is an integer m > 0,
such that we have m levels of decomposition as follows:

(1) there exists an integer ng > 0 such that for any r1 > 0, we have

no
x=x, X,= || X
i1=0 r1-disjoint
where the subscript j1 runs through a countable set;
(2) there exists an integer nq1 = ni(ng,r1) > 0 such that for any ro > 0 and any X, ;,, we
have

ni
Xiljl = U Xiljlizv Xiljliz = |_| Xiljli2j27
12=0

ro-disjoint
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where the subscript jo runs through a countable set;

(m) there exists an integer Ny,—1 = Np—1(No,++ s Mm—2,71, "+ s Tm—1) > 0 such that for
any vy > 0 and any Xy, 4,1 jom_1» We have
Nm—1
Xirjrim—1jm-1 = U Xivjieim—1Gm—1im>
i =0
Xisjroim vimvim = | Xinjioisons

Tm -disjoint

and the family of metric spaces {Xiyjy i jm v jr,e- is uniformly bounded, i.e., S :=

) < 0.

)i7n )j'VTL
sup diam(X;

11,0150 s tmsJm

1j1"'i7njm

Guentner-Tessera-Yu [9] proved that the stable Borel conjecture holds for aspherical man-
ifolds whose fundamental groups have property Q, and that all countable solvable groups and
countable subgroups of SLo(K), where K is a field, have property Q.

In this paper, we shall regard the formation of the above property Q as an operation of
metric spaces, and study permanence properties of uniform embeddability and property A
under this large scale decomposition operation of finite depth. To do this, we shall introduce two
notions, called property Qa and property Qug respectively, by replacing the requirement “the

family of metric spaces { X, jy - in jom Fit 1o is uniformly bounded” in the above definition

i sdm
by the requirements that this family has “equi-property A” or “equi-uniform embeddability”,
respectively. For a discrete metric space X of bounded geometry, we show in Section 2 that if X
has property Qa then X has property A. For an arbitrary metric space X, we show in Section
3 that if X has property Qug then X is uniformly embeddable into Hilbert space. It turns
that the proofs of both permanence properties share again close similarities as with the case
for groups mentioned above. We remark that P. Nowak (see [14]) gave the first counterexample
of discrete metric space which is uniformly embeddable into Hilbert space but does not have
property A. However, this counterexample does not have bounded geometry. So far, no such

counterexample in the world of bounded geometry metric spaces has been known.

2 Property Qa

In this section, we first briefly review an equivalent characterization of property A and the
notion of “equi-property A”, and then introduce the notion of property Qa for metric spaces.
Finally, we show that if a bounded geometry discrete metric space X has property Qa, then it
has property A.

Let X be a discrete metric space with bounded geometry, i.e., Vo > 0, 3N (r) > 0, such
that V2 € X, the number of elements #Bx (z,7) in the ball Bx(z,r) is less than N(r). It
follows that X is countable. Denote

(X)) = {f:X—>R ’ f(x) >0, Zf(x) <oo}.

zeX

Proposition 2.1 (see [10,19]) Let X be a discrete metric space with bounded geometry.
Then X has property A if and only if for all R > 0 and e > 0, there exist a map § : X — £1(X)4,
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{&:}zex, and a constant S > 0 such that for all x,y € X, we have ||:]1 =1, and
(1) dz,y) <R = |&x =&l < &
(2) Suppé, C Bx(,S).
The “degree” of property A was studied by G. Bell [1], and M. Dadarlat and E. Guentner [5].

Definition 2.1 (see [1,5]) A family of metric spaces {X;}icr is said to have equi-property
A if for all R > 0 and € > 0, there exist a family of maps €' : X; — (1(X;)+ (i € I) and a
common constant S > 0 such that for alli € I and all z,y € X;, we have || ||; =1, and

(1) die.y) <R = €~ &1 <=

(2) Supp& C Bx,(z,9).

Now we introduce our property Qa as follows.

