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Abstract For a Riemann surface X of conformally finite type (g, n), let dT , dL and dPi

(i = 1, 2) be the Teichmüller metric, the length spectrum metric and Thurston’s pseudo-
metrics on the Teichmüller space T (X), respectively. The authors get a description of the
Teichmüller distance in terms of the Jenkins-Strebel differential lengths of simple closed
curves. Using this result, by relatively short arguments, some comparisons between dT

and dL, dPi
(i = 1, 2) on Tε(X) and T (X) are obtained, respectively. These comparisons

improve a corresponding result of Li a little. As applications, the authors first get an
alternative proof of the topological equivalence of dT to any one of dL, dP1 and dP2 on
T (X). Second, a new proof of the completeness of the length spectrum metric from the
viewpoint of Finsler geometry is given. Third, a simple proof of the following result of
Liu-Papadopoulos is given: a sequence goes to infinity in T (X) with respect to dT if and
only if it goes to infinity with respect to dL (as well as dPi

(i = 1, 2)).
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1 Introduction

In this paper, X is a non-elementary Riemann surface of conformally finite type (g, n).

For any quasi-conformal mapping f : X → X0, we denote by the pair (X0, f) a marked

Riemann surface. Two marked Riemann surfaces (X1, f1) and (X2, f2) are equivalent if there

is a conformal mapping c : X1 → X2 which is homotopic to f2 ◦ f−1
1 . Denote [X, f ] to be the

equivalence class of (X, f). The Teichmüller space T (X) is the set of the equivalence classes

[X, f ].

As we know, Teichmüller gave a metric on T (X),

dT ([X1, f1], [X2, f2]) = log{inf K(f0)},

where the infimum is taken over all f0 : X1 → X2 in the homotopy class of f2 ◦ f−1
1 , and K(f0)

is its dilatation.

For any non-trivial simple closed curve γ ⊂ X , let lX(γ) be the shortest length under the

Poincaré metric (hyperbolic metric) of closed curves in the free homotopy class of γ. lX(γ) is

called the Poincaré length or hyperbolic length of γ. Let Σ′′
X be the set of homotopy classes of

essential curves on X ; that is, Σ′′
X is the set of homotopy classes of simple closed curves which
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are non-trivial and not homotopic to a puncture. The length spectrum metric dL is defined as

(see [1])

dL([X1, f1], [X2, f2]) = log ρ([X1, f1], [X2, f2]),

where

ρ([X1, f1], [X2, f2]) = sup
γ∈Σ′′

X1

{ lX2(f(γ))

lX1(γ)
,

lX1(γ)

lX2(f(γ))

}
,

and f = f2 ◦ f−1
1 .

Thurston’s pseudo-metrics dP1 and dP2 are defined as follows (see [2]):

dP1([X1, f1], [X2, f2]) = log sup
γ∈Σ′′

X1

lX2(f(γ))

lX1(γ)
,

dP2([X1, f1], [X2, f2]) = log sup
γ∈Σ′′

X1

lX1(γ)

lX2(f(γ))
,

where f = f2◦f−1
1 . In [3, 4], Papadopoulos called dPi

(i = 1, 2) Thurston’s asymmetric metrics.

Thurston [2] showed that the equalities

dPi
([X1, f1], [X2, f2]) = dPi

([X2, f2], [X1, f1]), i = 1, 2

are not true generally. Therefore, dP1 and dP2 are pseudo-metrics on T (X). We know from the

definitions that

dPi
([X1, f1], [X2, f2]) ≤ dL([X1, f1], [X2, f2]), i = 1, 2.

The following result of Wolpert [5] is well-known.

Proposition 1.1 Let f : X1 → X2 be a quasi-conformal mapping between hyperbolic Rie-

mann surfaces. Then
lX2(f(α))

lX1(α)
≤ K(f)

holds for all non-trivial simple closed curves α ⊂ X1.

From this result, we immediately get the following lemma.

Lemma 1.1

dL ≤ dT , dPi
≤ dT , i = 1, 2.

Now, we state some terminologies. Let d1 and d2 be two (pseudo-)metrics on a set F .

(1) We say that d1 is topologically equivalent to d2, if for any sequence {tn}
∞
n=0 ⊂ F , we

have lim
n→∞

d1(tn, t0) = 0 if and only if lim
n→∞

d2(tn, t0) = 0.

(2) We say that d1 is quasi-isometric to d2 if there exists a K > 0 such that

1

K
d1(x, y) ≤ d2(x, y) ≤ Kd1(x, y)

for any x, y ∈ F .

