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Abstract The authors prove the global exact boundary controllability for the cubic semi-
linear wave equation in three space dimensions, subject to Dirichlet, Neumann, or any
other kind of boundary controls which result in the well-posedness of the corresponding
initial-boundary value problem. The exponential decay of energy is first established for the
cubic semi-linear wave equation with some boundary condition by the multiplier method,
which reduces the global exact boundary controllability problem to a local one. The proof
is carried out in line with [2, 15]. Then a constructive method that has been developed
in [13] is used to study the local problem. Especially when the region is star-complemented,
it is obtained that the control function only need to be applied on a relatively open subset
of the boundary. For the cubic Klein-Gordon equation, similar results of the global exact
boundary controllability are proved by such an idea.
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1 Introduction

In this paper, we continue to study the exact boundary controllability problem for nonlinear

wave equations. The local exact boundary controllability for semi-linear and quasi-linear wave

equations was built in [13]. The aim of this paper is to study the global exact boundary

controllability for semi-linear wave equations. Here by local we mean that the initial and

final data are small in some suitable Sobolev spaces, while by global we mean there is no

smallness restriction on the initial and final data. We first prove the dissipative energy estimate

for the semi-linear wave equation, which reduces the problem of the global exact boundary

controllability to a local one. Then we apply the constructive method introduced in [13] to

establish the local exact boundary controllability.

To best illustrate our idea, we take the cubic semi-linear wave equation in three space
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dimensions for example:

�u+ λu3 = 0, 0 < t < T, x ∈ Ω, (1.1)

where � = ∂2
t − △, △ =

3∑
i=1

∂2

∂x2
i

, λ is a positive constant and Ω is a bounded open subset of

R
3.

Consider the initial state

u(0, x) = f0(x), ut(0, x) = f1(x), x ∈ Ω (1.2)

and the final state

u(T, x) = g0(x), ut(T, x) = g1(x), x ∈ Ω. (1.3)

Let s ≥ 2, f0, g0 ∈ Hs(Ω) and f1, g1 ∈ Hs−1(Ω), where Hs(Ω) is the standard Sobolev space

of order s. For 0 ≤ t ≤ T and x ∈ ∂Ω, we impose any of the following boundary conditions on

equation (1.1): 



u = h(t, x) of Dirichlet type,

∂u

∂n
= h(t, x) of Neumann type,

∂u

∂n
+ bu = h(t, x) of the third type,

∂u

∂n
+ but = h(t, x) of the dissipative type,

(1.4)

where b and b are given positive constants. Here we can use any other kind of boundary

condition as long as the corresponding initial-boundary value problem is well-posed.

Then the problem of the exact boundary controllability for the equation (1.1) is stated as

follows: Given T > 0, is it possible to find a corresponding boundary control h(t, x) driving the

equation (1.1) with the initial state (f0, f1) to the desired state (g0, g1) at time T ?

In this paper, we will establish the global exact boundary controllability for the cubic semi-

linear wave equation.

Precisely we prove the following theorem.

Theorem 1.1 Suppose f0, g0 ∈ Hs(Ω), f1, g1 ∈ Hs−1(Ω), s ≥ 2. There exists a suffi-

ciently large positive constant T0 depending only on the Sobolev norm of the data ‖f0‖Hs(Ω),

‖f1‖Hs−1(Ω), ‖g0‖Hs(Ω), ‖g1‖Hs−1(Ω) and a boundary control function h, such that the cubic

semi-linear wave equation (1.1) with the initial state (1.2) and one of the boundary conditions

(1.4) admits a unique solution on the domain (0, T ) × Ω which verifies the desired state (1.3),

provided that the time T > T0.

B. Dehman, G. Lebeau and E. Zuazua obtained similar results on the exact internal con-

trollability problem in [2]. Note that the controllability time T depends on the initial and final

data. Whether T may be independent of the initial and final data is certainly one of the main

open problems in the context of controllability of nonlinear PDE.

There are an extremely large number of publications on the exact boundary controllability

problem. Some classical references can be found in [7,9]. For semi-linear hyperbolic equations,

E. Zuazua [14] introduced a variant of the Hilbert uniqueness method to study the control

problem for semi-linear wave equations y′′ −△y + f(y) = 0 in n space dimensions with both
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Dirichlet and Neumann boundary conditions, where f ∈ W
1,∞
loc (R) is a locally Lipschitz function.

The author got the exact controllability when the nonlinearity is asymptotically linear and local

controllability results for a large class of nonlinearities under some natural growth assumptions

on the nonlinearities in [14]. E. Zuazua also studied the exact controllability for semi-linear

wave equations ytt − yxx + f(y) = h with Dirichlet boundary condition in one space dimension

in [16], where the author established the exact controllability in H1
0 (Ω) × L2(Ω) with controls

h ∈ L2(Ω × (0, T )) supported in any open and non-empty subset of Ω if |f(s)|
|s| log2 |s|

→ 0 as

s → ∞ by HUM and a fixed point technique, which can be also applied to the wave equation

with Neumann type boundary condition. It was also shown in [16] that if f behaves like

−s logp(1 + |s|) with p > 2 as |s| → ∞, the system is not exactly controllable in any time T .

In [4], X. Fu, J. Yong and X. Zhang obtained a global exact controllability result for a class of

multidimensional semi-linear hyperbolic equations with super-linear nonlinearity and variable

coefficients, via an observability estimate for the linear hyperbolic equation with an unbounded

potential, which is obtained by a point-wise estimate and a global Carleman estimate for the

hyperbolic differential operators and analysis on the regularity of the optimal solution to an

auxiliary optimal control problem. I. Lasiecka and R. Triggiani [6] studied the (global) exact

controllability for the semi-linear wave equation utt − △u = f(u), where f is an absolutely

continuous function with first derivative f ′ a.e. being uniformly bounded |f ′| ≤ C a.e., and

obtained the exact controllability results on any state space H = H
γ
0 (Ω) ×Hγ−1(Ω) using the

control space Hγ
0 ([0, T ], L2(∂Ω)), 0 ≤ γ ≤ 1, γ 6= 1

2 , as well as the special case γ = 1
2 in [6].

Then let us show our strategy of establishing the global exact controllability for the cubic

semi-linear wave equation.

Without loss of generality, we assume Ω ⊂⊂ B1, where B1 is the unit ball centered at the

origin with the boundary ∂B1. We can always extend the functions f0, f1, g0, g1 to f̃0, f̃1, g̃0, g̃1

such that

supp(f̃0, f̃1, g̃0, g̃1) ⊂⊂ B1 (1.5)

and
‖f̃0‖Hs(B1) ≤ Cs‖f0‖Hs(Ω), ‖f̃1‖Hs−1(B1) ≤ Cs‖f1‖Hs−1(Ω),

‖g̃0‖Hs(B1) ≤ Cs‖g0‖Hs(Ω), ‖g̃1‖Hs−1(B1) ≤ Cs‖g1‖Hs−1(Ω)

(1.6)

for some constant Cs > 0 and all s ≥ 0 (for example, see [3]). In what follows, we will use the

same extension for several times and always denote the extension operator by ∼: f → f̃ .

We shall construct a solution of (1.1) with initial data f̃0, f̃1 and final data g̃0, g̃1 on the

domain (0, T ) × B1 for sufficiently large T . Then the restriction of the solution to ∂Ω yields

the desired boundary control function. To this end, we first evolve the equation (1.1) with the

initial data f̃0, f̃1 and the boundary condition ∂u
∂r

+ ∂u
∂t

+ u = 0 on the domain [0, T1] × B1 and

prove the global existence and an exponential decay of energy estimate for the solution of this

problem. Consequently, u(T1, x) and ut(T1, x) will be sufficiently small in appropriate Sobolev

spaces if T1 is large enough. Similarly, we evolve equation (1.1) with the final data g̃0, g̃1 and

backward with the boundary condition ∂u
∂r

− ∂u
∂t

+ u = 0 on the domain [T − T2, T ]×B1. Then

u(T −T2, x) and ut(T −T2, x) will be small enough in suitable Sobolev spaces provided that T2

is large enough. By taking T > T1 + T2, we find that it suffices to construct a solution on the

domain [T1, T −T2]×Ω with initial condition u(T1, x), ut(T1, x) and final condition u(T−T2, x),

ut(T −T2, x). Noting that u(T1, x), ut(T1, x) and u(T −T2, x), ut(T −T2, x) are small, we have
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reduced the global exact controllability problem to a local one, which was studied by Zhou and

Lei [13].

Now we take a look at the control problem of equation (1.1) in the star-complemented

region. For this problem, we attempt to obtain a control function only applied on a relatively

open subset of the boundary. D. Russell [10] and G. Chen [1] studied such problem for the

linear wave equation with the help of the decay estimate for the solution of the wave equation

on an exterior domain due to C. S. Morawetz.

First we give some useful definitions.

Definition 1.1 (see [3]) Let Ω∗ be an open subset of R3. We say Ω∗ is star-shaped if there

exists a point x∗ ∈ Ω∗ such that for all x ∈ Ω∗ the line segment {ξ | ξ = (1 − t)x∗ + tx, ∀ 0 ≤

t ≤ 1} lies in Ω∗. We also call it star-shaped with respect to x∗.