Definition 2.2 A discrete metric space (X, d) is said to have property Q4 if there exists
an integer m > 0 such that we have m levels of decomposition as follows:

(1) there exists an integer ng > 0 such that for any r1 > 0, we have

no
Xx=Ux, X,= || X

11=0 r1-disjoint

(2) there exists an integer n1 = ni(ng,m1) > 0 such that for any ro > 0 and any X, ;,, we

have
n1
Xiji = U Xirjrizs  Xirjuia = |_| Xiyjrizga’
10=0 ro-disjoint
(m) there exists an integer Ny—1 = Nypm—1(Mo,++ s Mm—2,71, "+ s Tm—1) > 0 such that for

any rm > 0 and any X 4,0, 1 g1, we have

Nm —1
Xivjroimorimes = | Xirdrerimsm—rims
i =0
X'L.ljl"'im—ljmflim = Xiljl"'imjmv

Tm -disjoint

and the family of metric spaces { X, jy - ipim Firojr, has equi-property A.

7im )j’VTL
The main result of this section is the following permanence property for property A under
large scale decompositions of finite depth.

Theorem 2.1 Let X be a discrete metric space with bounded geometry. Then X has prop-
erty A if and only if X has property Q4.

The necessity is immediate since any family of subspaces of a property A space has equi-
property A. To show the sufficiency, we need the following two lemmas.

Lemma 2.1 (see [1]) LetU = {U} be a cover of a metric space X with multiplicity at most
k+1 (k>0) and Lebesgue number L > 0. For U € U, define

_ d(z,X\U)
S X d(@ X\ V)

veu

ou ()
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Then (¢u)veu s a partition of unity on X subordinate to the cover U. Moreover, each ¢y

satisfies
o0 (@)~ o)) < 2 2dy), VayeX,
and the family (ov)veu satisfies
(2k + 2)(2k + 3)

> gu(z) — guly)| < d(z,y), Vz,y€X.

veu

The finite union theorem and certain infinite union theorem for property A, established
by G. Bell [1], and M. Dadarlat and E. Guentner [5], played an important role in studying

permanence properties. Next, we prove a finer “quantitative version of finite union theorem”.

Lemma 2.2 Let X be a discrete metric space of bounded geometry, expressed as a union
of finitely many subspaces X = |J X;. If R >0, e >0 and S > 0 are any constants such that
i=0
there exist n+1 maps £ : X; — £1(X;)+ (i = 0,1,---,n) satisfying that for alli = 0,1,2,--- ,n
and all z,y € X;, we have ||€L]|1 =1 and
(1) d(z,y) < R+2(L+ R) = [|€L —&)|l1 < 5, where

=~ 3

I 2(2n +2)(2n +3)R

)

3

(2) Supp(&;) C Bx,(,5).

Then there exists a map n: X — 1(X)1 such that ||ng|l1 =1 for all x € X, and
(1) d(z,y) <R = |ne =yl < ¢ for all 2,y € X;
(2) Supp(n.) C Bx(z,S+ L+ R).

Proof Let R>0,c >0 and S > 0 be given as above. Set
Np(X;) ={z e X, :d(z, X;) < L}.

Then we have .
X = JNu(xy),
i=0
the multiplicity of the cover {Np(X;)}", is at most n + 1, and the Lebesgue number of
{NL(X;)}, is at least L.
By Lemma 2.1, there is a partition of unity {¢;}7_, subordinated to the cover {Np(X;)}7,

such that

3 louta) - outo)] < EEDEED oy vy ex
1=0

Foreachi=0,1,--- ,nand any € Ny r(X;), choose a point p(x) € X; such that d(z, p(z)) <
2d(z,X) < 2(L + R). Define a map

n': Notr(Xi) — 6(Npwr(X0))+
by 7l = 5;@)' We have ||ni|| = Hf;(m)Hl =1 for all z € Npr(X;), and

Supp(nl) € By, . n(x,) (7.5 + L+ R).
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For any x,y € Np4+r(X;) with d(z,y) < R, we have d( (x),ply )) < R+2(L+ R). Thus,
I~ bl = by ~ Sl < 5
Note that ¢1(X;)+ can be naturally regarded as a subspace of ¢1(Npr(X;))+. Define
n: X —6(X)y
by
Z pi(x)nt, Ve X.