The study of the relations of various metrics or pseudo-metrics on T (X) is very interesting.

In 1972, Sorvali [1] defined and studied the length spectrum metric and asked the following

problem: is the Teichmüller metric dT topologically equivalent to the length spectrum metric

dL for Teichmüller space of topologically finite Riemann surface? In 1975, Sorvali [6] solved
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this problem for tori. In 1986, Li [7] gave a positive answer to this question for the Teichmüller

spaces of compact Riemann surfaces. In 1999, Liu [8] proved that the Teichmüller metric dT

is topologically equivalent to dL for the Teichmüller spaces of topologically finite Riemann sur-

faces. This result gave an affirmative answer to Sorvali’s problem and he asked the problem

whether dT is topologically equivalent to dL in the Teichmüller spaces of Riemann surfaces of

infinite topological type (see [8]). In 2003, Shiga [9] gave a negative answer to Liu’s question

by constructing a counter-example, and he gave a sufficient condition for the topological equiv-

alence of dT and dL on T (X). Most recently, Kinjo [10] showed that Shiga’s condition is not a

necessary one. Liu [11] also showed that the metrics dT , dL and the pseudo-metrics dPi
, i = 1, 2

are topologically equivalent to each other in the Teichmüller spaces of topologically finite Rie-

mann surfaces. Recently, Papadopoulos-Théret [3, 4] proved the same result. Actually, they

have obtained many results about Thurston’s pseudo-metrics. In 2008, Liu-Sun-Wei [12] gave

a new proof of Shiga’s result. They provided a class of Riemann surfaces X of topologically

infinite type, such that dL, dP1 and dP2 are not topologically equivalent to dT on T (X). They

also gave a necessary condition for the topological equivalence of dT to any one of dL, dP1 and

dP2 on T (X).

On the other hand, many authors studied the quasi-isometric equivalence of the above

metrics and pseudo-metrics. Thurston [2] (see also [13]) showed that the Thurston’s pseudo-

metrics are asymmetry, that is, d1 6= d2. Liu [13] proved that dP1 is not quasi-isometric to dP2 .

This also implies that dL is not quasi-isometric to dPi
, i = 1, 2. Liu [14] also showed that dT

is not quasi-isometric to dPi
, i = 1, 2. In 2003, Li [15] proved that dT is not quasi-isometric to

dL. Actually, he proved that there exist two sequences of points {τn}
∞
n=1 and {τ ′

n}
∞
n=1 in T (X)

(X is a compact Riemann surface), such that lim
n→∞

dL(τn, τ ′
n) = 0 while lim

n→∞
dT (τn, τ ′

n) > d0,

where d0 is a positive constant. In [12], Liu-Sun-Wei gave a generalization of Li’s above result;

that is, they showed that in the Teichmüller spaces of Riemann surfaces of topologically finite or

infinite type, there exist two sequences {τ̃}∞n=1 and {τ̂}∞n=1, such that as n → ∞, dL(τ̃n, τ̂n) → 0,

dP1(τ̃n, τ̂n) → 0, dP2(τ̃n, τ̂n) → 0, while dT (τ̃n, τ̂n) → ∞.

The rest of this paper is organized as follows. In Section 2, we will give some comparisons of

the hyperbolic length, the extremal length and the quadratic differential length. Section 3 con-

tains our main results. Theorem 3.1 gives a description of the Teichmüller distance in terms of

the Jenkins-Strebel differential lengths of simple closed curves. By this result and a comparison

between the hyperbolic length and the quadratic differential length, we will give, in Theorem

3.2 and Theorem 3.3, comparisons on T (X) of the Teichmüller distance with the corresponding

length spectrum distance and Thurston’s pseudo-distances. These results improve Li’s results

in [7] a little, and our proofs of Theorem 3.2 and Theorem 3.3 are relatively short. In Theorem

3.4 and Theorem 3.5, we will give comparisons of dT with dL and dPi
, i = 1, 2 on the thick

parts Tε(X), respectively. In Section 4, we will give some applications to Theorems 3.1 and

3.2. As the first application, following Li [7], we will give an alternative proof of the topological

equivalence of dT to dL, dP1 and dP2 , respectively. Second, we will give a new proof of the

completeness of the length spectrum metric from the viewpoint of Finsler geometry. Third,

we will give a simple proof of the following result in Liu-Papadopoulos [17, Theorem 2.25]: a

sequence goes to infinity in T (X) with respect to dT if and only if it goes to infinity with respect

to dL (as well as dPi
, i = 1, 2).