Definition 1.2 (see [10]) The pair (Ω,Γ) is star-complemented if Γ is a relatively open

subset of ∂Ω and there is a point x∗ ∈ Ω
c

with the property that each point x ∈ ∂Ω − Γ can be

connected to x∗ by a line segment which, except for x itself, lies entirely outside Ω .

Here Ω means the closure of Ω and Ωc means the complement of Ω.

Assume that there exists a star-complemented pair (Ω,Γ) for the region Ω and ∂Ω is a

regular, piecewise C∞ manifold of dimension two. What the word “regular” means will be

given in Section 4. Let Γ1 = ∂Ω − Γ.

Now we introduce the boundary control conditions, any of which we impose on the equation

(1.1):

u(t, x) = 0, 0 ≤ t ≤ T, x ∈ Γ1 (1.7)

and 



u = h(t, x) of Dirichlet type,

∂u

∂n
= h(t, x) of Neumann type,

∂u

∂n
+ cu = h(t, x) of the third type,

∂u

∂n
+ cut = h(t, x) of the dissipative type,

(1.8)

where c and c are given positive constants, for 0 ≤ t ≤ T and x ∈ Γ.

Briefly we establish the following theorem for the control problem of the cubic semi-linear

wave equation (1.1) in the star-complemented region.

Theorem 1.2 Assume that the bounded region Ω is star-complemented. For any f0, g0 ∈

Hs(Ω), f1, g1 ∈ Hs−1(Ω), s ≥ 2 with the property that ∂α
x f0 = ∂α

x g0 = 0 on Γ1 for |α| ≤ s− 1

and ∂β
x f1 = ∂β

xg1 = 0 on Γ1 for |β| ≤ s − 2, there exists a sufficiently large constant T0 > 0

depending only on the Sobolev norm of the data ‖f0‖Hs(Ω), ‖f1‖Hs−1(Ω), ‖g0‖Hs(Ω), ‖g1‖Hs−1(Ω)

and a boundary control h only applied on Γ such that the cubic semi-linear wave equation (1.1)

with the initial data (1.2), the boundary condition (1.7) and one of the conditions (1.8) admits a

unique solution on the domain (0, T )×Ω satisfying the desired data (1.3), provided that T > T0.

Remark 1.1 The solution in Theorem 1.1 or 1.2 belongs to
s⋂

j=0

Cj([0, T ], Hs−j(Ω)) and

the boundary control obtained by the way of our construction is not unique.
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The proof of Theorem 1.2 is similar to that of Theorem 1.1 to a large extent, however it is

more complicated.

The rest of this paper is organized as follows. In Section 2, we prove the global existence

and an exponentially dissipative energy estimate for the solution of the equation (1.1) with the

initial data f̃0, f̃1 and boundary condition ∂u
∂t

+ ∂u
∂r

+ u = 0 on the domain [0,+∞)×B1. Then

we prove Theorem 1.1 in Section 3 and Theorem 1.2 in Section 4 respectively. In Section 5, we

prove similar results of the global exact boundary controllability for the cubic Klein-Gordon

equation.

2 The Global Existence and Exponentially Dissipative Energy

Estimates for the Cubic Semi-linear Wave Equation

In this section, we will study the global existence of the strong solution to the mixed initial-

boundary value problem:





�u+ λu3 = 0, t ≥ 0, x ∈ B1,

t = 0 : u = f̃0, ut = f̃1, x ∈ B1,

∂u

∂t
+
∂u

∂r
+ u = 0, t ≥ 0, x ∈ ∂B1.

(2.1)

The proof relies on a local existence theory and an exponentially dissipative a priori energy

estimate.

We first establish the following local existence for system (2.1).

Lemma 2.1 Assume s ≥ 2, f̃0 ∈ Hs(B1), f̃1 ∈ Hs−1(B1) and supp(f̃0, f̃1) ⊂⊂ B1. There

exist positive constants T ∗ and M depending only on ‖f̃0‖Hs(B1) and ‖f̃1‖Hs−1(B1) such that

system (2.1) admits a unique solution u(t, x) on the domain [0, T ∗] × B1 satisfying

‖∂s
t u(t, · )‖

2
L2(B1)

+
s−1∑

l=0

‖∂l
tu(t, · )‖

2
H1(B1)

≤M2, ∀ 0 ≤ t ≤ T ∗. (2.2)

Proof In what follows, we will use C to denote a generic positive constant which may vary

from line to line (unless otherwise stated).

The condition supp(f̃0, f̃1) ⊂⊂ B1 implies supp(∂l
tu(0, · )) ⊂⊂ B1 for any l ≥ 0. Then even

if we apply ∂l
t (0 ≤ l ≤ s− 1) to system (2.1), the compatible condition still holds.

Now we prove the local existence of solution to system (2.1) by energy estimates and the

standard contraction mapping theorem.

For any v ∈ DT
M , where

DT
M =

{
v : [0, T ]× B1 → R

∣∣∣ v(0, · ) = f̃0, vt(0, · ) = f̃1,

sup
0≤t≤T

(
‖∂s

t v(t, · )‖
2
L2(B1)

+

s−1∑

l=0

‖∂l
tv(t, · )‖

2
H1(B1)

)
≤M2

}
,

we define a map Π : v −→ u, where u satisfies the mixed initial-boundary value problem:




�u+ λv3 = 0, t ≥ 0, x ∈ B1,

t = 0 : u = f̃0, ut = f̃1, x ∈ B1,

∂u

∂t
+
∂u

∂r
+ u = 0, t ≥ 0, x ∈ ∂B1.

(2.3)
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Applying ∂l
t (0 ≤ l ≤ s − 1) to system (2.3) and taking the L2 inner product of the resulting

equation with ∂l+1
t u, we obtain the energy estimate:

s−1∑

l=0

1

2

d

dt
(‖∂l+1

t u‖2
L2(B1)

+ ‖∇∂l
tu‖

2
L2(B1)

+ ‖∂l
tu‖

2
L2(∂B1)

)

+

s−1∑

l=0

‖∂l+1
t u‖2

L2(∂B1)
+ λ

s−1∑

l=0

∫

B1

∂l
t(v

3)∂l+1
t u dx = 0, (2.4)

where we used the boundary conditions ∂l+1
t u + ∂r∂

l
tu + ∂l

tu = 0 for all 0 ≤ l ≤ s − 1.

Consequently, we get

s−1∑

l=0

1

2

d

dt
(‖∂l+1

t u‖2
L2(B1)

+ ‖∇∂l
tu‖

2
L2(B1)

+ ‖∂l
tu‖

2
L2(∂B1)) ≤ λ

s−1∑

l=0

‖∂l
t(v

3)∂l+1
t u‖L1(B1). (2.5)

By Hölder inequality, for any l1 + l2 + l3 = l, we have

‖∂l1
t v∂

l2
t v∂

l3
t v∂

l+1
t u‖L1(B1) ≤ ‖∂l1

t v‖L6(B1)‖∂
l2
t v‖L6(B1)‖∂

l3
t v‖L6(B1)‖∂

l+1
t u‖L2(B1).

By Sobolev embedding theorem that H1(B1) →֒ L6(B1) in R3 and the inequality (2.5), we find

d

dt

(
‖∂s

tu‖
2
L2(B1)

+

s−1∑

l=1

‖∂l
tu‖

2
H1(B1)

+ ‖∇u‖2
L2(B1)

+

s−1∑

l=0

‖∂l
tu‖

2
L2(∂B1)

) 1
2

≤ CM3. (2.6)

Let

M = 4
(
‖∂s

t u(0, · )‖
2
L2(B1)

+

s−1∑

l=0

(‖∂l
tu(0, · )‖

2
H1(B1)

+ ‖∂l
tu(0, · )‖

2
L2(∂B1)

)
) 1

2

and integrate the inequality (2.6) with respect to time t over [0, t0]. Hence there exists a positive

constant T ∗
1 depending only on M such that for any 0 ≤ t0 ≤ T ∗

1 ,

(
‖∂s

t u(t0, · )‖
2
L2(B1)

+

s−1∑

l=1

‖∂l
tu(t0, · )‖

2
H1(B1)

+ ‖∇u(t0, · )‖
2
L2(B1)

) 1
2

≤
M

2
. (2.7)

From the equality u(t0, · ) =
∫ t0

0
ut(t, · )dt− u(0, · ) for any t0 ≥ 0, we know that there exists a

constant T ∗
2 < T ∗

1 such that ‖u(t0, · )‖L2(B1) ≤
M
2 for any 0 ≤ t0 ≤ T ∗

2 , which implies

sup
0≤t≤T∗

2

(
‖∂s

tu(t, · )‖
2
L2(B1)

+
s−1∑

l=0

‖∂l
tu(t, · )‖

2
H1(B1)

)
≤M2

by the inequality (2.7). Therefore, the map Π is D
T∗

2

M to D
T∗

2

M .

According to system (2.3), we have ∂l+1
t u = −λ∂l−1

t (v3) + ∆∂l−1
t u for all 1 ≤ l ≤ s − 1.

Then M is controlled by a constant depending only on ‖f̃0‖Hs(B1) and ‖f̃1‖Hs−1(B1).

