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Abstract Let D, be the generalized unit disk of degree n. In this paper, Riemannian
which are invariant under the natural action
of the Jacobi group are found explicitly and the Laplacians of these invariant metrics are

(m,n)

metrics on the Siegel-Jacobi disk D,, x C

computed explicitly. These are expressed in terms of the trace form.
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1 Introduction

For a given fixed positive integer n, we let
H, ={QecC™ | Q=" ImQ >0}
be the Siegel upper half plane of degree n and
Sp(n,R) = {M € R | tAf ], M = J,}
be the symplectic group of degree n, where
- (05,
We see that Sp(n,R) acts on H,, transitively by
M-Q=(AQ+ B)(CQ+ D)™},

where M = (4 B) € Sp(n,R) and Q € H,,.
For two positive integers n and m, we consider the Heisenberg group

Hﬂé"’m) ={O k) | A p e RMM g e ROW™ gt it X symmetric)
endowed with the following multiplication law
\pik)o (N s k) = A+ N, p4 sk 4+ k" + X0 — p'X).
We define the semidirect product of Sp(n,R) and Hﬂén’m) as

G’ := Sp(n,R) x Hﬂén’m)
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endowed with the following multiplication law
(M, (A 5 5)) - (M (N /s 1)) = (MM (N + N, i+ s 5+ 5+ X' — i)

with M, M’ € Sp(n,R), (\, u; &), (N, 1/ 8') € Hﬂg{n’m) and (A, i) = (A, p)M’. We call this group
G’ the Jacobi group of degree n and index m. Then we get the natural action of G’ on
H,, x C™™ (see [1, 2, 7-9, 15]) defined by

(M, (i 1) - (9, Z) = (M -, (Z+ M2+ 1) (CQ + D)), (1.2)
where M = (& B) € Sp(n,R), (A, u;k) € Hné"’m) and (Q, Z) € H,, x Ct™™ . We note that the
action (1.2) is transitive.

For brevity, we write H,, ,,, := H,, X C(mn) | For a coordinate (Q,2) € H,,,, with Q =

(wuw) € Hy, and Z = (21) € C™™) | we put

Q=X+1Y, X=(vw), Y = (yuw) real,

Z=U+iV, U= (un), V = (vg) real,

dQ = (dwyy), dQ = (dw,,),

dz = (dzk[), dZ = (d?kl),
0 (1+5W 0 ) 0 7(14—5#1, 0 )

o 2 Owp o0 2 0w
0 e 9 9 e )

9 3Z'11 az:ml 9 35'11 az:ml
97 : : S : : ’
07 9 .. 9 0z 9 .. 0

0zin OZmn OZ1n OZmn

where d;; denotes the Kronecker delta symbol.
Siegel [6] introduced the symplectic metric ds? on H,, invariant under the action (1.1) of
Sp(n,R) given by

ds? = o(Y1dQY —1dQ), (1.3)
and Maass [4] proved that the differential operator
t/ 0\ O
A _4U(Y (Yﬁ)%) (1.4)

is the Laplacian of H,, for the symplectic metric ds?. Here o(A) denotes the trace of a square
matrix A.
In [11], the author proved the following theorems.

Theorem 1.1 For any two positive real numbers A and B, the following metric
ds? piap =Ac(Y QY Q) + B{o(Y''VVY1AQY T1dQ) + o(Y 1 (d2)dZ)
—o(VY QY '4dZ)) —o(VY 1dQY 1 1(d2))} (1.5)
is a Riemannian metric on H,, , which is invariant under the action (1.2) of the Jacobi group
G7.

Theorem 1.2 For any two positive real numbers A and B, the Laplacian Ay m.a.B of
(Hn)m,dsfl’m;AﬁB) is given by
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Let
G. = SU(n,n) N Sp(n,C)

be the symplectic group and
D, = {WeC™ |W =W, I, - WW > 0}

be the generalized unit disk. Then G, acts on D,, transitively by

A W= (PW+Q)QW +P)!
Q P ’
where (g g) € G, and W € D,,. Using the Cayley transform of I,, onto H,,, we can see that
ds? = 4o ((I, = WW )" 1AW (I,, — WW) " 1dW) (1.7)

is a G-invariant K&hler metric on D, (see [6]) and Maass [4] showed that its Laplacian is given
by

A, :a(([n—WW) t((In—WW)i) 0 ) (1.8)

oW/ oW
G£={<<g ﬁ)ma&m)