2 Preliminaries

In this section, we will give some comparisons of the hyperbolic length, the extremal length
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and the quadratic differential length. These comparisons will be used in the next section to give

estimations of the Teichmüller distance, the length spectrum distance and Thurston’s pseudo-

distances on T (X) and Tε(X).

First, for later use, we summarize some results in Teichmüller’s theory and quadratic differ-

ential theory. References are [18–22].

The extremal length extX(α) of a simple closed curve α ⊂ X is defined as

extX(α) = sup
ρ

(lρ(α))2

Aρ

,

where ρ ranges over all conformal metrics on X with area 0 < Aρ < ∞, and lρ(α) denotes the

infimum of the ρ-lengths of all the simple closed curves which are homotopic to α.

In his remarkable paper [19], Kerckhoff gave the following description of the Teichmüller

distance in terms of the extremal lengths.

Lemma 2.1 (Kerckhoff)

dT ([X1, f1], [X2, f2]) = log sup
γ∈Σ′′

X

{extX1(f1(γ))

extX2(f2(γ))

}
.

Let QD(X) be the space of holomorphic quadratic differentials on X . Let PQD(X) be

the space of projective equivalence classes of elements in QD(X), where q1 ∈ QD(X) and

q2 ∈ QD(X) are projectively equivalent if they differ by a positive multiplier. We may endow

QD(X) with the L1 norm

‖q‖1 =

∫

X

|q(z)||dz|2.

The complex dimensions of QD(X) and PQD(X) are 3g − 3 + n and 3g − 4 + n, respectively.

PQD(X) may be viewed as the unit sphere in QD(X), thus it is a compact set. A quadratic

differential q ∈ QD(X) induces a metric whose line element can be written locally as |q(z)|
1
2 |dz|.

We call this metric the q-metric, or the quadratic differential metric for short. This metric gives

a measure of lengths as follows. For any simple closed curve γ ⊂ X , let

lq(γ) = inf
α∼γ

{∫

α

|q(z)|
1
2 |dz|

}
.

Then lq(γ) is called the quadratic differential length of γ. The quantity

inf
α∼γ

{∫

α

|ℑ{q(z)
1
2 dz}|

}

is called the height of γ in the q-metric, which is denoted by hq(γ).

There is a special class of holomorphic quadratic differentials q ∈ QD(X) with prescribed

trajectory structures. Given m disjoint simple loops α1, α2, · · · , αm (1 ≤ m ≤ 3g − 3 + n) on

X which are not pair-wisely homotopic, and m positive numbers h1, h2, · · · , hm, there exists

a unique holomorphic quadratic differential q ∈ QD(X) such that (1) the complement of the

critical trajectories of q is the union of cylinders Aj , j = 1, 2, · · · , m, which are homotopic to

αj , j = 1, 2, · · · , m, respectively; (2) the height of Aj is equal to hj , j = 1, 2, · · · , m. Such

quadratic differentials are called the Jenkins-Strebel differentials determined by α1, α2, · · · , αm

and h1, h2, · · · , hm. The cylinders Aj , j = 1, 2, · · · , m are called the characteristic cylinders of

q.
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A special case is m = 1. Given a simple closed curve α ⊂ S, we will use the notation φ[α]

to denote the unique Jenkins-Strebel differential on S determined by α with the height of its

characteristic cylinder equal to 1. This kind of differentials are of great importance to us. In

the rest of this paper, we will also call this kind of differentials the simple differentials.

Let M(X) be the moduli space of X . For any ε > 0, let Mε ⊂ M(X) be the set of Riemann

surfaces with the property that the hyperbolic length of any essential curve is not less than ε.

By Mumford’s compactness theorem, we know that Mε is a compact subset of the moduli space.

Let Tε(X) ⊂ T (X) be the set of [X1, f1] where X1 satisfies the property that the hyperbolic

length of any essential curve is not less than ε. We call Tε(X) the ε-thick part of T (X), and

T (X)− Tε(X) the ε-thin part of T (X).

Let MF be the space of measured foliations on a topological surface X (here, we need not

the complex structure on X), and PMF be the set of its projective classes. The complex

dimensions of MF and PMF are 3g−3+n and 3g−4+n, respectively. PMF may be viewed

as the unit sphere in MF . Thus PMF is a compact subset of MF . Therefore, Mε × PMF

and Mε × PMF × PQD(X) are compact subsets.

Note that the spaces QD(X) and PQD(X) are defined with respect to the complex structure

on X , while MF and PMF are only topological objects which do not depend on the complex

structure on X .