For any v1, v2 ∈ D
T∗

2

M , define u1 = Πv1 and u2 = Πv2. Similarly, there exists a positive

constant T ∗ ≤ T ∗
2 depending only on ‖f̃0‖Hs(B1) and ‖f̃1‖Hs−1(B1) such that Π is a strict

contraction from DT∗

M to DT∗

M . By the standard contraction mapping theorem, there exists a

unique fixed point u ∈ DT∗

M such that Πu = u.

Therefore u solves system (2.1) and the inequality (2.2) holds.
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Remark 2.1 The local solution in Lemma 2.1 belongs to
s⋂

j=0

Cj([0, T ∗], Hs−j(B1)).

To conclude Remark 2.1, we recall the following elliptic estimates involving the boundary

condition of Neumann type (see [11]).

Lemma 2.2 Suppose that Ω is a bounded domain with the smooth boundary ∂Ω. Consider

the Neumann system: 


−∆h = f, in Ω,

∂h

∂n
= g, on ∂Ω.

(2.8)

For any given f ∈ Hk(Ω) and g ∈ Hk+ 1
2 (∂Ω) for k = 0, 1, · · · , any solution h to system (2.8)

satisfies

‖h‖2
Hk+2(Ω) ≤ Ck(‖f‖2

Hk(Ω) + ‖g‖2

H
k+1

2 (∂Ω)
+ ‖h‖2

L2(Ω)). (2.9)

Lemma 2.3 Suppose that u solves the mixed initial-boundary value problem (2.1). We have

s∑

j=0

‖∂j
t u‖

2
Hs−j(B1)

≤ C1

(
‖∂s

t u‖
2
L2(B1)

+

s−1∑

l=0

‖∂l
tu‖

2
H1(B1)

)
. (2.10)

Here C1( · ) is a function in the form C1(z) =
ks∑

j=1

c1jz
j, where ks is an integer depending only

on s and c1j is a constant depending only on the integer j.

Proof First we regard system (2.1) as the Neumann boundary problem of elliptic equations:



△u = ∂ttu+ λu3, x ∈ B1,

∂u

∂r
= −

∂u

∂t
− u, x ∈ ∂B1.

(2.11)

Applying ∂l
t (0 ≤ l ≤ s− 2) to system (2.11) and using the inequality (2.9), we conclude

‖∂l
tu‖

2
H2(B1)

≤ C‖∂l+2
t u+ λ∂l

t(u
3)‖2

L2(B1)
+ C‖∂l+1

t u+ ∂l
tu‖

2

H
1
2 (∂B1)

+ C‖∂l
tu‖

2
L2(B1)

. (2.12)

By Hölder inequality and Sobolev embedding theorem, for any l1 + l2 + l3 = l, we obtain

‖∂l1
t u∂

l2
t u∂

l3
t u‖

2
L2(B1)

≤ ‖∂l1
t u‖

2
L6(B1)

‖∂l2
t u‖

2
L6(B1)

‖∂l3
t u‖

2
L6(B1)

≤ C
(∑

k≤l

‖∂k
t u‖

2
H1(B1)

)3

. (2.13)

By the trace theorem that ‖φ‖
H

1
2 (∂B1)

≤ C‖φ‖H1(B1) for any φ with the right part bounded

and the inequalities (2.12)–(2.13), we deduce

‖∂l
tu‖

2
H2(B1)

≤ C
(
‖∂s

t u‖
2
L2(B1)

+

s−1∑

l=0

‖∂l
tu‖

2
H1(B1)

)
+C

(
‖∂s

tu‖
2
L2(B1)

+

s−1∑

l=0

‖∂l
tu‖

2
H1(B1)

)3

(2.14)

for all 0 ≤ l ≤ s− 2.

Using (2.14), we similarly prove that ‖∂l
tu‖

2
H3(B1)

is controlled by the right part of the

inequality (2.10) for all 0 ≤ l ≤ s− 3. Then we can get the inequality (2.10) by induction.

Obviously the inequality (2.10) shows that Remark 2.1 holds.

Next we establish the global existence for system (2.1).
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Theorem 2.1 Assume s ≥ 2, f̃0 ∈ Hs(B1), f̃1 ∈ Hs−1(B1) and supp(f̃0, f̃1) ⊂⊂ B1. Then

the mixed initial-boundary value problem (2.1) admits a global solution u(t, x). And for any

constant α ∈ (0, 1
2 ), there exists a constant C2 > 0 such that

‖∂s
tu(t, · )‖

2
L2(B1)

+
s−1∑

l=0

‖∂l
tu(t, · )‖

2
H1(B1)

≤ C2 e−αt, ∀ t ≥ 0, (2.15)

where C2 depends only on λ, α, ‖f̃0‖Hs(B1) and ‖f̃1‖Hs−1(B1).

Proof According to the local existence for system (2.1), it suffices to establish the uniform

a priori estimates on the Hs norm of u(t, · ) and Hs−1 norm of ut(t, · ). The combination of the

inequalities (2.10) and (2.15) shows that there exist a constant γ > 0 and a positive constant

C3 depending only on λ, γ, ‖f̃0‖Hs(B1) and ‖f̃1‖Hs−1(B1) such that

s∑

j=0

‖∂j
tu(t, · )‖

2
Hs−j(B1)

≤ C3 e−γt, (2.16)

which implies that ‖u(t, · )‖Hs(B1) and ‖ut(t, · )‖Hs−1(B1) are uniformly bounded on the interval

[0,+∞). Then we extend the local solution to a global one assuming (2.15) holds.

Now let us prove (2.15) by induction. The proof is close to [5] and [13] but a little different.

However, for reader’s convenience, we give the detail. The proof is divided into two steps.

Step 1 First let us consider ‖ut(t, · )‖
2
L2(B1)

+ ‖u(t, · )‖2
H1(B1)

. By taking the L2 inner

product of the equation in system (2.1) with ut and using the boundary condition, we have

1

2

d

dt
(‖ut‖

2
L2(B1)

+ ‖∇u‖2
L2(B1)

+ ‖u‖2
L2(∂B1)

) + ‖ut‖
2
L2(∂B1)

+
λ

4

d

dt
‖u‖4

L4(B1)
= 0. (2.17)

We do the energy estimate of Morawetz type by taking the L2 inner product of the equation in

system (2.1) with x · ∇u:

d

dt

∫

B1

(x · ∇u)ut dx−
1

2

∫

B1

x · ∇(u2
t )dx +

λ

4

∫

B1

x · ∇(u4)dx

=

∫

B1

∇k(∇kux · ∇u)dx−

∫

B1

|∇u|2dx−
1

2

∫

B1

x · ∇|∇u|2dx. (2.18)

By integration by parts and using the boundary condition, we have

d

dt

∫

B1

(x · ∇u)ut dx+
1

2
(‖ut‖

2
L2(B1)

+ ‖∇u‖2
L2(B1)

) −
1

2
‖ut‖

2
L2(∂B1)

+
λ

4
‖u‖4

L4(∂B1)
−

3λ

4
‖u‖4

L4(B1)
+

1

2
‖∇u‖2

L2(∂B1)

= −

∫

∂B1

(ut + u)
∂u

∂r
dΓ + (‖∇u‖2

L2(B1)
− ‖ut‖

2
L2(B1)

). (2.19)

By taking L2 inner product of the equation in system (2.1) with u, we get
∫

B1

(u2
t − |∇u|2)dx =

d

dt

∫

B1

uut dx−

∫

B1

(u(△u− λu3) + |∇u|2)dx

=
d

dt

∫

B1

uut dx−

∫

∂B1

uur dΓ + λ‖u‖4
L4(B1)

=
d

dt

∫

B1

uut dx+ λ‖u‖4
L4(B1) +

∫

∂B1

u(u+ ut)dΓ, (2.20)
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where we used the boundary condition.

Let

E(t) =
1

2
‖ut‖

2
L2(B1)

+
1

2
‖∇u‖2

L2(B1)
+

1

2
‖u‖2

L2(∂B1) +
λ

4
‖u‖4

L4(B1)
. (2.21)

Then the equality (2.17) implies that for any 0 ≤ S ≤ T ,

E(S) − E(T ) =

∫ T

S

‖ut(t, · )‖
2
L2(∂B1)

dt. (2.22)

The combination of the equalities (2.19) and (2.20) shows

1

2
(‖ut‖

2
L2(B1)

+ ‖∇u‖2
L2(B1)) +

λ

4
‖u‖4

L4(B1)

≤ −
d

dt

∫

B1

ut(u+ x · ∇u)dx+
1

2
‖ut‖

2
L2(∂B1) −

1

2
‖∇u‖2

L2(∂B1)

−

∫

∂B1

u(u+ ut)dΓ −

∫

∂B1

(ut + u)
∂u

∂r
dΓ. (2.23)

From |(ut + u)∂u
∂r

| ≤ 1
2 ((ut + u)2 + u2

r) and the inequality (2.23), we have

E(t) ≤ −
d

dt

∫

B1

ut(u + x · ∇u)dx+ ‖ut‖
2
L2(∂B1)

. (2.24)

On the other hand, a straightforward calculation shows

∣∣∣
∫

B1

(x · ∇u + u)ut dx
∣∣∣ ≤

1

2

∫

B1

(x · ∇u+ u)2dx+
1

2
‖ut‖

2
L2(B1)

≤
1

2
‖ut‖

2
L2(B1)

+
1

2
‖∇u‖2

L2(B1)
+

1

2
‖u‖2

L2(B1) +
1

2

∫

B1

x · ∇(u2)dx

=
1

2
‖ut‖

2
L2(B1)

+
1

2
‖∇u‖2

L2(B1)
− ‖u‖2

L2(B1)
+

1

2
‖u‖2

L2(∂B1)
, (2.25)

which implies

‖u‖2
L2(B1)

≤
1

2
‖ut‖

2
L2(B1) +

1

2
‖∇u‖2

L2(B1)
+

1

2
‖u‖2

L2(∂B1)
. (2.26)

Integrating the inequality (2.24) from S to T and by the inequality (2.25), we have

∫ T

S

E(t)dt ≤ (E(S) + E(T )) +

∫ T

S

‖ut(t, · )‖
2
L2(∂B1)

dt, (2.27)

which implies ∫ T

S

E(t)dt ≤ 2E(S), (2.28)

with the help of the equality (2.22).

