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Abstract Decay of the energy for the Cauchy problem of the wave equation of variable

coefficients with a dissipation is considered. It is shown that whether a dissipation can be

localized near infinity depends on the curvature properties of a Riemannian metric given

by the variable coefficients. In particular, some criteria on curvature of the Riemannian

manifold for a dissipation to be localized are given.
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1 Introduction and Main Results

Let n ≥ 2 be an integer. We consider the energy decay of solutions to the initial value

problem {
utt − div A(x)∇u + a(x)ut = 0, on (0,∞) × R

n,

u(0, x) = u0(x), ut(0, x) = u1(x), on R
n,

(1.1)

where A(x) = (aij(x)) are symmetric and positively definite matrices for all x ∈ R
n, aij(x) are

smooth functions on R
n, and a ∈ L∞(Rn) is a nonnegative function.

We define the energy of the problem (1.1) as

E(t) =
1

2

∫

Rn

(
u2

t +
n∑

i,j=1

aij(x)uxi
uxj

)
dx. (1.2)

We are interested in whether E(t) decays in some way.

If A(x) = (δij), we say that the problem (1.1) is of constant coefficients. In the case of

constant coefficients, a wealth of results on this problem are available in the literature. For the

Cauchy problem, see [21, 28–30] and many other papers. For exterior domains, see [17, 20] and

the references therein. For bounded domains, see [1, 7, 11, 13, 14, 16, 18, 25–27] and many

other papers.

In this paper, we consider the problem (1.1) with a general A(x) where A(x) is given by the

material in application. We refer to the problem (1.1) as the variable coefficient problem. The

main tool here is the geometrical method which is powerful to cope with variable coefficients.
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This method was introduced by [32] for the controllability of the wave equation with variable

coefficients and was extended in [2–7, 15, 22, 33, 34] and many others. For a survey on the

geometric method, see [10]. Very recently, this method is used to study the problems with

quasilinearly principal parts in [35–37].

We shall combine [17] and [32] to use the multiplier technique to derive some estimates on

E(t). The key is to use a multiplier of the geometric version. We mention that earlier multipliers

for the Klein-Gordon equation were given by Morawetz [24] and for the control problem were

given by Ho [12].

For the constant coefficient problem, Nakao [17] established the following decay of E(t) by

the multiplier technique in the Euclidean space R
n. Let L > 0 be given. If there is an ε > 0

such that

a(x) ≥ ε for |x| ≥ L, x ∈ R
n, (1.3)

then

E(t) ≤ c

1 + t
(E(0) + ‖u0‖2), t > 0, ‖u0‖2 =

∫

Rn

u2
0dx. (1.4)

The condition (1.3) is referred to as a localized dissipation near infinity if a(x) is only effective

for L large enough. In fact, [17] considered an exterior domain problem. In this paper, we

consider whether a similar estimate like (1.4) holds for the variable coefficient problem (1.1)

under a similar condition as (1.3). We show that this problem depends closely on the geometric

properties of a Riemannian metric, given by (1.5) below.

We define

g = A−1(x), x ∈ R
n (1.5)

as a Riemannian metric on R
n, and consider the couple (Rn, g) as a Riemannian manifold. For

each x ∈ R
n, the Riemannian metric g induces the inner product and the norm on the tangent

space Rn
x = Rn by

〈X, Y 〉g = 〈A−1(x)X, Y 〉, |X |2g = 〈X, X〉g, X, Y ∈ R
n, (1.6)

where 〈 · , · 〉 is the standard inner product of the Euclidean space R
n. For w ∈ H1(Rn), we

have

|∇gw|2g =

n∑

i,j=1

aij(x)wxi
wxj

, x ∈ R
n,

where ∇g is the gradient of the Riemannian metric g.

We introduce a space

H1(g, Rn) = {w | w ∈ L2(Rn), |∇gw|g ∈ L2(Rn)} (1.7)

with a norm

‖w‖2
g =

∫

Rn

(|∇gw|2g + w2)dx.