Then we claim that 7 is the desired map. Indeed, firstly we observe

Il = || Yo etwmi| =Y oit@) Y nzu—z annl—z@ =1,
1=0 1=0

YENL+Rr(X)
and

Supp(n..) UBNHR(Xl (,S+L+R) = Bx(z,S+ L+ R).
1=0

Moreover, for all z,y € X with d(z,y) < R, we have

e =yl = || 32 . - Zniqﬁi(y)”? 1
i=0 i
< Hi sz (bz %
=0

+HZ¢1 771—771,)

This completes the proof.

Proof of Theorem 2.1 Let X be a bounded geometry discrete metric space with property
Qa. We show that X has property A.

Let R > 0 and € > 0 be given. By the definition of property Qa, there is an integer m > 0
such that

(1) there exists an integer ng > 0 such that for the number r1 := R;+1 := Ry+2(L1+Rp)+1
we have e

x=U X, Xi,= |] X
i1=0 r1-disjoint

where Ry = R, L; = 22r0t2Cnot3Fo onq R, = Ry + 2(Ly + Ro);

(2) there exists an integer nqy = nq(ng,r1) > 0 such that for ro := Ry + 1 := Ry +2(L2 +
R1) + 1 and for any X, ;,, we have

11J1 - U X11J112a Xi1j1i2 = |_| Xi1j1i2j2a

190=0 ro-disjoint
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where L, = ZCUIDCUIN/ 414 Ry — Ry 4 2(Ly + Ry);
(m) there exists an integer Ny,—1 = Nypm—1(N0oy s Mm—2,71, "+ ,Tm—1) > 0 such that for
Tm = Rm+1:=Rp_1+2(Lm+ Rn-1)+1 and for any X, ;,...i,, 1. ., we have

Mm —1
Xivjroimorimes = ) Xisgreimsm—rims
i =0
X’L.ljl"'imfljmflim = Xiljl"'imjma

Tm-disjoint

and the family of metric spaces {Xi, i, ipjm Firja,e- has equi-property A, where

stmsJm

2™ (20, 2)(21,y,— 3)Rm—
Lm = ( n Lt >(€n L ) 1a Rm :Rm71+2(Lm+Rm71)'

Hence, by the definition of equi-property A, for the constants R,, > 0 and the above € > 0,
there exist a constant S > 0 and a family of maps

5 e Xll_]l"'%n]nl - ZI(XZ1J1”'lme)+

such that for all z,y € X, j,...i,.j,., we have |71 imim || =1 and
(1) dlay) < By = €0 min — gn-inin |y <
(2) Supp(&partmim) C By z,S).
Since

i1 imim (

Xijroin = | Xovjiimion

7m-disjoint

we naturally define

EIm X i = 1 (Xirin) 4 = DO (X +
im

by
1J1° im J 3 L
giljl""im _ gm mam, ifze Xllh“'lmjmv
* 0, otherwise

for all x € Xj, j,...i,,. Note that for any z € Xj, ;. there exists a unique X, . . =, such

that x € X, ~ . Thus [[gQirtm||; = ||§;1j1”'im3m||1 =1, and for all z,y € X, ;.

1151 imIm

s
iy WE
have
(1) d(z,y) < Ry = Rpp—1+ 2(Ly + Rpp—1) =
v — gveim|y = [ imin — ghininan |y < £
(2) Supp(&7tim) € By, ., (2,5).
By Lemma 2.2, we obtain a family of maps
§i1j1...im71jm71 : Xi1j1~~~im71jm71 — b (Xiljl"'im—ljm—l)‘f’
such that for all 2,y € X, ji iy _1j,_15 W have_||§;1j_l'”i"f1j’"*1 [ =1 and
(1) d(.I,y) S Rmfl — ||§;1J1“'Zm—ljm—1 _ 5;1]1“'1m—13m—1||1 S 27571;
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(2) Supp(&H7Ttmmy © Bx, i i (@8 + Ly + Ri—1).

Now we have moved from the m-th level of decomposition back to the (m — 1)-th level, and
are in the situation as required by the assumption of Lemma 2.2. Repeating the above process
by using Lemma 2.2 for m-times, we conclude that, for any R > 0 and £ > 0, there exist a map

X = 06(X)y

m m—1
and a constant S’ =S+ Y L; + > R, such that for all z,y € X, we have ||&;|l1 = 1, and
i=1 =0
(1) dla,y) < R = & — &l <

(2) Supp(&:) C Bx(z,5").
That is, X has property A, as expected. The proof is completed.