In [22] (see also [19, 23]), Hubbard-Masur proved that given any Riemann surface S ∈

T (X) and any measured foliation F ∈ MF , there exists a unique quadratic differential q ∈

QD(S) whose horizontal measured foliation is measured equivalent to F . Hubbard-Masur’s

result generalized the existence of the Jenkins-Strebel differentials.

In the rest of this section, we will devote ourselves to the comparisons of the hyperbolic

length, the extremal length and the quadratic differential length. We will work on T (X) and

sometimes on Tε(X).

We have the following relation between the extremal length and the simple differential

length.

Lemma 2.2 Let φ[γ] be the simple differential determined by a simple closed curve γ ⊂ X.

Then, the φ[γ]-metric is the metric that realizes the supremum in sup
ρ

(lρ([α]))2

Aρ
. Consequently,

extX(γ) = lφ[γ](γ) = ‖φ[γ]‖1,

where lφ[γ](γ) denotes the length of γ in the metric induced by φ[γ].

Proof The first half of the lemma is well-known. See [20], and see also [19, Theorem 3.1].

Now we prove the second half. According to a remark after [19, Proposition 3], extX(γ) is

equal to the area of X in the metric induced φ[γ]. Namely,

extX(γ) =

∫

X

|φ[γ]||dz|2 = ‖φ[γ]‖1.

On the other hand, we have

extX(γ) =
l2
φ[γ](γ)

‖φ[γ]‖1
.

Combining the above two equalities, we get

extX(γ) = ‖φ[γ]‖1 =
l2
φ[γ](γ)

‖φ[γ]‖1
.
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Now, the lemma follows trivially.

As to the relation between the hyperbolic length and the extremal length, we have the

following result.

Lemma 2.3 (see [24])
lX(γ)

π
≤ extX(γ) ≤

lX(γ)

2
e

lX (γ)

2 .

For any q ∈ QD(X), we have two norms, the L1 norm ‖q‖1 and Bers’ sup-norm

‖q‖B = sup
z∈X

|q(z)|

δ2(z)
,

where δ2(z)|dz|2 is the Poincaré area density. Both of the two norms are of great importance

in quadratic differential theory and Teichmüller theory: (QD(X), ‖ · ‖B) is the model in Bers

embedding which gives T (X) a natural complex manifold structure, and (QD(S), ‖ · ‖1) is the

complex cotangent space of T (X) at a point S ∈ T (X).

Bers’ sup-norm and the L1 norm are actually equivalent.

Lemma 2.4 (see [25]) We have

‖q‖1 < ∞ if and only if ‖q‖B < ∞.

Furthermore, the two norms ‖ · ‖B and ‖ · ‖1 are equivalent: for any S ∈ T (X), there exists a

constant C = CS(g, n) > 0 which depends only on S, g and n, such that

‖q‖1

C
≤ ‖q‖B ≤ C‖q‖1

holds for any q ∈ QD(S).

For general relations between the hyperbolic length and the quadratic differential length,

we have the following result.

Lemma 2.5 For any q = q(z)dz2 ∈ QD(X), we have that

lq(γ) ≤ lX(γ)
(

sup
z∈[γ]

|q(z)|

δ2(z)

) 1
2

≤ lX(γ)
(

sup
z∈X

|q(z)|

δ2(z)

) 1
2

holds for any simple closed curve γ ⊂ X, where [γ] denotes the set of all the simple closed

curves in the homotopy class of γ, and δ2(z)|dz|2 is the Poincaré area density on X. Note that

the constant Cq = sup
z∈X

|q(z)|
δ2(z) is Bers’ sup-norm of q ∈ QD(X).

Proof Since X is of type (g, n), any q ∈ QD(X) is of finite L1 norm, i.e.,

‖q‖1 < ∞.

By Lemma 2.4, this is equivalent to

‖q‖B = sup
z∈X

|q(z)|

δ2(z)
< ∞.

Thus, for any simple closed curve α ∈ [γ], we have

∫

α

√
|q(z)| |dz| =

∫

α

√
|q(z)|

δ(z)
δ(z)|dz| ≤

∫

α

δ(z)|dz| sup
z∈[γ]

√
|q(z)|

δ(z)
.
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Take the infimum over all simple closed curves α in the homotopy class of γ, we get the desired

inequality.

Particularly, when considering the simple differential lengths, we have the following result.

Corollary 2.1 For any S ∈ T (X), there exists a constant C = CS(g, n) > 0 (which is

exactly the same as the one in Lemma 2.4), such that

extS(γ) = lφ[γ](γ) ≤ C l2S(γ)

holds for any simple closed curve γ ⊂ S, and the corresponding simple differential φ[γ] ∈ QD(S)

determined by γ.