If there are c1 > 0 and c2 > 0 such that

c1|X |2 ≤ 〈A(x)X, X〉 ≤ c2|X |2 for all x ∈ R
n, X ∈ R

n,

then H1(g, Rn) = H1(Rn).

For decay of the energy, we need the following assumption.
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Assumption 1.1 Let Ω ⊂ R
n be a bounded open set. There is a vector field H on R

n such

that

DgH(X, X) ≥ σ|X |2g, X ∈ R
n
x , x ∈ Ω, (1.8)

where σ > 0 is a constant and Dg is the Levi-Civita connection of the Riemannian metric g.

Our main results are as follows.

Theorem 1.1 Let Ω ⊂ R
n be a bounded open set such that Assumption 1.1 holds true.

Suppose that there is an ε > 0 such that

a(x) ≥ ε for all x ∈ R
n \ Ω. (1.9)

Then, for each (u0, u1) ∈ H1(g, Rn) × L2(Rn), there is a unique solution

u(t) ∈ C([0,∞), H1(g, Rn)) ∩ C1([0,∞), L2(R))

to the problem (1.1) such that

‖u(t)‖2 ≤ c(E(0) + ‖u0‖2), (1.10)

where ‖ · ‖ is the usual norm of L2(Rn) and c > 0 is a constant independent of solutions.

Moreover, the estimate (1.4) holds true for a solution of the problem (1.1).

Assumption 1.1 was introduced by Yao [32] for the controllability of the wave equation with

variable coefficients, which is also a useful condition for the controllability and the stabilization

of the quasilinear wave equation (see [35–37]). Existence of such a vector field depends on the

sectional curvature of the Riemannian manifold (Rn, g). There are a number of methods and

examples in [32] to find out a vector field H that satisfies Assumption 1.1.

If there is a vector field H such that

DgH > 0 for all x ∈ R
n, (1.11)

then Assumption 1.1 holds for any bounded open set Ω ⊂ R
n and the damping region (1.9)

can be a neighborhood near infinity. Therefore, we say that the problem (1.1) has a localized

dissipation near infinity if the condition (1.11) holds.

Let h be a strictly convex function of the metric g on Ω. Then H = ∇gh satisfies Assumption

1.1. One of candidates for strictly convex functions is the distance function of the metric g.

Let x0 ∈ R
n be given. Let ρ denote the distance function of the metric g from x0 to x ∈ R

n.

If A = (δij), then g is the standard metric of Rn and ρ(x) = |x − x0|. For a general metric g,

like (1.5), the structure of ρ(x) is very complicated. For the properties of this function, see any

Riemannian geometry book, for example, [31].

Let

Ξ = {x | x ∈ R
n, D2

gh(x) > 0}, (1.12)

where D2
gh is the Hessian of a function h in the metric g, given by

h(x) =
1

2
ρ2(x), x ∈ R

n. (1.13)

It is well-known that Ξ ⊂ R
n is an open set and x0 ∈ Ξ. If a bounded open set Ω ⊂ R

n is such

that

Ω ⊂ Ξ,
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then Assumption 1.1 holds for Ω with H = ∇gh.

If A = (δij), then D2
gh = ∇2h is the unit matrix and Ξ = R

n, where h = |x−x0|2

2 . In general,

how large Ξ ⊂ R
n is depends on the sectional curvature of the Riemannian manifold (Rn, g)

closely. It is well-known that if (Rn, g) has non-positive sectional curvature, then Ξ = R
n.

To verify the condition (1.11), there is other choice on curvature. If (Rn, g) is a noncompact

complete Riemannian manifold with everywhere positive sectional curvature, then there exists

a strictly convex function h on (Rn, g) by Green and Wu [9]. Then the vector filed H = ∇gh

satisfies the condition (1.11).

We have obtained the following result.