3 Property Qug

In this section, we first briefly review an equivalent characterization of uniform embeddabil-
ity (see [4]) and the notion of “equi-uniform embeddability” (see [5]) due to M. Dadarlat and
E. Guentner, and then introduce the notion of “property Qug” for arbitrary metric spaces
(without the assumption of bounded geometry). Finally, we show that if a metric space X has
property Qug, then X is uniformly embeddable into Hilbert space.

Proposition 3.1 (see [4]) Let X be a metric space. Then X is uniformly embeddable into
a Hilbert space if and only if for every R > 0 and € > 0 there exists a Hilbert space valued map
§:X = H, (&)wex, such that |€.]] =1 and, for all x,y € X, we have

(1) d(z,y) < R=[& - §ll <&

(2) Jim sup{[{&, &y)| : d(z,y) 2 S, 2,y € X} =0.

Definition 3.1 (see [5]) A family {X;}ic1 of metric spaces is equi-uniformly embeddable
into Hilbert space if for every R > 0 and € > 0 there exists a family {£'};c; of Hilbert space
valued maps & : X; — H; for all i € I, such that ||€L|| = 1 for all x € X;, and

(1) Viel, Vao,y e X;, dl@,y) <R= | - &l <&

(2) Jim sl_tel?sup{K 60 cd(z,y) > S, xy € X} =0.

Now we introduce our property Qug as follows.

Definition 3.2 A metric space (X, d) is said to have property Qug if there exists an integer
m > 0 such that we have m levels of decomposition as follows:

(1) there exists an integer ng > 0 such that for any r1 > 0, we have

no
X=X, Xi= || X
11 =0 r1-disjoint
(2) there exists an integer nq1 = ni(ng,r1) > 0 such that for any ro > 0 and any X, ;,, we
have
ny
Xiji = U Xirjrizs  Xigjuia = |_| Xiyjrizga’
i2=0 ro-disjoint
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(m) there exists an integer Ny,—1 = Nyp—1(No, s Mm—2,71, "+ yTm—1) > 0 such that for

any rm > 0 and any X 4,01 g1, we have

MNm—1

Xirjrim—1jm-1 = U Xirjieim—1Gm—1im>
im =0

Xisjroim vimvim = | Xinjioisons

Tm -disjoint

and the family of metric spaces {Xi,j, iy jm Fitoji, - s equi-uniformly embeddable into

VimsJm
Hilbert space.

The main result of this section is the following permanence property of uniform embeddabil-
ity of metric spaces into Hilbert space under large scale decompositions of finite depth.

Theorem 3.1 A metric space X has property Qug if and only if X is uniformly embeddable
into Hilbert space.

The necessity is immediate since any family of subspaces of a uniformly embeddable metric
space is equi-uniformly embeddable. To show the sufficiency, we need the following “quantitative

version of finite union theorem” for uniform embeddings.

Lemma 3.1 Let X be a metric space expressed as a union of finitely many subspaces, say,
n
X = U Xi. Let R> 0 and ¢ > 0 be any constants such that there exist Hilbert space valued
i=0
maps £ : X; — H; (i =0,1,---,n) satisfying ||€L]| = 1 for all z € X;, and
(1) for eachi and all x,y € X,

d(z,y) < R+2(L+R) =& - §ll <e,

where L — (2n+2)(2n+3)R

(2) for each z, we h(we

hm sup{|<§w,§>| d(z,y) > S, z,y € X;} =0.

Then there is a map (: X — H = @ H; such that |(|| = 1 for all x € X, and

(1) for all x,y € X, we have d(:z: y) <R = ||(z — (| < 2¢;
(2) Jlim sup{[{C, Gy)| 2 d(z,y) 2 T, 2,y € X} = 0.