Proof For simplicity, denote q = φ[γ]. From Lemma 2.5, we know

lq(γ) ≤ lS(γ)
(

sup
z∈S

|q(z)|

δ2(z)

) 1
2

.

By Lemma 2.4, there exists a constant C = CS(g, n) > 0 such that

sup
z∈S

|q(z)|

δ2(z)
≤ C‖q‖1

holds for any holomorphic quadratic differential in QD(S). Thus, the above two inequalities

give

lq(γ) ≤ C
1
2 lS(γ)‖q‖

1
2
1 .

At the same time, Lemma 2.2 tells us that

extS(γ) = lq(γ) = ‖q‖1.

Therefore,

extS(γ) = lq(γ) ≤ C
1
2 lS(γ)ext

1
2

S (γ).

This implies

extS(γ) = lq(γ) ≤ C l2S(γ).

A converse inequality to the one in Corollary 2.1 can be easily obtained from the definition

of the extremal lengths and the Gauss-Bonnet theorem. Given any S ∈ T (X) and any γ ⊂ S,

we have

extS(γ) = lφ[γ](γ) ≥
l2S(γ)

2π(2g − 2 + n)
.

This inequality together with Corollary 2.1 gives the following lemma.

Lemma 2.6 For any S ∈ T (X), there exists a constant C = CS(g, n) > 0, such that

l2S(γ)

C
≤ extS(γ) = lφ[γ](γ) ≤ C l2S(γ)

holds for any simple closed curve γ ⊂ S, and the corresponding simple differential φ[γ] ∈ QD(S)

determined by γ.

When S ∈ Tε(X), we have the following lemma in correspondence with Lemma 2.5 and

Lemma 2.6.
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Lemma 2.7 There exists a universal constant C = C(g, n, ε) such that

lq(γ)

C
≤ lS(γ) ≤ C lq(γ)

holds for any S ∈ Tε(X), any essential simple closed curve γ ⊂ S, and any q ∈ PQD(S).

Especially, there exists a universal constant C = C(g, n, ε) (which is exactly the same as the

above one), such that

l
1
2

φ[γ](γ)

C
≤ lS(γ) ≤ C l

1
2

φ[γ](γ)

holds for any S ∈ Tε(X), any γ ⊂ S, and the corresponding simple differential φ[γ] ∈ QD(S).

Proof For any S ∈ Tε(X), any γ ⊂ S, and any quadratic differential q ∈ PQD(S) (which

is viewed as the unit sphere in QD(S)), set

J = J (S, γ, q) =
lS(γ)

lq(γ)
.

Then J is a well-defined, positive and continuous function on the compact set Mε × PMF ×⋃
S∈Tε(X)

PQD(S)
(
note that

⋃
S∈Tε(X)

PQD(S) is a finite union of compact sets PQD(S) with

its cardinality non-greater than 3g − 3 + n
)
. Let c1 and c2 be the maximum and minimum

values of J , respectively. Then the first result follows by setting C = max{c1,
1
c2
}.

From Lemma 2.2, we know lφ[γ](γ) = ‖φ[γ]‖1. Thus, by a similar argument, we get the

second result by considering those differentials φ[γ]
‖φ[γ]‖1

with unit norms.

To end this section, we make the following remark.

Remark 2.1 Lemma 2.6 holds for any S ∈ T (X), but its disadvantage is that the constant

C = CS(g, n) depends on S ∈ T (X).

In the second inequality of Lemma 2.7, the constant C = C(g, n, ε) is a universal constant

which does not depend on S ∈ Tε(X) or γ ⊂ S. A similar result is given in [12, Theorem 1].

3 Main Results

In Theorem 3.1, we will give a description of the Teichmüller distance in terms of the simple

differential lengths of all the simple closed curves.

Theorem 3.1 For any two points [X1, f1], [X2, f2] ∈ T (X), we have

dT ([X1, f1], [X2, f2]) = log sup
γ∈Σ′′

X

{ lφ[f1(γ)](f1(γ))

lφ[f2(γ)](f2(γ))

}
.