For any S ≥ 0, let T → ∞. Then we have
∫ ∞

S

E(t)dt ≤ 2E(S). (2.29)

Let M(S) = e
S
2

∫ ∞

S
E(t)dt. So the inequality (2.29) implies M ′(S) ≤ 0 for any S ≥ 0. Hence

e
S
2

∫ ∞

S

E(t)dt ≤

∫ ∞

0

E(t)dt ≤ 2E(0), (2.30)
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which implies that for any S ≥ 0,

E(S + 1) ≤

∫ S+1

S

E(t)dt ≤

∫ ∞

S

E(t)dt ≤ 2E(0) e−
S
2 . (2.31)

So for any S ≥ 1, we have

E(S) ≤ 2E(0) e−
S−1

2 . (2.32)

By the inequality (2.26), for any t ≥ 1 we have

‖u(t, · )‖2
L2(B1)

≤ E(t) ≤ 2E(0) e−
t−1

2 , (2.33)

which implies that ‖ut(t, · )‖
2
L2(B1)

+ ‖u(t, · )‖2
H1(B1)

≤ C e−
t
2 holds for any t ≥ 1. Therefore,

there exists a positive constant C1 depending only on ‖f̃0‖H1(B1) and ‖f̃1‖L2(B1) such that for

any t ≥ 0,

‖ut(t, · )‖
2
L2(B1)

+ ‖u(t, · )‖2
H1(B1) ≤ C1 e−

t
2 . (2.34)

Step 2 Assume that for any 2 ≤ k ≤ s, there exists a constant αk−1 > 0 and a positive

constant Ck−1 depending only on λ, αk−1, ‖f̃0‖Hk−1(B1) and ‖f̃1‖Hk−2(B1) such that for any

t ≥ 0,

‖∂k−1
t u(t, · )‖2

L2(B1)
+

k−2∑

l=0

‖∂l
tu(t, · )‖

2
H1(B1)

≤ Ck−1 e−αk−1t. (2.35)

Applying ∂l
t (0 ≤ l ≤ k−1) to system (2.1) and taking the L2 inner product of the resulting

equations with ∂l+1
t u, we obtain the higher-order energy estimates:

1

2

d

dt
(‖∂l+1

t u‖2
L2(B1)

+ ‖∇∂l
tu‖

2
L2(B1)

+ ‖∂l
tu‖

2
L2(∂B1)

)

+ ‖∂l+1
t u‖2

L2(∂B1)
+ λ

∫

B1

∂l
t(u

3)∂l+1
t u dx = 0, (2.36)

where we used the boundary conditions ∂l+1
t u+ ∂l

tu+ ∂r∂
l
tu = 0, x ∈ ∂B1.

Applying ∂l
t (0 ≤ l ≤ k−1) to system (2.1) and taking the L2 inner product of the resulting

equations with x · ∇∂l
tu, we get higher-order Morawetz’s energy estimates:

d

dt

∫

B1

(x · ∇∂l
tu)∂

l+1
t u dx−

1

2
‖∂l+1

t u‖2
L2(∂B1)

+
3

2
‖∂l+1

t u‖2
L2(B1)

+
1

2
‖∇∂l

tu‖
2
L2(∂B1)

+ λ

∫

B1

∂l
t(u

3)x · ∇∂l
tu dx

= −

∫

∂B1

(∂l+1
t u+ ∂l

tu)
∂

∂r
∂l

tu dΓ +
1

2
‖∇∂l

tu‖
2
L2(B1)

, (2.37)

where we used the boundary conditions ∂l+1
t u+ ∂l

tu+ ∂r∂
l
tu = 0, x ∈ ∂B1.

Applying ∂l
t (0 ≤ l ≤ k−1) to system (2.1) and taking the L2 inner product of the resulting

equations with ∂l
tu, we find the following estimates:

‖∇∂l
tu‖

2
L2(B1)

− ‖∂l+1
t u‖2

L2(B1)
= −

d

dt

∫

B1

∂l
tu∂

l+1
t u dx−

∫

∂B1

∂l
tu(∂

l
tu+ ∂l+1

t u)dΓ

− λ

∫

B1

∂l
t(u

3)∂l
tu dx, (2.38)
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where we used the boundary conditions ∂l+1
t u+ ∂l

tu+ ∂r∂
l
tu = 0, x ∈ ∂B1.

The combination of the inequalities (2.37) and (2.38) shows that

1

2
(‖∇∂l

tu‖
2
L2(B1)

+ ‖∂l+1
t u‖2

L2(B1)
)

= −
d

dt

∫

B1

(∂l
tu+ x · ∇∂l

tu)∂
l+1
t u dx− λ

∫

B1

∂l
t(u

3)(∂l
tu+ x · ∇∂l

tu)dx

−

∫

∂B1

(∂l+1
t u+ ∂l

tu)
∂

∂r
∂l

tu dΓ −

∫

∂B1

∂l
tu(∂

l
tu+ ∂l+1

t u)dΓ

+
1

2
‖∂l+1

t u‖2
L2(∂B1) −

1

2
‖∇∂l

tu‖
2
L2(∂B1), (2.39)

which implies

k−1∑

l=0

1

2
(‖∇∂l

tu‖
2
L2(B1)

+ ‖∂l+1
t u‖2

L2(B1)
+ ‖∂l

tu‖
2
L2(∂B1))

≤ −
k−1∑

l=0

d

dt

∫

B1

(∂l
tu+ x · ∇∂l

tu)∂
l+1
t u dx

− λ

k−1∑

l=0

∫

B1

∂l
t(u

3)(∂l
tu+ x · ∇∂l

tu)dx+

k−1∑

l=0

‖∂l+1
t u‖2

L2(∂B1)

= −

k−1∑

l=0

d

dt

∫

B1

(∂l
tu+ x · ∇∂l

tu)∂
l+1
t u dx

−
1

2

k−1∑

l=0

d

dt
(‖∂l+1

t u‖2
L2(B1)

+ ‖∇∂l
tu‖

2
L2(B1)

+ ‖∂l
tu‖

2
L2(∂B1)

)

− λ

k−1∑

l=0

∫

B1

∂l
t(u

3)(∂l
tu+ x · ∇∂l

tu+ ∂l+1
t u)dx (2.40)

by using the same argument as the case k = 1 and with the help of the inequality (2.36).

Let

Ak(t) =
1

2

k−1∑

l=0

(‖∂l+1
t u‖2

L2(B1)
+ ‖∇∂l

tu‖
2
L2(B1)

+ ‖∂l
tu‖

2
L2(∂B1)

), (2.41)

Bk(t) = ‖∂k
t u‖

2
L2(B1)

+

k−1∑

l=0

‖∂l
tu‖

2
H1(B1). (2.42)

By the trace theorem, we know that there exists a constant C > 0 such that Ak(t) ≤ CBk(t)

for any t ≥ 0. The inequality (2.26) shows that there exists a constant C > 0 such that

Bk(t) ≤ CAk(t) for any t ≥ 0.

By Hölder inequality and Sobolev embedding theorem, for 0 ≤ l ≤ k − 1, we deduce
∫

B1

|∂l
t(u

3)∂l+1
t u|dx ≤

∑

l1+l2+l3=l

‖∂l+1
t u‖L2(B1)‖∂

l1
t u‖L6(B1)‖∂

l2
t u‖L6(B1)‖∂

l3
t u‖L6(B1)

≤ C‖∂l+1
t u‖L2(B1)

l−1∑

j=0

‖∂j
tu‖

2
H1(B1)

l∑

l3=0

‖∂l3
t u‖H1(B1)

≤ C e−αk−1tAk(t). (2.43)
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The same argument is used to deal with the rest of the last term of the inequality (2.40).

For 0 ≤ l ≤ k − 1, the inequalities (2.25) and (2.26) still hold if u is substituted by ∂l
tu.