Proof Let R > 0 and £ > 0 be given as in the assumption. Set Np(X;) = {z € X :
d(z, X;) < L} Then

1) X = U NL(Xi);

(2) multlphmty {NL(X)}g <n+1;

(3) Lebesgue {N.(X;)}™, > L.

By Lemma 2.1, there ex1sts a partition of unity {¢; }7_, subordinate to the cover { N1 (X;)}7,

such that

(2n+2)(2n + 3)
Z|¢z z | > fd(:v,y), Vr,y e X.
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For any = € Ny r(X;), choose a point p(z) € X; satisfying d(x, p(x)) < 2d(z, X) < 2(L + R).
Define

' Nepr(Xi) — H;
by . = f;(m). Then we have ||n|| = ||§;(z)|| =1 for any = € Npyr(X;).

Moreover, for each i = 0,1, ,n and any z,y € Np4r(X;) such that d(z,y) < R, we have
d(p(z),p(y)) < R+ 2(L + R) so that

17 = Myl = €p(ay = Epuyll < e

Let
T=S5+2(L+R).

For any z,y € Npipr(X;) with d(x,y) > T, we have d(p(x),p(y)) > S. Hence, for each
1=0,1,--- ,n, we have

Th—r>noo SUP{|<77§“77;>| : d(xay) > T7 T,y € NL+R(Xi)} =0.

Now, define ( : X — H = € H; by
i=0

n

G = Peila)nl).

=0

Then ||(;|| = 1 for each z € X. For any x,y € X, consider a(z,y) = P ai(z,y) € H and
=0

Bz, y) = P Bi(x,y) € H with components
i=0

ai(z,y) = ¢i(@) 2l — i) € Hi,  Bilx,y) = (di(2)® — ¢i(y)®)nl, € H;.

n

On one hand, [la(z,y)|* = X ¢i(x)|ns —ni|*. If d(z,y) < R and x € Np(X;), then y €
i=0 ‘

Ni4r(X:), so that we obtain ||a(x,y)|| < e. On the other hand, since |az — bz |2 < |a — b|, we

have

18I = 3 (6i(2)* = di(y) ) |

That is, ||8(z,y)|| < e. Therefore,

€ = Gull = lla(z, y) + Bz, y)ll < llalz, y)|| + [8(z, y)l| < 2e,
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whenever d(z,y) < R. Furthermore, since ¢; vanishes outside Ny (X;), for any z,y € X with
d(xz,y) > T, we have

1
(G Gyl < Zsm i()2 (0}, my)|
< _max sup{|(, my )|+ d(a’,y) > T, 2,y € Ni(X0)}-
Since for each ¢ = 0,1,--- ,n, we have

Jimsup{[(ng, )|« d(w,y) > T, 2,y € Npyr(Xi)} =0,
it follows that
hm sup{|(Cz, Cy)| 1 d(z,y) > T, xz,y € X} =0,
as desired. This completes the proof.

We will actually need the following “equi-version” of Lemma 3.1 for a sequence of metric
spaces.

Lemma 3.2 Letn > 0 be an integer. Let {X;}52, be a sequence of metric spaces, each of
which can be expressed as a union of n+1 subspaces X; = U Xji. Let R> 0 and e > 0 be any

constants such that there exist Hilbert space valued maps 531 Xj; — Hj; satisfying ||| = 1
forall x € Xj;, and
(1) forall j,i and all x,y € Xj;,

d(z,y) S R+2(L+R) = [|&' - & <,

where L — (2n+2)(2n+3)R,
5
(2) hm supsup{|< fﬂ>| d(z,y) > S, z,y € X;} =0.
J'L

Then there is a sequence of maps ¢ : X; — Hj := @ Hj; such that ||(Z|| =1 for all x € X,
i=0

and

(a) for all j and all z,y € X;, we have
d(z,y) < R=||¢J — ¢l <2
(b)Jim_ supsup{|( L d(@,y) 2T, z,y € X;}=0.

Proof Let R > 0 and € > 0 be given as in the assumption. For any ¢ > 0, there exists a
constant Sy > 0 by condition (2) such that, for all j,¢ and all z,y € X;;, we have

d(z,y) > So = (€1, &) < 6.