Proof By Lemma 2.1, we have

dT ([X1, f1], [X2, f2]) = log sup
γ∈Σ′′

X

{extX1(f1(γ))

extX2(f2(γ))

}
. (3.1)

According to Lemma 2.2, replacing the extremal lengths in (3.1) by the corresponding simple

differential lengths, we get

dT ([X1, f1], [X2, f2]) = log sup
γ∈Σ′′

X

{ lφ[f1(γ)](f1(γ))

lφ[f2(γ)](f2(γ))

}
.
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In the following Theorems 3.2–3.5, we will use Theorem 3.1 and some related lemmas in the

preceding section to give comparisons of the Teichmüller distance, the length spectrum distance

and Thurston’s pseudo-distances on T (X) and Tε(X), respectively.

First, we give comparisons of these distances on the whole of T (X).

Theorem 3.2 For any two points [X1, f1], [X2, f2] ∈ T (X), we have

dT ([X1, f1], [X2, f2]) ≤ dP1([X1, f1], [X2, f2]) + CB([X2, f2]), (3.2)

dT ([X1, f1], [X2, f2]) ≤ dP2([X1, f1], [X2, f2]) + CB([X1, f1]), (3.3)

dT ([X1, f1], [X2, f2]) ≤ dL([X1, f1], [X2, f2]) + CB([Xi, fi]), i = 1, 2. (3.4)

Here CB = CB([Xi, fi]) is a constant which depends only on [Xi, fi], i = 1, 2.

Proof By Theorem 3.1, we have

dT ([X1, f1], [X2, f2]) = log sup
γ∈Σ′′

X

{ lq1(f1(γ))

lq2(f2(γ))

}
. (3.5)

Here, for simplicity, we denote the simple differentials φ[f1(γ)] and φ[f2(γ)] by q1 and q2,

respectively.

Now, we estimate the right-hand side of (3.5). From Lemmas 2.2 and 2.3, we have

lX2(f2(γ))

π
≤ extX2(f2(γ)) = lq2(f2(γ)). (3.6)

On the other hand, by Lemma 2.5, we get

lq1(f1(γ)) ≤ lX1(f1(γ))
(

sup
z∈[f1(γ)]

|q1(z)|

δ2(z)

) 1
2

. (3.7)

Combining (3.6) and (3.7), we obtain

lq1(f1(γ))

lq2(f2(γ))
≤ π

(
sup

z∈[f1(γ)]

|q1(z)|

δ2(z)

) 1
2 lX1(f1(γ))

lX2(f2(γ))
. (3.8)

Taking the supremum in (3.8) over all γ ∈ Σ′′
X , we have

sup
γ∈Σ′′

X

{ lq1(f1(γ))

lq2(f2(γ))

}
≤ π sup

γ∈Σ′′

X

{(
sup

z∈[f1(γ)]

|q1(z)|

δ2(z)

) 1
2
}

sup
γ∈Σ′′

X

{ lX1(f1(γ))

lX2(f2(γ))

}
. (3.9)

Therefore, from (3.5) and (3.9), we get the desired inequality (3.3),

dT ([X1, f1], [X2, f2]) ≤ dP2([X1, f1], [X2, f2]) + CB([X1, f1]),

where

CB([X1, f1]) =
1

2
log sup

γ∈Σ′′

X1

{
sup
z∈[γ]

|q1(z)|

δ2(z)

}
+ log π.

Note

CB([X1, f1]) ≤
1

2
log sup

z∈X1

|q1(z)|

δ2(z)
+ log π < ∞.

Similarly, we get the desired inequality (3.2),

dT ([X1, f1], [X2, f2]) ≤ dP1([X1, f1], [X2, f2]) + CB([X2, f2]),
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where

CB([X2, f2]) =
1

2
log sup

γ∈Σ′′

X2

{
sup
z∈[γ]

|q2(z)|

δ2(z)

}
+ log π.

By definitions,

dPi
([X1, f1], [X2, f2]) ≤ dL([X1, f1], [X2, f2]), i = 1, 2.

Thus, from (3.2) and (3.3), we obtain the desired inequality (3.4),

dT ([X1, f1], [X2, f2]) ≤ dL([X1, f1], [X2, f2]) + CB([Xi, fi]), i = 1, 2.

Correspondingly, from the proof of Theorem 3.2, we get the following result.

Theorem 3.3 For any two points [X1, f1], [X2, f2] ∈ T (X), let f : X1 → X2 be the Te-

ichmüller mapping in the homotopy class of f2 ◦ f−1
1 . Then we have

K(f) ≤ CB([X2, f2]) sup
γ∈Σ′′

X

{ lX2(f2(γ))

lX1(f1(γ))

}
,

K(f) ≤ CB([X1, f1]) sup
γ∈Σ′′

X

{ lX1(f1(γ))

lX2(f2(γ))

}
,

K(f) ≤ CB([Xi, fi]) sup
γ∈Σ′′

X

{ lX1(f1(γ))

lX2(f2(γ))
,
lX2(f2(γ))

lX1(f1(γ))

}
, i = 1, 2.