Theorem 1.2 If (Rn, g) satisfies one of the following assumptions:

(a) (Rn, g) has non-positive sectional curvature, or

(b) (Rn, g) is noncompact complete Riemannian manifold and has positive sectional curva-

ture everywhere,

then the problem (1.1) has a localized dissipation near infinity.

In general, the condition (1.11) is not true. We have the following result.

Theorem 1.3 If the sectional curvature of (Rn, g) has a positive lower bound, then the

problem (1.1) does not have a localized dissipation near infinity in the sense (1.11).

Next, let us consider decay of the second order energy. We introduce the space

H2(g, Rn) = {w | w ∈ L2(Rn), div A∇w ∈ L2(Rn)} (1.14)

with the norm

‖w‖2
H2(g,Rn) = ‖div A∇w‖2 + ‖w‖2. (1.15)

Let u be a solution to the problem (1.1). We define

E2(t) = ‖utt(t)‖2 + ‖|∇gut|g‖2, t ≥ 0. (1.16)

For the second order energy, the decay is much more rapid as in the case of constant coefficients

(see [17]).

Theorem 1.4 For (u0, u1) ∈ H2(g, Rn) × H1(g, Rn), there exists a unique solution

u(t) ∈ C([0,∞), H2(g, Rn)) ∩ C1([0,∞), H1(g, Rn))

of the problem (1.1) that satisfies

E2(t) ≤
c

1 + t2
(‖u0‖2

H2(g,Rn) + ‖u1‖2
H1(g,Rn)), (1.17)

‖div A∇u‖2 ≤ c

1 + t
(‖u0‖2

H2(g,Rn) + ‖u1‖2
H1(g,Rn)), (1.18)

where c > 0 is a constant independent of solutions.

Finally, as an application, we consider the existence of global solutions of the nonlinear wave

equation {
utt − div A∇u + aut = f(u), (t, x) ∈ [0, T )× R

n,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R
n,

(1.19)

where f(u) is a nonlinear source term.

We make the following assumptions on f and on A(x), respectively.
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Assumption 1.2 Assume that f(s) is locally Lipschitz continuous in s ∈ R such that

|f(s)| ≤ c|s|1+α, |f(s) − f(ζ)| ≤ c(|s| + |ζ|)α|s − ζ| (1.20)

for some c > 0 and α > 0.

Assumption 1.3 There is a σ0 > 0 such that

〈A(x)X, X〉 ≥ σ0|X |2 for all x ∈ R
n, X ∈ R

n. (1.21)

Following Nakao [17], we have the following result.

Theorem 1.5 Let Assumptions 1.1–1.3 hold. Let 2 ≤ n ≤ 3 and 4
n

< α ≤ 2
n−2 (2 < α < ∞

if n = 2). Then when E(0) + ‖u0‖2 is small enough, problem (1.19) has a global solution in

C([0,∞), H1(g, Rn)) ∩ C1([0,∞), L2(Rn)) such that

sup
t≥0

‖u(t)‖ < ∞, E(t) ≤ c(u0, u1)

1 + t
, t ≥ 0

for this solution u.

Of course, similar results are true as in [17, Theorem 2]. We omit them.

2 Proofs of the Main Results

We work on R
n with two metrics, the standard metric 〈 · , · 〉 and the Riemannian metric

g = 〈 · , · 〉g given by (1.5).

If f ∈ C1(Rn), we define the gradient ∇gf of f in the Riemannian metric g, via the Riesz

representation theorem, by

X(f) = 〈∇gf, X〉g, (2.1)

where X is any vector field on (Rn, g). The following lemma provides further relations (see [32,

Lemma 2.1]).