Then the equality (2.40) implies that for any 0 ≤ S ≤ T ,

∫ T

S

Ak(t)dt ≤ 2Ak(S) +

∫ T

S

C e−αk−1tAk(t)dt. (2.44)

In view of the equality (2.36) and (2.43), we know that for any t ≥ 0,

d

dt
Ak(t) ≤ C e−αk−1tAk(t), (2.45)

which implies that there exists a constant M1 > 0 depending only on λ, αk−1, ‖f̃0‖Hk(B1) and

‖f̃1‖Hk−1(B1) such that the inequality Ak(t) ≤M1 holds for all t ≥ 0.

Let T → ∞. By the inequality (2.44), we have
∫ ∞

S

Ak(t)dt ≤ 2Ak(S) + C e−αk−1S . (2.46)

Obviously, there exists a positive constant αk such that αk < αk−1 and 1
αk

> 2. Therefore,

the inequality (2.46) implies
∫ ∞

S

Ak(t)dt ≤
1

αk

Ak(S) + C e−αk−1S . (2.47)

LetMk(S) = eαkS
∫ ∞

S
Ak(t)dt. By the inequality (2.47), we haveM ′

k(S) ≤ Cαk e(αk−αk−1)S ,

which implies ∫ S+1

S

Ak(t)dt ≤

∫ ∞

S

Ak(t)dt ≤ C e−αkS (2.48)

by using the inequality (2.47) when S = 0.

By the inequality (2.45), we have d
dt
Ak(t) ≤ C e−αk−1t, which implies that for any 0 ≤ β ≤ 1,

Ak(S + 1) −Ak(S + β) ≤ C e−αk−1S . (2.49)

By the inequalities (2.48) and (2.49), we have Ak(S + 1) ≤ C e−αkS for any S ≥ 0. Then

Ak(t) ≤ C e−αkt for any t ≥ 1, which implies Bk(t) ≤ C e−αkt for any t ≥ 1.

So there exists a positive constant Ck only depending on λ, αk, ‖f̃0‖Hk(B1) and ‖f̃1‖Hk−1(B1)

such that

‖∂k
t u‖

2
L2(B1)

+
k−1∑

l=0

‖∂l
tu‖

2
H1(B1)

≤ Ck e−αkt

for any t ≥ 0.

Therefore, we prove the inequality (2.15) inductively.

Now let us take a look at the inverted initial-boundary value problem:






�u+ λu3 = 0, 0 ≤ t ≤ T, x ∈ B1,

t = T : u = g̃0, ∂tu = g̃1, x ∈ B1,

−
∂u

∂t
+
∂u

∂r
+ u = 0, 0 ≤ t ≤ T, x ∈ ∂B1.

(2.50)

We make a change of variable t → T − t and then system (2.50) converts into the problem

(2.1). According to Theorem 2.1, we get the following theorem for system (2.50).
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Theorem 2.2 Let s ≥ 2, g̃0 ∈ Hs(B1), g̃1 ∈ Hs−1(B1) and supp(g̃0, g̃1) ⊂⊂ B1. Then the

problem (2.50) admits a unique solution u(t, x) on the domain [0, T ] × B1 and there exists a

positive constant C4 depending only on λ, α ‖g̃0‖Hs(B1) and ‖g̃1‖Hs−1(B1) such that

‖∂s
tu(t, · )‖

2
L2(B1)

+

s−1∑

l=0

‖∂l
tu(t, · )‖

2
H1(B1)

≤ C4 e−α(T−t), ∀ 0 ≤ t ≤ T. (2.51)

3 Global Exact Boundary Controllability for the Cubic

Semi-linear Wave Equation in the Ordinary Region

In this section, we will give the proof of Theorem 1.1, which is divided into several steps.

Step 1 By Lemma 2.3 and in view of Theorems 2.1 and 2.2, for any T1 and T2 satisfying

0 < T1, T2 < T , system (2.1) admits a unique solution u1 on the domain [0, T1] × B1 and

there exists a unique solution u2 to system (2.50) on the domain [T − T2, T ]×B1. In addition,

there exists a positive constant C̃2 depending on λ, α, ‖f̃0‖Hs(B1) and ‖f̃1‖Hs−1(B1) such that
s∑

j=0

‖∂j
tu1(T1, · )‖

2
Hs−j(Ω) ≤ C̃2 e−αT1 and a positive constant C̃4 depending on λ, α, ‖g̃0‖Hs(B1)

and ‖g̃1‖Hs−1(B1) such that
s∑

j=0

‖∂j
tu2(T − T2, · )‖

2
Hs−j(Ω) ≤ C̃4 e−αT2 . Take T > T1 + T2.

To best illustrate our proof, let T1 = T2 = 1
4T . Then it suffices to study the exact boundary

controllability problem





�u+ λu3 = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ Ω,

t =
1

4
T : u = u1, ∂tu = ∂tu1, x ∈ Ω,

t =
3

4
T : u = u2, ∂tu = ∂tu2, x ∈ Ω.

(3.1)

Define

DΛ(ψ) = sup
1
4
T≤t≤ 3

4
T

( s∑

j=0

‖∂j
tψ(t, · )‖2

Hs−j(Ω)

) 1
2

(3.2)

and

Λθ =
{
ψ :

[1

4
T,

3

4
T

]
× Ω → R

∣∣∣ψ
(1

4
T, ·

)
= u1

(1

4
T, ·

)
, ψt

(1

4
T, ·

)
= u1t

(1

4
T, ·

)
,

ψ
(3

4
T, ·

)
= u2

(3

4
T, ·

)
, ψt

(3

4
T, ·

)
= u2t

(3

4
T, ·

)
, DΛ(ψ) ≤ θ

}
. (3.3)

For any φ ∈ Λθ, we define a map Π : φ → v + w, where v satisfies the mixed initial-boundary

value problem




�v + λφ3 = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ Ω,

t =
1

4
T : v = 0, ∂tv = 0, x ∈ Ω,

v = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ ∂Ω,

(3.4)
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and w is defined via the exact boundary controllability problem






�w = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ Ω,

t =
1

4
T : w = u1, ∂tw = u1t, x ∈ Ω,

t =
3

4
T : w = u2 − v, ∂tw = u2t − vt, x ∈ Ω.

(3.5)

Step 2 As to system (3.4), we get the energy estimate

1

2

d

dt

(
‖∂s

t v‖
2
L2(Ω) +

s−1∑

l=1

‖∂l
tv‖

2
H1(Ω) + ‖∇v‖2

L2(Ω)

)
+

s−1∑

l=0

λ

∫

Ω

∂l
t(φ

3)∂l+1
t v dx = 0. (3.6)

There is no boundary term since ∂l+1
t v(t, x) ≡ 0 for l = 0, 1, · · · , s − 1 while x ∈ ∂Ω. Conse-

quently, we have

1

2

d

dt

(
‖∂s

t v‖
2
L2(Ω) +

s−1∑

l=1

‖∂l
tv‖

2
H1(Ω) + ‖∇v‖2

L2(Ω)

)
≤ λ

∫

Ω

s−1∑

l=0

|∂l
t(φ

3)∂l+1
t v|dx. (3.7)

By Hölder inequality and Sobolev embedding theorem, we deduce

d

dt

(
‖∂s

t v‖
2
L2(Ω) +

s−1∑

l=1

‖∂l
tv‖

2
H1(Ω) + ‖∇v‖2

L2(Ω)

) 1
2

≤ Cθ3. (3.8)

For any 1
4T ≤ t0 ≤ 3

4T , integrating the inequality (3.8) with respect to time t over [14T, t0], we

arrive at

(
‖∂s

t v(t0, · )‖
2
L2(Ω) +

s−1∑

l=1

‖∂l
tv(t0, · )‖

2
H1(Ω) + ‖∇v(t0, · )‖

2
L2(Ω)

) 1
2

≤
(∥∥∥∂s

t v
(T

4
, ·

)∥∥∥
2

L2(Ω)
+

s−1∑

l=1

∥∥∥∂l
tv

(T
4
, ·

)∥∥∥
2

H1(Ω)
+

∥∥∥∇v
(T

4
, ·

)∥∥∥
2

L2(Ω)

) 1
2

+ Cθ3
T

2
. (3.9)

System (3.4) shows

∥∥∥∂s
t v

(T
4
, ·

)∥∥∥
2

L2(Ω)
+

s−1∑

l=1

∥∥∥∂l
tv

(T
4
, ·

)∥∥∥
2

H1(Ω)
≤ Cθ6

by induction. Then for 1
4T ≤ t ≤ 3

4T , we have

(
‖∂s

t v(t, · )‖
2
L2(Ω) +

s−1∑

l=1

‖∂l
tv(t, · )‖

2
H1(Ω) + ‖∇v(t, · )‖2

L2(Ω)

) 1
2

≤ Cθ3(T + 1).

Now we use Poincaré’s lemma to deal with ‖v(t, · )‖L2(Ω), because of the null Dirichlet’s bound-

ary condition of system (3.4). Then for any 1
4T ≤ t ≤ 3

4T , we have

(
‖∂s

t v(t, · )‖
2
L2(Ω) +

s−1∑

l=0

‖∂l
tv(t, · )‖

2
H1(Ω)

) 1
2

≤ Cθ3(T + 1). (3.10)
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Next we regard system (3.4) as the Dirichlet boundary value problem of elliptic equations and

use the elliptic estimates (4.7), then we have DΛ(v) ≤ Cθ3(T + 1), assuming θ is sufficiently

small.