P
_ 8 G,, £€Cm™™ ke R™W™)
07

be the Jacobi group with the following multiplication:

P Q . Pl Q/ AT
<<@ F>5(57§715)><<@ F>7(§7§71H)>

. P Q P’ Q/ = T T s ! Nt_/_:/t/
_<<@ ﬁ> <@ ﬁ),(Hg,g + &k +ik + €7 - € §)>,

where £ = ¢P' + €@ and E = £Q' + €P’. Then we have the natural action of G on the
Siegel-Jacobi disk I,, x C™™) (see (2.6)) given by

Let

((g g) ,<£,E;m)> (W) = (PW + Q)QW +P)~ (n+EW +)(@QW + P) ™), (1.9)
where W € D,, and 1 € Ct™7),

For brevity, we write Dy, ,, := D, X C(mn) | For a coordinate (W,n) € Dy with W =
(W) €Dy, and 7 = (ng) € C™™) we put

dW = (dw,,), dW = (dw,,), dn= (dng), d7= (d7)

and
0 (1406, 0 0 (1406, 0
W‘( 2 8ww,)’ ﬁ_( 2 aww)’
9 _0 9
) 67711 OMm1 9 ony, 8ﬁ"m1
on o .. o | Om o ... _o_
ONin OMmn OMin Mo,

In this paper, we find the G7-invariant Riemannian metrics on D,, », and their Laplacians.
In fact, we prove the following theorems.
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Theorem 1.3 For any two positive real numbers A and B, the following metric dE’fhm;A’B
defined by

ds? ap = 4AU((In —WW)“\aw (I,, - WW) " dW ) + 4B{o((I,, — WW )~ ¥(dn)d7)
o((qW —7) (I, — WW )~ 1 dW (I, - WW) =" ¥(d7p))
a((mW )(I —WW)~ ' dW (I, - WW )~ ¥(dn))
(I, = WW) =Y ogn(L, = WW) " *WAW (I,, — WW)~1dW)

W(I, — WW) Vg a(L, — WW) AW (I, — WW)~1dW)
+o((L, — WW) g1, — WW)~tdw (I, —- WW)~1dW)
+o((L, = W) M ggW (I, — WW)~tdw (I, - WW)~1dIW)
o((I, = W) I, = W)(I,, = WW) Y tqn(I, = WW) " (I, = W)(I, — W)~}
x dW (I, = WW)XdW) — o((I,, = WW ) (I, = W)(I, = W) 7
x (I, = W) taw (I, - WWw)~tdW )}

is a Riemannian metric on Dy, », which is invariant under the action (1.9) of the Jacobi group
G?!. Note that ifn =m =1 and A= B = 1, we get

1 dWdaw dndn 1+ |[W[2)|n* - Wn? — wn? —
2452 dWdaw
1 =R TSP (1~ TPy
nW —mn _ nw —n
4+ ————dWdn + 7den
(1 —[W]?)? (1—[W[?)?

Theorem 1.4 For any two positive real numbers A and B, the Laplacian En,m;A)B of
(Dmm,dE%ym;AyB) s given by

Rmin s = %{a(([n ~ww) (1, ww)2) %)

+—a((1 —ww) 2 t(aan))'

Note that if n=m =1 and A= B =1, we get

02 ,. 02 ) 02
— + (1 - |W + (1 - W 14
G 0 WE G 4 (L (W = W) e

+ (1= W)@ — W)

A1,1,1,1 =(1—|W[*)?
2

3]
oW on

_ 0?
= (W0 + W) o + (14 (W)l 5

onon an 8_
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The main ingredients for the proof of Theorems 1.3 and 1.4 are the partial Cayley transform,
Theorems 1.1 and 1.2. The paper is organized as follows. In Section 2, we review the partial
Cayley transform that was dealt with in [12]. In Section 3, we prove Theorem 1.3. In Section 4,
we prove Theorem 1.4. In the final section, we briefly remark the theory of harmonic analysis
on the Siegel-Jacobi disk.

We denote by R and C the fields of real numbers and the field of complex numbers respec-
tively. The symbol “:="
left. For two positive integers k and I, F(*! denotes the set of all k x [ matrices with entries

means that the expression on the right is the definition of that on the

in a commutative ring F. For a square matrix A € F**) of degree F, o(A) denotes the trace
of A. For Q € Hy, ReQ) (resp. Im) denotes the real (resp. imaginary) part of 2. For any
M e F®D )\ denotes the transpose matrix of M.