Lemma 2.1 Let x = (x1, · · · , xn) be the natural coordinate system in R
n. Let f , h be

functions and H, X be vector fields. Then

〈H(x), A(x)X(x)〉g = 〈H(x), X(x)〉, x ∈ R
n, (2.2)

∇gf =

n∑

i=1

( n∑

j=1

aij(x)fxj

) ∂

∂xi

= A(x)∇f, x ∈ R
n, (2.3)

where ∇f is the gradient of f in the standard metric, and

∇gf(h) = 〈∇gf,∇gh〉g = 〈∇f, A(x)∇h〉, x ∈ R
n, (2.4)

〈∇gf,∇g(H(f))〉g = DgH(∇gf,∇gf) +
1

2
div (|∇gf |2gH) − 1

2
|∇gf |2gdiv H, x ∈ R

n, (2.5)

where div H is the divergence of the vector field H in the standard metric and the matrix A(x)

is given in problem (1.1).

We assume that the initial data u0, u1 ∈ C∞
0 (Rn). Let u be a solution of problem (1.1).

Then u(t, x) has a compact support on R
n for each t > 0. Let H be a vector field on R

n. Using
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the above formulas in Lemma 2.1, we multiply the equation in (1.1) by H(u), integrate by parts

over R
n with respect to the variable x, and obtain (see [32, Proposition 2.1])

d

dt
(ut, H(u)) +

∫

Rn

p(u2
t − |∇gu|2g)dx +

∫

Rn

DgH(∇gu,∇gu)dx +

∫

Rn

autH(u)dx = 0, (2.6)

where ( · , · ) is the standard inner product of L2(Rn) and p = div H
2 .

Let q be a function. We multiply the equation (1.1) by qu, integrate by parts, and have

d

dt
[2(ut, qu) + (aqu, u)] +

∫

Rn

q(|∇gu|2g − u2
t )dx −

∫

Rn

u2div A∇qdx = 0. (2.7)

In addition, differentiating the energy (1.2) with respect to time t yields

d

dt
E(t) +

∫

Rn

a(x)u2
t dx = 0. (2.8)

Proof of Theorem 1.1 Let vector field H be such that the condition (1.8) holds. We take

two bounded open sets Ω̂,
̂̂
Ω ⊂ R

n such that

Ω ⊂ Ω̂ ⊂ Ω̂ ⊂ ̂̂
Ω. (2.9)

Let ϕ, φ ∈ C∞
0 (Rn) be cut-off functions such that

0 ≤ ϕ ≤ 1, 0 ≤ φ ≤ 1, ϕ =

{
1, x ∈ Ω,

0, x 6∈ Ω̂,
φ =

{
1, x ∈ Ω̂,

0, x 6∈ ̂̂
Ω.

(2.10)

Let q = aφ in the identity (2.7). We have

∫

Rn

aφu2
t dx =

∫

Rn

aφ|∇gu|2gdx +
d

dt
[2(ut, aφu) + (a2φu, u)] −

∫

Rn

u2div A∇(aφ)dx. (2.11)

We replace H with ϕH in the identity (2.6) and replace q with

q0 =
1

2
div ϕH − σϕ (2.12)

in the identity (2.7), respectively, where σ > 0 is given in (1.8). Then we add up the two

identities and obtain

d

dt
X(t) +

∫

Rn

[Dg(ϕH)(∇gu,∇gu) + σϕ(u2
t − |∇gu|2g)]dx

−
∫

Rn

u2div A∇q0dx +

∫

Rn

aϕutH(u)dx = 0, (2.13)

where

X(t) = (ut, ϕH(u) + 2q0u) + (aq0u, u). (2.14)

Let k > 0 be a constant. We multiply the identity (2.8) by k, then add it to the identity

(2.13), and have

d

dt
[X(t) + kE(t)] +

∫

Rn

Y (k, u)dx −
∫

Rn

u2div A∇q0dx +

∫

Rn

aϕutH(u)dx = 0, (2.15)
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where

Y (k, u) = Dg(ϕH)(∇gu,∇gu) + kau2
t + σϕ(u2

t − |∇gu|2g). (2.16)