Step 3 Now we prove that w is well-defined. (Because wave equations are time invertible,

the exact controllability is equivalent to the null controllability. So, here, we can use the

Huygens principle to obtain the null controllability, which implies that w is well-defined. But

when the region is star-complemented, we want to get the null control of part of the boundary

and Huygens principle can not assure this. Here, for convenience, we prove that w is well-

defined by the constructive method introduced in [13], which can be also applied to the case

that the region is star-complemented.)

By using the extension operator ∼, we define the series ϕ(i) and ψ(i) as follows.

Let ϕ(1) be the solution of the initial-boundary value problem






�ϕ(1) = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ B1,

ϕ
(1)
t + ϕ

(1)
r + ϕ(1) = 0,

1

4
T ≤ t ≤

3

4
T, x ∈ ∂B1,

t =
1

4
T : ϕ(1) = [χu1]

∼, ∂tϕ
(1) = [χu1t]

∼, x ∈ B1,

(3.11)

and let ψ(1) be the solution of the inverted initial-boundary value problem





�ψ(1) = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ B1,

−ψ
(1)
t + ψ

(1)
r + ψ(1) = 0,

1

4
T ≤ t ≤

3

4
T, x ∈ ∂B1,

t =
3

4
T : ψ(1) = [χ(u2 − v)]∼, ∂tψ

(1) = [χ(u2t − vt)]
∼, x ∈ B1.

(3.12)

For j ≥ 2, ϕ(j) is defined inductively as the solution of the initial-boundary value problem





�ϕ(j) = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ B1,

ϕ
(j)
t + ϕ

(j)
r + ϕ(j) = 0,

1

4
T ≤ t ≤

3

4
T, x ∈ ∂B1,

t =
1

4
T : ϕ(j) = [χψ(j−1)]∼, ϕ

(j)
t = [χψ

(j−1)
t ]∼, x ∈ B1,

(3.13)

and ψ(j) is defined as the solution of the inverted initial-boundary value problem





�ψ(j) = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ B1,

−ψ
(j)
t + ψ

(j)
r + ψ(j) = 0,

1

4
T ≤ t ≤

3

4
T, x ∈ ∂B1,

t =
3

4
T : ψ(j) = [χϕ(j−1)]∼, ∂tψ

(j) = [χϕ
(j−1)
t ]∼, x ∈ B1,

(3.14)

where χ is the characteristic function defined as

χ =

{
1, x ∈ Ω,

0, x ∈ B1 \ Ω.
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We define

wm =

m∑

j=1

(−1)j−1(ϕ(j) + ψ(j)). (3.15)

First of all, we observe that for any m ≥ 1,

�wm = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ Ω (3.16)

and 



wm
(1

4
T, x

)
= u1

(1

4
T, x

)
+ (−1)m−1ψ(m)

(1

4
T, x

)
, x ∈ Ω,

wm
t

(1

4
T, x

)
= u1t

(1

4
T, x

)
+ (−1)m−1ψ

(m)
t

(1

4
T, x

)
, x ∈ Ω,

wm
(3

4
T, x

)
= (u2 − v)

(3

4
T, x

)
+ (−1)m−1ϕ(m)

(3

4
T, x

)
, x ∈ Ω,

wm
t

(3

4
T, x

)
= (u2t − vt)

(3

4
T, x

)
+ (−1)m−1ϕ

(m)
t

(3

4
T, x

)
, x ∈ Ω.

(3.17)

To show that the sequence {wm} defined in the equality (3.15) is convergent, let us take a

look at the mixed initial-boundary value problem





�u = 0, t ≥ 0, x ∈ B1,

t = 0 : u = f, ut = g, x ∈ B1,

ut + ur + u = 0, t ≥ 0, x ∈ ∂B1.

(3.18)

Theorem 3.1 If s ≥ 2, f ∈ Hs(B1), g ∈ Hs−1(B1) and supp(f, g) ⊂⊂ B1, then there exists

a global solution u(t, x) to system (3.18) and constants C5, β > 0 such that for any t ≥ 0,

‖∂s
t u(t, · )‖

2
L2(B1)

+

s−1∑

l=0

‖∂l
tu(t, · )‖

2
H1(B1)

≤ C5(‖f‖
2
Hs(B1) + ‖g‖2

Hs−1(B1)
)e−βt. (3.19)

Proof The proof of Theorem 3.1 is similar to that of Theorem 2.1 to a large extent.

By the inequality (3.19) and using the same argument as in Lemma 2.3, there exists a

positive constant C6 such that

(∥∥∥∂s
tϕ

(j)
(3

4
T, ·

)∥∥∥
2

L2(B1)
+

s−1∑

l=0

∥∥∥∂l
tϕ

(j)
(3

4
T, ·

)∥∥∥
2

H1(B1)

)

≤ C5 e−
βT
2

(∥∥∥[χψ(j−1)]∼
(1

4
T, ·

)∥∥∥
2

Hs(B1)
+

∥∥∥[χψ
(j−1)
t ]∼

(1

4
T, ·

)∥∥∥
2

Hs−1(B1)

)

≤ C6 e−
βT
2

(∥∥∥∂s
tψ

(j−1)
(1

4
T, ·

)∥∥∥
2

L2(B1)
+

s−1∑

l=0

∥∥∥∂l
tψ

(j−1)
(1

4
T, ·

)∥∥∥
2

H1(B1)

)
(3.20)

and

∥∥∥∂s
tψ

(j)
(1

4
T, ·

)∥∥∥
2

L2(B1)
+

s−1∑

l=0

∥∥∥∂l
tψ

(j)
(1

4
T, ·

)∥∥∥
2

H1(B1)

≤ C6 e−
βT
2

(∥∥∥∂s
tϕ

(j−1)
(3

4
T, ·

)∥∥∥
2

L2(B1)
+

s−1∑

l=0

∥∥∥∂l
tϕ

(j−1)
(3

4
T, ·

)∥∥∥
2

H1(B1)

)
. (3.21)
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Combining (3.20) and (3.21), we arrive at

∥∥∥∂s
tψ

(m)
(1

4
T, ·

)∥∥∥
2

L2(B1)
+

s−1∑

l=0

∥∥∥∂l
tψ

(m)
(1

4
T, ·

)∥∥∥
2

H1(B1)

+
∥∥∥∂s

tϕ
(m)

(3

4
T, ·

)∥∥∥
2

L2(B1)
+

s−1∑

l=0

∥∥∥∂l
tϕ

(m)
(3

4
T, ·

)∥∥∥
2

H1(B1)

≤ (C6 e−
βT
2 )m

(∥∥∥[χu1]
∼

(1

4
T, ·

)∥∥∥
2

Hs(B1)
+

∥∥∥[χu1t]
∼

(1

4
T, ·

)∥∥∥
2

Hs−1(B1)

+
∥∥∥[χ(u2 − v)]∼

(3

4
T, ·

)∥∥∥
2

Hs(B1)
+

∥∥∥[χ(u2t − vt)]
∼

(3

4
T, ·

)∥∥∥
2

Hs−1(B1)

)
. (3.22)

Take a sufficiently large positive constant T depending only on λ, ‖f0‖Hs(Ω), ‖f1‖Hs−1(Ω),

‖g0‖Hs(Ω), ‖g1‖Hs−1(Ω) and θ satisfying θT = 1 such that C6 e
−βT

2 < 1
2 , C̃2 e−

αT
4 ≤ θ4 and

C̃4 e−
αT
4 ≤ θ4. Therefore, we know that DΛ(v) ≤ Cθ2 and

s∑
l=0

‖∂l
tu1(

1
4T, · )‖

2
Hs−l(B1)

≤ θ4 and

s∑
l=0

‖∂l
tu2(

3
4T, · )‖

2
Hs−l(B1) ≤ θ4.

By the inequality (3.22) and similarly as in Lemma 2.3, we deduce the conclusion that when

m → ∞, wm(1
4T, · ) → u1(

1
4T, · ), w

m(3
4T, · ) → (u2 − v)(3

4T, · ) in Hs(Ω) and wm
t (1

4T, · ) →

u1t(
1
4T, · ), w

m
t (3

4T, · ) → (u2t − vt)(
3
4T, · ) in Hs−1(Ω).

What is more, for any 1
4T ≤ t ≤ 3

4T , we conclude that the inequality (3.22) still holds even

if we substitute t for 1
4T , 3

4T in the left part of the inequality (3.22) and m − 1 for m in the

right part of the inequality (3.22) at the same time. Using the same argument as in Lemma

2.3, we deduce that wm is a Cauchy sequence in
s⋂

j=0

Cj([14T,
3
4T ], Hs−j(Ω)). Denote wm → w.

Hence w satisfies system (3.5). For any 1
4T ≤ t ≤ 3

4T , it follows that

s−1∑

l=0

‖∂l
tw(t, · )‖2

Hs−1(Ω)

≤ C
(∥∥∥u1

(1

4
T, ·

)∥∥∥
2

Hs(Ω)
+

∥∥∥u1t

(1

4
T, ·

)∥∥∥
2

Hs−1(Ω)

+
∥∥∥(u2 − v)

(3

4
T, ·

)∥∥∥
2

Hs(Ω)
+

∥∥∥(u2t − vt)
(3

4
T, ·

)∥∥∥
2

Hs−1(Ω)

)
, (3.23)

which implies DΛ(w) ≤ Cθ2.