Set Ty = So + 2(L + R). It follows from the above proof of Lemma 3.1 applied to all X; that,
for all j and all z,y € X, we have

d(z,y) = To = |(¢1, ()] < 6.

The proof is completed.
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Proof of Theorem 3.1 Let X be a metric space with property Qug. We show that X
is uniformly embeddable into Hilbert space by using Proposition 3.1. Let R > 0 and € > 0 be
given. By the definition of property Qug, there is an integer m > 0 such that

(1) there exists an integer ng > 0 such that for the number r; := R1+1 := Ro+2(L1+Ro)+1,
we have

ng
X = U Xil? Xil = |_| Xiljla
11=0 r1-disjoint
where Ry = R, L, = w and Ry = Ry + 2(L1 + Ry);
(2) there exists an integer nqy = nq(ng,r1) > 0 such that for ro := Ry + 1 := Ry +2(L2 +

R;) + 1 and for any X;, ;,, we have

1719
ni

Xiljl = U Xi1j1i27 Xiljliz = |_| Xi1j1i2j27

i9=0 ro-disjoint

where Ly = <2"1+22<%2)’;1+3>Rl = <2"1+2(><%2’;;+3>Rl and Ry = Ry + 2(La + Ry);
2

(m) there exists an integer Ny,—1 = Nypm—1(N0oy s Mm—2,71, "+ ,Tm—1) > 0 such that for
Tm = Rpm+1:=Ry_1+2(Lpy+ Rn-1)+1 and for any X, j,...i,, 14,1, We have

Mm —1
Xivjroiimsimos = | Xivjsoiomsim—sim>
i =0
X’L.ljl"'im—ljmflim = Xiljl"'imjma

Tm-disjoint

and the family of metric spaces {Xi, j, . imim Fitj, - im.jm 18 €qui-uniformly embeddable into
Hilbert space, where

2 m— +2 2 m— +3 Rm*
Lm: ( " - )E ?)2 : ) 15 Rm :Rm71+2(Lm+Rm71)
2771

Hence, by the definition of equi-uniform embeddability, for the constant R,, > 0 and the

above € > 0, there exists a family of Hilbert space valued maps

7;1]‘1"'7:7'71]‘771 . .. . . P . .
i3 P Xivgrimgm = Hivjyeimgim

such that for all z,y € X, j,...i,. j,., We have |71 imim|| =1, and
(1) d(a,y) < Ry = €05 nim — glpin=inin] < 2
(2) lim sup ) SUP{|< ;1]1""Lmjm75;1]1"'ijm>| : d(xvy) > Sv T,y € X’i1j1"'imjm} =0.

T4, 1, yim s Jm
Since

Xiljl"'im = |_| Xiljl"'imjma

rm-disjoint

we naturally define

j1tm LY. P — S
3 " Xiygrein = Higgyoi, = @th---zmam
Jm
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by
i )& @ € X
v 0, otherwise
for all v € X j,...i,,. Note that for any z € Xj j,...i,,, there exists a unique X; . . = = such
that z € X, ;= . Thus ||| = ||£irir-imin || = 1, and for all 2,y € Xy jy--in, We have
(1) d(z,y) < Ry = Rpp—1+ 2(Ly + Rpp—1) =
|[gindnim glz'jljl»»»im” = ||gidrimin _ géljl---imij < 2%;
(@) Jm s sup{[{gie i) s d(n,y) > S, @,y € Xipgyoi, ) =0
11,J15 5 )m—1,tm
By Lemma 3.2, we obtain a family of maps
N —1
I Im T X i s = Hisgyin g = @D Hivjiin i
A
suc at for all x,y € X;,4,...i.. .4, _,, We have ;E""'m* m=1)| — , an
h that for all X j1eim—1dmo1 h gLt met 1, and
(1) d(z,y) < Ryp—1 = Hg;l]l"'zm-—l‘]m—.l _ §;1J1~~~Z-m.713m-71” S 2";571;
(2)  lim sup sup{[ (&7 T g T d(,y) > Sy, wy €

517200 41 i 1
Xiljl...imfljmfl]l»i 0, wlllére ;he running variables S; and S can be compared with each other
asin S1 =5+ 2(Ly, + Ry—1).