Since a ≥ aφ ≥ 0, we obtain via (1.8)

∫

Rn

Y (k, u)dx ≥
∫

Rn\Ω

[
Dg(ϕH)(∇gu,∇gu) +

ka

4
u2

t + σϕ(u2
t − |∇gu|2g)

]
dx

+

∫

Ω

[DgH(∇gu,∇gu) + σ(u2
t − |∇gu|2g)]dx +

k

2

∫

Rn

au2
tdx +

k

4

∫

Rn

aφu2
t dx

≥ k

4

∫

Rn

aφu2
t dx −

∫bΩ\Ω

(σ1 + σ)|∇gu|2gdx + σ

∫

Ω

u2
tdx +

∫

Rn

ka

2
u2

t dx, (2.17)

where

σ1 = sup
X∈R

n
x

|X|g=1, x∈bΩ\Ω

|Dg(ϕH)(X, X)|. (2.18)

Using identity (2.11) in inequality (2.17) yields

∫

Rn

Y (k, u)dx ≥
∫bΩ\Ω

(ka

4
− σ − σ1

)
|∇gu|2gdx + σ

∫

Ω

u2
t dx +

∫

Rn

ka

2
u2

t dx

+
k

4

d

dt
[2(ut, aφu) + (a2φu, u)] − k

4

∫

Rn

u2div A∇(aφ)dx. (2.19)

If

k ≥ 4

ε
(σ + σ1), (2.20)

from (2.19) and (1.9), we have

∫

Rn

Y (k, u)dx ≥ σ

∫

Rn

u2
t dx+

k

4

d

dt
[2(ut, aφu)+(a2φu, u)]+

k

4

∫

Rn

au2
t dx− kσ2

4

∫bbΩ u2dx, (2.21)

where

σ2 = sup
x∈

bbΩ |div A∇(aφ)|. (2.22)

Letting q = 1 in (2.7) yields

∫

Rn

u2
t dx =

∫

Rn

|∇gu|2gdx +
d

dt
[2(ut, u) + (au, u)]. (2.23)

Moreover, ∣∣∣
∫

Rn

aϕutH(u)dx
∣∣∣ ≤ σ3

k

∫

Rn

|∇gu|2gdx +
k

8

∫

Rn

au2
tdx, (2.24)

where

σ3 = 2 sup
x∈bΩ(aϕ2|H |2g). (2.25)

Finally, we use (2.24), (2.23) and (2.21) in (2.15) to obtain that if

k ≥ max
[3σ3

σ
,
4

ε
(σ + σ1)

]
, (2.26)

then
d

dt
Z(k, u) +

σ

3
E(t) +

k

8

∫

Rn

au2
tdx ≤

(k

4
σ2 + σ4

)∫bbΩ u2dx, (2.27)
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where

Z(k, u) =
(
ut, ϕH(u) +

[
2q0 +

4

3
σ +

k

2
aφ

]
u
)

+
(
u,

[2σ

3
a + aq0 +

k

4
a2φ

]
u
)

+ kE(t), (2.28)

σ4 = sup
x∈

bbΩ |div A∇q0|. (2.29)

Let k > 0 be given such that the condition (2.26) holds. By (2.28), we have

Z(k, u) ≥ kE(t) +
2σ

3
(au, u)− sup

x∈bΩ ϕ|H |g‖ut‖‖|∇gu|‖

− sup
x∈

bbΩ ∣∣∣2q0 +
4

3
σ +

k

2
aφ

∣∣∣‖ut‖‖u‖ − sup
x∈

bbΩ |aq0|
∫bbΩ u2dx

≥ σε

3
‖u‖2 +

(
k − sup

x∈bΩ ϕ|H |g − 3σ2
5

4σε

)
E(t) −

(
sup
x∈

bbΩ a|q0| +
2σε

3

)∫bbΩ u2dx (2.30)

and

Z(k, u) ≤
(
k + sup

x∈bΩ ϕ|H |g + σ5

)
E(t) + (σ5 + σ6)‖u‖2, (2.31)

where

σ5 = sup

x∈
bbΩ ∣∣∣2q0 +

4

3
σ +

k

2
aφ

∣∣∣, σ6 =
1

2
sup

x∈
bbΩ a

(2σ

3
+ q0 +

k

4
aφ

)
.