Therefore DΛ(v+w) ≤ DΛ(v)+DΛ(w) ≤ Cθ2. Taking T sufficiently large and θ sufficiently

small, we have DΛ(v + w) ≤ θ. So v + w ∈ Λθ, which says the map Π : Λθ → Λθ.

Step 4 In the end, we prove that Π is a strict contraction. For any φ1, φ2 ∈ Λθ, define

Πφ1 = v1 + w1, Πφ2 = v2 + w2, φ = φ1 − φ2, v = v1 − v2 and w = w1 − w2.

Hence v solves the initial-boundary value problem





�v + λ(φ3
1 − φ3

2) = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ Ω,

t =
1

4
T : v = 0, ∂tv = 0, x ∈ Ω,

v = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ ∂Ω,

(3.24)
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and w solves the exact boundary controllability problem






�w = 0,
1

4
T ≤ t ≤

3

4
T, x ∈ Ω,

t =
1

4
T : w = 0, ∂tw = 0, x ∈ Ω,

t =
3

4
T : w = −v, ∂tw = −vt, x ∈ Ω.

(3.25)

Similarly, we have DΛ(w) ≤ CDΛ(v) and DΛ(v) ≤ Cθ2(T + 1)DΛ(φ). Choosing T large

enough and θ small enough, we know DΛ(Πφ1−Πφ2) ≤ DΛ(v)+DΛ(w) ≤ CθDΛ(φ) ≤ 1
2DΛ(φ).

Therefore Π is a strict contraction from Λθ to Λθ.

By the standard contraction mapping theorem, there exists a fixed point u0 ∈ Λθ such that

Πu0 = u0. It follows that u0 solves system (3.1).

To prove Theorem 1.1, it suffices to take a Dirichlet boundary condition. The other boundary

condition can be obtained in a similar way. For (t, x) ∈ [14T,
3
4T ]×∂Ω, let h(t, x) = u0(t, x); for

(t, x) ∈ [0, 1
4T ]×∂Ω, let h(t, x) = u1(t, x); for (t, x) ∈ [34T, T ]×∂Ω, let h(t, x) = u2(t, x). There-

fore h is the desired boundary control function. We easily know the existence of the solution on

time interval [0, T ] to the initial-boundary value problem (1.1)–(1.2) and the Dirichlet boundary

condition (1.4) from the proof above. And we obtain the uniqueness of the initial-boundary

value problem (1.1), (1.2) and (1.4) by doing energy estimates and applying Gronwall’s inequal-

ity. Then the proof of Theorem 1.1 is completed.

4 Global Exact Boundary Controllability for the Cubic Semi-linear

Wave Equation in the Star-Complemented Region

In this section, we prove Theorem 1.2.

We say that ∂Ω is regular if given any x ∈ ∂Ω, there is a neighborhood U of x in R3 and C∞

functions g1, · · · , gn(x) defined on U, with the gradient vector functions gradg1, · · · , grad gn(x)

being everywhere linearly independent in U, such that Ω ∩ U = {y ∈ U | y ∈ M1 ∗ (M2 ∗

· · · (Mn(x)−1 ∗Mn(x)))}, where ∗ is one of the operators ∩ or ∪ and Mi = {y ∈ U | gi(y) ≥ 0}.

There are more general definitions of this term but the present one suffices for our purpose.

There exists a star-shaped region Ω∗ with a piecewise smooth boundary ∂Ω∗ such that

Ω ∪ Ω∗ ⊆ B1, ∂Ω − Γ ⊆ ∂Ω∗, Ω ⊆ Ω∗c
(see Figure 1), and we can employ the reflection

method described in [7] to extend f0, g0 to Hs(R3) and f1, g1 to Hs−1(R3), which we still call

f0, g0, f1, g1, such that

f0(x) = f1(x) = g0(x) = g1(x) = 0, x ∈ Ω∗, (4.1)

supp(f0, g0, f1, g1) ⊂⊂ B1, (4.2)

‖f0‖Hs(R3) ≤ Ks‖f0‖Hs(Ω), ‖f1‖Hs−1(R3) ≤ Ks−1‖f1‖Hs−1(Ω),

‖g0‖Hs(R3) ≤ Ks‖g0‖Hs(Ω), ‖g1‖Hs−1(R3) ≤ Ks−1‖g1‖Hs−1(Ω),
(4.3)

where Ks and Ks−1 are positive constants. (For example, see [9, 10].)

Without loss of generality, we assume that Ω∗ is star-shaped with respect to 0.

Let Ω1 = B1 − Ω∗ . Then it suffices to construct the solution of the equation (1.1) with

initial data f0, f1 and final data g0, g1 on the domain [0, T ] × Ω1 for large enough time T . By



Global Controllability for Wave and Klein-Gordon Equations 53

Figure 1 The domains Ω, Ω∗ and Ωε

restricting the solution to Γ, we obtain the desired boundary control function. To this end, we

evolve the equation (1.1) on the domain [0, T ]×Ω1 with the initial data (f0, f1), the boundary

condition ∂u
∂t

+ ∂u
∂r

+ u = 0 on [0, T ] × ∂B1 and the Dirichlet boundary condition u = 0 on

[0, T ]×∂Ω∗, and prove the global existence and an exponential decay of energy for the solution

of this problem. Then we reduce the global control problem to a local one which is solved by a

constructive method developed in [13].

First we study the global existence of the strong solution to the following mixed initial-

boundary value problem:




�u+ λu3 = 0, t ≥ 0, x ∈ Ω1,

t = 0 : u = f0, ut = f1, x ∈ Ω1,

∂u

∂t
+
∂u

∂r
+ u = 0, t ≥ 0, x ∈ ∂B1,

u = 0, t ≥ 0, x ∈ ∂Ω∗.

(4.4)

Even if we apply ∂l
t (0 ≤ l ≤ s − 1) to system (4.4), the compatible condition for the

resulting system still holds according to (4.1) and (4.2). Similarly to Lemma 2.1, we establish

the following local existence for system (4.4).

Lemma 4.1 There exist positive constants T ∗ and M such that system (4.4) admits a

unique solution u(t, x) on the domain [0, T ∗] × Ω1 satisfying

‖∂s
t u(t, · )‖

2
L2(Ω1)

+

s−1∑

l=0

‖∂l
tu(t, · )‖

2
H1(Ω1) ≤M2, ∀ 0 ≤ t ≤ T ∗, (4.5)

where T ∗ and M depend only on ‖f0‖Hs(Ω1) and ‖f1‖Hs−1(Ω1).

Remark 4.1 The local solution in Lemma 4.1 belongs to
s⋂

j=0

Cj([0, T ∗], Hs−j(Ω1)).
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To conclude Remark 4.1, we recall the elliptic estimates involving the null Dirichlet boundary

condition presented in [11].

Lemma 4.2 Suppose that Ω is a bounded domain with the smooth boundary ∂Ω. Consider

the following system: {
−∆h = f, in Ω,

h = 0, on ∂Ω.
(4.6)

Given f ∈ Hk−1(Ω) (k = 0, 1, · · · ), a solution h to system (4.6) belongs to Hk+1(Ω) and we

have the estimate

‖h‖2
Hk+1(Ω) ≤ Ck(‖f‖2

Hk−1(Ω) + ‖h‖2
Hk(Ω)). (4.7)

Then the combination of Lemmas 2.2 and 4.2 implies the following lemma.

Lemma 4.3 Consider the following system:






−∆h = f, in Ω1,

∂h

∂r
= g, on ∂B1,

h = 0, on ∂Ω∗.

(4.8)

Given f ∈ Hk(Ω1) and g ∈ Hk+ 1
2 (∂B1) (k = 0, 1, · · · ), a solution h to system (4.8) belongs to

Hk+2(Ω1) and we have

‖h‖2
Hk+2(Ω1) ≤ Ck(‖f‖2

Hk(Ω1) + ‖g‖2

H
k+1

2 (∂B1)
+ ‖h‖2

L2(Ω1)). (4.9)

Proof Lemma 4.3 holds according to the proof of Lemmas 2.2 and 4.2.

Using the same argument as that in Lemma 2.3 and in view of Lemma 4.3, we get the

following lemma.

Lemma 4.4 Assume that u solves the initial-boundary value problem (4.4). We have

s∑

j=0

‖∂j
t u‖

2
Hs−j(Ω1) ≤ C2

(
‖∂s

t u‖
2
L2(Ω1)

+
s−1∑

l=0

‖∂l
tu‖

2
H1(Ω1)

)
, (4.10)

where C2( · ) is a function in the form C2(z) =
ks∑

j=1

c2jz
j with ks an integer depending only on

s and c2j a constant depending only on j.

Obviously, (4.10) implies that Remark 4.1 holds.

In the discussion later, we need the following lemma on the star-shaped region (see [3]).