Now we have moved from the m-th level of decomposition back to the (m — 1)-th level, and
are in the situation as required by the assumption of Lemma 3.2. Repeating the above process
by using Lemma 3.2 for m-times, we conclude that, for any R > 0 and £ > 0, there exists a
map

no
¢:X—H=PH,
i1=0
such that for all z,y € X, we have ||| = 1, and
(1) dz,y) SR=|& - &l <&
(2) S,}}E}oo sup{|(&z,&y)| : d(z,y) > Sm, z,y € X} = 0, where the running variable S,, is

related with the previous running variables Sy = 5,51, -+ ,Sn—1 by

Sm = Sm—1+2(L1 + Ro) = So + 2Z(Li + Ri—1).
i=1
Hence, by Proposition 3.1, X is uniformly embeddable into Hilbert space. The proof is com-
pleted.

References

[1] Bell, G. C., Property A for groups acting on metric spaces, Topology Appl., 130(3), 2003, 239-251.

[2] Chen, X. M., Dadarlat, M., Guentner, E., et al, Uniform embeddability and exactness of free products, J.
Funct. Anal., 205(1), 2003, 168-179.

[3] Choonkil, P., Isomorphisms between quasi-Banach algebras, Chin. Ann. Math., 28B(3), 2007, 353-362.

adarlat, M. an uentner, E., Constructions preserving Hilbert space uniform embeddability of discrete
4] Dadarlat, M d G E., C i ing Hilb if beddabili f di
groups, Trans. Amer. Math. Soc., 355(8), 2003, 3253-3275.



Y. J. Duan, Q. Wang and X. J. Wang

Dadarlat, M. and Guentner, E., Uniform embeddability of relatively hyperbolic groups, J. Reine Angew.
Math., 612, 2007, 1-15.

Gromv, M., Asymptotic invariants of infinite groups, Geometric Group Theory, Vol. 2, London Math. Soc.
Lecture Notes Series, Vol. 182, G. Niblo and M. Roller (eds.), Cambridge University Press, Cambridge,
1993.

Guentner, E. and Kaminker, J., Exactness and the Novikov conjecture, Topology, 41(2), 2002, 411-418.

Guentner, E. and Kaminker, J., Addendum to “Exactness and the Novikov conjecture”, Topology, 41(2),
2002, 419-420.

Guentner, E., Tessera, R. and Yu, G. L., Decomposition complexity and the stable Borel conjecture,
preprint, 2008.

Higson, N. and Roe, J., Amenable group actions and the Novikov conjecture, J. Reine Angew. Math., 519,
2000, 143-153.

Hu, Y. J. and Wang, Q., Ideal in the Roe algebras of discrete metric spaces with coefficients in B(H),
Chin. Ann. Math., 30B(2), 2009, 139-144.

Joita, M., On representations associated with completely n-positive linear maps on pro-C*-algebras, Chin.
Ann. Math., 29B(1), 2008, 55-64.

Kirchberg, E. and Wassermann, S., Permanence properties of C*-exact groups, Documenta Math., 4, 1999,
513-558.

Nowak, P., Coarsely embeddable metric spaces without Property A, J. Funct. Anal., 252(1), 2007, 126—
136.

Ozawa, N., Amenable actions and exactness for discrete groups, C. R. Acad. Sci. Paris. Ser. I Math., 330,
2000, 691-695.

Ozawa, N., Boundary amenability of relatively hyperbolic groups, Topology Appl., 153(14), 2006, 2624
2630.

Roe, J., Lectures on Coarse Geometry, University Lecture Series, Vol. 31, AMS, Providence, RI, 2003.

Shakhmurov, V. B., Embedding theorem in B-spaces and applications, Chin. Ann. Math, 29B(1), 2008,
95-112.

Tu, J.-L., Remark on Yu’s ‘property A’ for discrete metric spaces and groups, Bull. Soc. Math. France,
129(1), 2001, 115-139.

Willett, R., Some notes on Property A, 2006. arXiv:math.OA /0612492v1

Yu, G. L., The coarse Baum-Connes conjecture of spaces which admit a uniformly embedding into Hilbert
spaces, Invent. Math., 139(1), 2000, 201-240.