Now we fix a k > 0 such that

k ≥ max
[3σ3

σ
,
4

ε
(σ + σ1), sup

x∈bΩ ϕ|H |g +
3σ2

5

4σε

]
. (2.32)

We integrate (2.27) over [s, t] with respect to time t where 0 ≤ s ≤ t. Using the estimates

(2.30) and (2.31), we obtain constants c1 > 0 and c2 > 0 which are independent of t > 0 and a

solution u such that

E(t) + ‖u(t)‖2 + c1

∫ t

s

E(τ)dτ +
k

8

∫

Rn

au2
t dx ≤ c2(E(s) + ‖u(s)‖2) + c2

∫ t

s

∫bbΩ u2dxdτ (2.33)

for k satisfying the inequality (2.32), where the following estimate is used:

‖u(t)‖2 ≤ ‖u(s)‖2 + ε

∫ t

s

u2
t dτ + Cε

∫ t

s

u2 dτ.

Using the compactness-uniqueness argument in Lemma 2.2 below, the lower order term in

(2.33) can be absorbed. We then have constants c1 > 0 and c2 > 0 such that

E(t) + ‖u(t)‖2 + c1

∫ t

s

E(τ)dτ ≤ c2(E(s) + ‖u(s)‖2) (2.34)

for 0 ≤ s ≤ t with t − s ≥ T0, where

T0 =
2

σ
sup

x∈
bbΩ |H |g. (2.35)

The above number T0 is given by Yao [32, Theorem 1.1], which is referred as to the length of

wave.

The estimate (2.34) and the identity (2.8) together yield

E(t) ≤ c2 + 1

1 + t
(E(0) + ‖u0‖2), t > 0. (2.36)
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Lemma 2.2 Let T ≥ T0 be given, where T0 is defined by (2.35). Then for η > 0 given,

there exists a cη > 0 such that

∫ t+T

t

∫bbΩ u2dxdτ ≤ η

∫ t+T

t

E(τ)dτ + cη

∫ t+T

t

∫

Rn

au2
t dxdτ, t > 0. (2.37)

Proof As usual, we prove the lemma by contradiction. We assume that for some η0 > 0

the number cη0 does not exist. Then for any m ≥ 1 there are solutions um and tm > 0 such

that ∫ tm+T

tm

∫bbΩ u2
mdxdτ ≥ η0

∫ tm+T

tm

Em(τ)dτ + m

∫ tm+T

tm

∫

Rn

au2
mtdxdτ, (2.38)

where Em(t) are the E(t) with u replaced by um.

Let

vm(t) =
um(tm + t)

λm

, λ2
m =

∫ tm+T

tm

∫bbΩ u2
mdxdτ. (2.39)

Then the inequality (2.38) means that vm ∈ H1(g, (0, T )× R
n) satisfies

1 ≥ η0

∫ T

0

∫

Rn

(v2
mt + |∇gvm|2g)dxdτ + m

∫ T

0

∫

Rn

av2
mtdxdτ, (2.40)

‖vm‖2

L2((0,T )×
bbΩ)

= 1, (2.41)

where

H1(g, (0, T )× R
n) = {w | w, wt, |∇gw|g ∈ L2((0, T ) × R

n)}

with the norm

‖w‖2
H1(g,(0,T )×Rn) =

∫ T

0

∫

Rn

(w2
t + |∇gw|2g + w2)dxdt.