Here CB = CB([Xi, fi]) is a constant which depends only on [Xi, fi], i = 1, 2.

Proof Set

CB([X1, f1]) = π sup
γ∈Σ′′

X1

{(
sup
z∈[γ]

|q1(z)|

δ2(z)

) 1
2
}

,

CB([X2, f2]) = π sup
γ∈Σ′′

X2

{(
sup
z∈[γ]

|q2(z)|

δ2(z)

) 1
2
}

.

Then, from the definitions of dT , dL and dPi
, i = 1, 2, we get the desired inequalities by (3.9)

and its similarities.

Remark 3.1 For Teichmüller spaces of compact Riemann surfaces, Li [7] proved the fol-

lowing inequality

K(f) ≤ m([X1, f1]) sup
γ∈Σ′′

X

{( lX1(f1(γ))

lX2(f2(γ))

)2

,
( lX2(f2(γ))

lX1(f1(γ))

)2}
, (3.10)

where m([X1, f1]) is a constant which depends only on [X1, f1].

In the same paper [7], by using inequality (3.10), Li obtained the following important in-

equality from which he further showed the topological equivalence of the Teichmüller metric and

the length spectrum metric on Teichmüller spaces of compact Riemann surfaces. Li’s inequality

is as follows:

dL(τ1, τ2) ≤ dT (τ1, τ2) ≤ 2dL(τ1, τ2) + C(τ1), (3.11)

where τ1, τ2 ∈ T (S0), C(τ1) is a constant depending on τ1 and S0 is a compact Riemann surface.

Theorems 3.2 and 3.3 improve Li’s above results (3.10) and (3.11) a little. Theorems 3.2

and 3.3 hold for Riemann surfaces of conformally finite type, whereas (3.10) and (3.11) only
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hold for compact Riemann surfaces (this is because, in Li’s [7] proof of (3.10) and (3.11), a

compactness argument is used). And we remark that the constants CB([Xi, fi]), i = 1, 2 in

Theorem 3.2 and CB([Xi, fi]), i = 1, 2 in Theorem 3.3 are essentially related to Bers’ sup-norm

of simple differentials, whereas the constants in (3.10) and (3.11) are obtained by a compactness

argument.

In Theorems 3.4 and 3.5, we will give comparisons of the Teichmüller distance, the length

spectrum distance and Thurston’s pseudo-distances on Tε(X). These comparisons are a little

different from those given in Theorems 3.2 and 3.3. Note that the constants in the following

Theorems 3.4 and 3.5 are universal in the sense that they depend only on g, n and ε.

Theorem 3.4 There exist universal constants Ci = Ci(g, n, ε), i = 1, 2 which depend only

on g, n and ε, such that for any two points [X1, f1], [X2, f2] ∈ Tε(X), we have

dT ([X1, f1], [X2, f2]) ≤ 2dP1([X1, f1], [X2, f2]) + C1, (3.12)

dT ([X1, f1], [X2, f2]) ≤ 2dP2([X1, f1], [X2, f2]) + C2, (3.13)

dT ([X1, f1], [X2, f2]) ≤ 2dL([X1, f1], [X2, f2]) + Ci, i = 1, 2. (3.14)

Proof By Theorem 3.1, we have

dT ([X1, f1], [X2, f2]) = log sup
γ∈Σ′′

X

{ lq1(f1(γ))

lq2(f2(γ))

}
. (3.15)

Here, for simplicity, we denote the simple differentials φ[f1(γ)] and φ[f2(γ)] by q1 and q2,

respectively.

By Lemma 2.7, the right-hand side of (3.15) can be estimated by

sup
γ∈Σ′′

X

{ lq1(f1(γ))

lq2(f2(γ))

}
≤ C2 sup

γ∈Σ′′

X

{ l2X1
(f1(γ))

l2X2
(f2(γ))

}
, (3.16)

where C2 comes from Lemma 2.7 which depends only on g, n and ε.

Thus, from (3.15) and (3.16), we get the desired inequality (3.13) by setting C2 = log C2,

dT ([X1, f1], [X2, f2]) ≤ 2dP2([X1, f1], [X2, f2]) + log C2.

Similarly, we get inequality (3.12).

By definitions,

dPi
([X1, f1], [X2, f2]) ≤ dL([X1, f1], [X2, f2]), i = 1, 2.