Lemma 4.5 Assume that Ω∗ is star-shaped with respect to 0 and ∂Ω∗ is C1. Then x·v(x) ≥

0 for all x ∈ ∂Ω∗, where v denotes the unit outward normal.

Now we are ready to establish the global existence and an exponential decay of the energy

for system (4.4).

Precisely, we prove the following theorem.
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Theorem 4.1 The initial-boundary value problem (4.4) admits a global solution u(t, x),

and for any 0 < δ < 1
2 , there exists a positive constant C8 such that

‖∂s
t u(t, · )‖

2
L2(Ω1) +

s−1∑

l=0

‖∂l
tu(t, · )‖

2
H1(Ω1) ≤ C7 e−δt, ∀ t ≥ 0, (4.11)

where C7 depends only on λ, δ, ‖f0‖Hs(Ω1) and ‖f1‖Hs−1(Ω1).

Proof The proof is similar to that of Theorem 2.1. First we consider the following estimates.

We get the standard energy estimate by taking the L2(Ω1) inner product of the equation in

system (4.4) with ut,

1

2

d

dt
(‖ut‖

2
L2(Ω1) + ‖∇u‖2

L2(Ω1) + ‖u‖2
L2(∂B1)

) + ‖ut‖
2
L2(∂B1)

+
λ

4

d

dt
‖u‖4

L4(Ω1) = 0, (4.12)

where we used the boundary condition ut = 0, x ∈ ∂Ω∗ and ut + ur + u = 0, x ∈ ∂B1.

We do the energy estimate of Morawetz type by taking the L2(Ω1) inner product of the

equation in system (4.4) with x · ∇u:

d

dt

∫

Ω1

(x · ∇u)ut dx−
1

2

∫

Ω1

x · ∇(u2
t )dx+

λ

4

∫

Ω1

x · ∇(u4)dx

=

∫

Ω1

∇k(∇kux · ∇u)dx−

∫

Ω1

|∇u|2dx−
1

2

∫

Ω1

x · ∇|∇u|2dx. (4.13)

Let v = (v1, v2, v3)
T be the unit exterior normal to the boundary ∂Ω∗ of the region Ω∗.

By integration by parts and using the boundary condition u = 0, ut = 0, x ∈ ∂Ω∗ and

ut + ur + u = 0, x ∈ ∂B1, we have

d

dt

∫

Ω1

(x · ∇u)ut dx+
1

2
(‖ut‖

2
L2(Ω1) + ‖∇u‖2

L2(Ω1))

−
1

2
‖ut‖

2
L2(∂B1)

+
λ

4
‖u‖4

L4(∂B1) −
3λ

4
‖u‖4

L4(Ω1)

= −

∫

∂Ω∗

∂u

∂v
(x · ∇u)dσ −

∫

∂B1

(ut + u)
∂u

∂r
dΓ −

1

2
‖∇u‖2

L2(∂B1)

+
1

2

∫

∂Ω∗

3∑

i=1

xivi|∇u|
2dσ + (‖∇u‖2

L2(Ω1) − ‖ut‖
2
L2(Ω1)). (4.14)

By taking L2(Ω1) inner product of the equation in system (4.4) with u and using the

boundary condition u = 0, x ∈ ∂Ω∗ and ut + ur + u = 0, x ∈ ∂B1, we get
∫

Ω1

(u2
t − |∇u|2)dx =

d

dt

∫

Ω1

uut dx−

∫

Ω1

u(△u− λu3) + |∇u|2dx

=
d

dt

∫

Ω1

uut dx−

∫

∂B1

uur dx+

∫

∂Ω∗

u
∂u

∂v
dσ + λ‖u‖4

L4(Ω1)

=
d

dt

∫

Ω1

uut dx+ λ‖u‖4
L4(Ω1) +

∫

∂B1

u(ut + u)dx. (4.15)

Next we prove

−

∫

∂Ω∗

∂u

∂v
(x · ∇u)dσ +

1

2

∫

∂Ω∗

3∑

i=1

xivi|∇u|
2dσ ≤ 0. (4.16)



56 Y. Zhou, W. Xu and Z. Lei

Without loss of generality, we assume v1 6= 0. Therefore τ1 = (−v2, v1, 0)T and τ2 =

(−v3, 0, v1)
T are the tangents to the boundary ∂Ω∗. Then we know that v, τ1 and τ2 are

linearly independent. Since u(t, x) = 0 for t ≥ 0 and x ∈ ∂Ω∗, we easily get

∂u

∂τ1
(t, x) = 0,

∂u

∂τ2
(t, x) = 0, t ≥ 0, x ∈ ∂Ω∗. (4.17)

Consequently, for t ≥ 0 and x ∈ ∂Ω∗, we deduce

∂u

∂x1
= v1

∂u

∂v
,

∂u

∂x2
= v2

∂u

∂v
,

∂u

∂x3
= v3

∂u

∂v
, t ≥ 0, x ∈ ∂Ω∗. (4.18)

From the equality (4.18), we obtain

−
∂u

∂v
(x · ∇u) +

1

2

3∑

i=1

xivi|∇u|
2 = −

1

2

3∑

i=1

xivi

∣∣∣
∂u

∂v

∣∣∣
2

≤ 0, (4.19)

where we used Lemma 4.5. Then the inequality (4.16) holds.

The rest proof of Theorem 4.1 has a great deal in common with that of Theorem 2.1.

Now we consider the inverted initial-boundary value problem





�u+ λu3 = 0, 0 ≤ t ≤ T, x ∈ Ω1,

t = T : u = g0, ut = g1, x ∈ Ω1,

−
∂u

∂t
+
∂u

∂r
+ u = 0, 0 ≤ t ≤ T, x ∈ ∂B1,

u = 0, 0 ≤ t ≤ T, x ∈ ∂Ω∗.

(4.20)

We only need to make a change of variable t → T − t. Then we get the following theorem

for system (4.20) according to Theorem 4.1.

Theorem 4.2 The problem (4.20) admits a unique solution u(t, x) on the domain [0, T ]×Ω1

and there exists a constant C8 > 0 depending only on λ, δ, ‖g0‖Hs(Ω1) and ‖g1‖Hs−1(Ω1) such

that

‖∂s
t u(t, · )‖

2
L2(Ω1) +

s−1∑

l=0

‖∂l
tu(t, · )‖

2
H1(Ω1) ≤ C9 e−δ(T−t), ∀ 0 ≤ t ≤ T. (4.21)

The rest proof of Theorem 1.2 is word for word the same as that in Section 3.

5 Global Exact Boundary Controllability for

Cubic Klein-Gordon Equations

In this section, we shall be concerned with the cubic Klein-Gordon equation

�u+ u3 + u = 0, 0 < t < T, x ∈ Ω, (5.1)

where Ω is a bounded open subset of R
3.

By a similar proof of the global exact controllability for the cubic semi-linear wave equation,

we obtain the following theorem for the cubic Klein-Gordon equation in the ordinary region.
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Theorem 5.1 Suppose f0, g0 ∈ Hs(Ω), f1, g1 ∈ Hs−1(Ω), s ≥ 2. There exists a large

enough positive constant T0 depending only on the Sobolev norm of the data ‖f0‖Hs(Ω),

‖f1‖Hs−1(Ω), ‖g0‖Hs(Ω), ‖g1‖Hs−1(Ω) and a boundary control function h such that the cubic

Klein-Gordon equation (5.1) with the initial state (1.2) and one of the boundary conditions

(1.4) admits a unique solution on the domain (0, T ) × Ω which verifies the desired state (1.3),

provided that T > T0.

Especially when the region Ω is star-complemented, we similarly obtain the following theo-

rem for the cubic Klein-Gordon equation.

Theorem 5.2 Assume that the bounded region Ω is star-complemented. For any f0, g0 ∈

Hs(Ω), f1, g1 ∈ Hs−1(Ω), s ≥ 2 with the property that ∂α
x f0 = ∂α

x g0 = 0 on Γ1 for |α| ≤ s− 1

and ∂β
x f1 = ∂β

xg1 = 0 on Γ1 for |β| ≤ s − 2, there exists a sufficiently large constant T0 > 0

depending only on the Sobolev norm of the data ‖f0‖Hs(Ω), ‖f1‖Hs−1(Ω), ‖g0‖Hs(Ω), ‖g1‖Hs−1(Ω)

and a boundary control h only applied on Γ such that the cubic Klein-Gordon equation (5.1)

with the initial data (1.2), the boundary condition (1.7) and one of the conditions (1.8) admits a

unique solution on the domain (0, T )×Ω satisfying the desired data (1.3), provided that T > T0.

Remark 5.1 The solution in Theorem 5.1 or 5.2 belongs to
s⋂

j=0

Cj([0, T ], Hs−j(Ω)).

Remark 5.2 For the equation �u+f(u) = 0 with the nonlinear function f satisfying “good-

sign” growth conditions (see [2, 12]), we obtain similar global exact boundary controllability

results. If f(0) = 0 and f ′(0) = 0, the semi-linear wave equation and the cubic semi-linear wave

equation (1.1) is its classical example. If f(0) = 0 and f ′(0) > 0, Klein-Gordon equations and

the cubic Klein-Gordon equation (5.1) is its classical example.
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