We may assume that there is a v0 ∈ H1(g, (0, T )× R
n) such that

vm ⇀ v0, in H1(g, (0, T )× R
n) weakly, (2.42)

vm → v0, in L2((0, T ) × ̂̂
Ω) strongly. (2.43)

By (2.40), we have ∫

Rn

av2
0tdx = 0,

that is,

av0t = 0, in R
n; v0t = 0, in R

n \ Ω via (1.9). (2.44)

By (2.41) and (2.43), we obtain

‖v0‖2

L2((0,T )×
bbΩ)

= 1. (2.45)

Moreover, by (2.42)–(2.44), w = v0t solves the problem

{
wtt − div A∇w = 0, (t, x) ∈ (0, T )× Ω̂,

w = 0, (t, x) ∈ (0, T )× R
n \ Ω.

(2.46)

Then an observability estimate, as in [32, Theorem 1.1], implies

v0t = 0, (t, x) ∈ (0, T )× R
n,
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which yields

div A∇v0 = 0, x ∈ R
n. (2.47)

Then v0 ∈ H1(g, Rn) implies that v0 is constant. Furthermore, v0 ∈ L2(Rn) gives

v0 = 0, in R
n,

which contradicts the relation (2.45).

Proof of Theorem 1.3 Since w = ut solves problem (1.1) with the initial data (u1,

div A∇u0 − au1), replacing u with ut in the inequality (2.34) yields

E2(t) + ‖ut(t)‖2 + c1

∫ t

s

E2(τ)dτ ≤ c2(E2(s) + ‖ut(s)‖2), t − T0 ≥ s ≥ 0. (2.48)

We integrate the inequality (2.48) over [0, t − T0] and obtain via (2.34) and (2.48) that

c1

∫ t−T0

0

τE2(τ)dτ ≤ c2

∫ t−T0

0

(E2(τ) + ‖ut(τ)‖2)dτ

≤ c2
2(E2(0) + ‖u1‖2 + E(0) + ‖u0‖2)

≤ c3(‖u0‖2
H2(g,Rn) + ‖u1‖2

H1(g,Rn)), t > T0, (2.49)

which implies the estimate (1.17) since E′
2(t) ≤ 0.

The estimate (1.18) follows from the inequalities (1.17), (2.36) and the equation in the

problem (1.1).

Proof of Theorem 1.4 We prove the theorem by contradiction. We assume that there is a

vector field H on (Rn, g) such that the condition (1.11) holds. By Gallot, Hulin, and Lafontaine

[8, Chapter II, Problem 2.98], there is a closed geodesic r : [0, b] → R
n with r(0) = r(b) = x0 ∈

R
n. Then

ṙ(0) = −ṙ(b). (2.50)

Let

f(t) = 〈H(r(t)), ṙ(t)〉g, t ∈ [0, b].

By (2.50), we get

f(0) = −f(b). (2.51)

The condition (1.11) implies

f ′(t) = 〈Dgṙ(t)
H, ṙ(t)〉g = DgH(ṙ(t), ṙ(t)) > 0, t ∈ [0, b],

which implies

f(b) > f(0),

that is, by (2.51),

〈H(x0), ṙ(0)〉g < 0. (2.52)

Now let

p(t) = 〈H(α(t)), α(t)〉g , α(t) = expx0
t(−ṙ(0)),
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where expx0
: R

n
x0

→ (Rn, g) is the exponential map of the metric g. Then the same argument

on p(t) as above for f(t) gives

−〈H(x0), ṙ(0)〉g = 〈H(x0), α̇(0)〉g < 0,

which contradicts the relation (2.52).

Proof of Theorem 1.5 This is completed by following the proof of Theorem 2 in [17],

where just minor changes are needed. Assumption 1.3 implies

‖|∇w|‖ ≤ 1√
σ0

‖|∇gw|‖, w ∈ H1(g, Rn),

which is used when one applies the Gagliardo-Nirenberg estimate (see [23]) to the source term

f(u).
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