Thus, we get inequality (3.14) from (3.12) and (3.13).

Correspondingly, we get the following theorem from the definitions of dT , dL, dPi
(i = 1, 2)

and the proof of Theorem 3.4, especially from (3.16) and its similarities.

Theorem 3.5 There exist universal constants Ci = Ci(g, n, ε), i = 1, 2 (which are given

in (3.16) and its similarities), such that for any two points [X1, f1], [X2, f2] ∈ Tε(X) and the
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Teichmüller mapping f : X1 → X2 in the homotopy class of f2 ◦ f−1
1 , we have

K(f) ≤ C1 sup
γ∈Σ′′

X

{ l2X2
(f2(γ))

l2X1
(f1(γ))

}
, (3.17)

K(f) ≤ C2 sup
γ∈Σ′′

X

{ l2X1
(f1(γ))

l2X2
(f2(γ))

}
, (3.18)

K(f) ≤ Ci sup
γ∈Σ′′

X

{ l2X2
(f2(γ))

l2X1
(f1(γ))

,
l2X1

(f1(γ))

l2X2
(f2(γ))

}
, i = 1, 2. (3.19)

Remark 3.2 (i) In [16, Theorem B], Choi-Rafi proved that there is a constant c depending

on g, n and ε such that, for any σ, τ ∈ Tε(X), we have

dT (σ, τ) ≤ 2dL(σ, τ) + c.

(Note that the Teichmüller distance in [16] is one half of ours). In [12, Theorem 2], similar

inequalities are obtained with additional multiplicative constants on the right-hand side of the

inequalities.

(ii) As stated in the introduction, Liu [13] proved that the length spectrum metric is not

quasi-isometric to Thurston’s pseudo-metrics. Thus, inequalities (3.12) and (3.13) of Theorem

3.4 may not be obtained from inequality (3.14) trivially. Similarly, inequalities (3.17) and (3.18)

of Theorem 3.5 may not be obtained from inequality (3.19) trivially.

4 Applications

First, following Li [7], we can immediately get the following result from Theorem 3.2.

Theorem 4.1 Teichmüller metric dT is topologically equivalent to dL, dP1 and dP2 , respec-

tively.

Proof Recall that Li [7] has got the topological equivalence between the Teichmüller

metric and the length spectrum metric from inequality (3.11). Since Theorem 3.2 is a slight

improvement of (3.11), we will get the topological equivalences by following Li’s idea in proving

his Theorem 1 in [7].

Second, we show the completeness of the length spectrum metric dL from the viewpoint of

Finsler geometry.

Theorem 4.2 The length spectrum metric dL is a complete Finsler metric on T (X).

Proof Thurston [2] showed that dL is a Finsler metric.

Recall the following version of the Hopf-Rinow theorem (see [26]) for Finsler metrics on

connected manifolds: a Finsler metric is compete if and only if every bounded closed subset

is compact. Since dL and dT are both Finsler metrics, we will use this criterion to show the

completeness of dL.

Let V ⊂ T (X) be a bounded closed subset with respect to dL. Then, from Theorems 3.2

and 4.1, V is also a bounded closed subset with respect to dT . But dT is complete as a Finsler

metric, so from the above Hopf-Rinow theorem we know that V is compact. Again from the

Hopf-Rinow theorem, it follows that the length spectrum metric dL is complete.

Theorem 4.1 tells us that dT and each of dL, dPi
, i = 1, 2 go to zero simultaneously. As the

last application to Theorem 3.2, we will give a simple proof of the following theorem (see [17,

Theorem 2.25]).
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Theorem 4.3 Let X be a non-elementary Riemann surface of conformally finite type (g, n).

Let {xn}
∞
n=0 be a sequence in T (X). Then

lim
n→∞

dT (xn, x0) = ∞ ⇐⇒ lim
n→∞

dL(xn, x0) = ∞,

lim
n→∞

dT (xn, x0) = ∞ ⇐⇒ lim
n→∞

dPi
(xn, x0) = ∞, i = 1, 2.

Proof We will prove the first equivalence in this theorem. The second one can be proved

similarly.

The implication

lim
n→∞

dL(xn, x0) = ∞ =⇒ lim
n→∞

dT (xn, x0) = ∞

follows directly from Lemma 1.1.

For the other implication, Theorem 3.2 gives

dT (x0, xn) ≤ dL(x0, xn) + CB(x0).

This indicates that

lim
n→∞

dT (xn, x0) = ∞ =⇒ lim
n→∞

dL(xn, x0) = ∞.
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