2 A Partial Cayley Transform

In this section, we review the partial Cayley transform (see [12]) of D, ,, onto H,, ,,, needed
for the proof of Theorems 1.3 and 1.4.

We can identify an element g = (M, (X, j1; 5)) of G, where M = (4 B) € Sp(n,R), with the
element

A 0 B A'u— B\
AL, uw K
C 0 D Clu—DtX
0O 0 O I,

of Sp(m + n, R).
Set

T _ L Im—i—n Im—i—n
* \/§ 1Im+n _iIm—i-n '

We now consider the group G defined by
G! =17'G’T,.

If g = (M, (X 5 5)) € G7 with M = (4 B) € Sp(n,R), then T, *¢T is given by

1 . P Q.
T 'gT. = <@* ﬁ*> , (2.1)
where
P HQMA i) - I — i)
P, = 1 . K )
(A +1ip) In +1i%

Q:< Q %{Pt(A—iu)—Qt(A+iu)}>
T s i) —i5 ’

and P, @ are given by the formulas

p— %{(A+D)+1(B—C)}, (2.2)

Q= %{(A—D)—i(B+C)}. (2.3)
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From now on, we write

((G ﬁ) , (5(/\—0—1#),5(/\—1;1);15)) = (@* F*> .

In other words, we have the relation

J.-H. Yang

(& 5) 0w T*=<<g g),(§<A+m>,§<x—m>;—ig)>.

Let
HE™ = {(&m;¢) | &m € C™™, ¢ e C™™, ¢ +n'¢ symmetric)

be the complex Heisenberg group endowed with the following multiplication:
E&mQ)o (€ ns¢) = (E+Em+niC+ +EM —n'e).
We define the semidirect product
SL(2n,C) x HI™

endowed with the following multiplication:

<<§ g) ’(5’77;0) ' <(]1~32' g) ,(5’,77’;4’))
(G Y 9 wermwcrces-ve)
where £ = €P' + 7R and 7= £Q' + 1S,
If we identify Hﬂ({“m) with the subgroup
{(¢,E k) | € € CmM) | e ROWm)Y

of H(én’m), we have the following inclusion:

G? c SU(n,n) x Hﬂ({l’m) C SL(2n,C) x Hén’m).

We define the mapping © : G¥ — G by

o((¢ 1)) = ((g B) GOr+imz0-mi-i%)),

(2.4)

where P and @Q are given by (2.2) and (2.3). We can see that if g1,g2 € G7, then ©(g192) =

9(91)9(92)-

According to [10, p. 250], G is of the Harish-Chandra type (see [5, p. 118]). Let

gu = <(g %) s (A H))

be an element of G/. Since the Harish-Chandra decomposition of an element (g g) in SU(n,n)

is given by

P Q\ (I, QS™Y\ (P-QS'R 0 I, 0
rR s)~\o 1, 0 s)\s'r 1,)
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the Pr-component of the following element

I, W .
g*((g In>7(07n70)>7 WEID)n

of SL(2n, C) x H™™ is given by

((In (PW + Q)(QW + P )1

0 ; ),(0, (n+/\W+u)@W+F)1;0)>. (2.5)

We can identify D, ,, with the subset

{ ((Ig II/Z) 7(0,77;0)) ’ Web,, ne C(’”’")}

of the complexification of G. Indeed, D,, ,,, is embedded into P} given by

P = { ((Ig ?) ,(o,n;0)> ‘ W="'wecmm, ne@mv")}.

This is a generalization of the Harish-Chandra embedding (see [5, p. 119]). Then we get the
natural transitive action of G*J on D, ,, defined by

P - _ _ L _
((Q g) maam) (W) = (P +QU@W +P) !,y + €W +H@W + P)™), (26)
where (g g) € Gy, £ Cm) i e R™™) and (W,n) € Dy, -

The author proved in [12] that the action (1.2) of G’ on H,, ,, is compatible with the action
(2.6) of G on Dy, through a partial Cayley transform @ : D, ,,, — H,, ,,, defined by

S(W, ) = (T + W) (I — W)™, 2in(T, — W) ). (2.7)
In other words, if go € G’ and (W, n) € Dy, n, we have
go - (W, n) = ®(g« - (W, ), (2.8)

where g, = T 'goT.. ® is a biholomorphic mapping of D, ,,, onto H,, ,,, which gives the partially
bounded realization of H,, ,,, by Dy, ,,,. The inverse of ® is

NN, Z) = (Q—iL)(Q +il,)" ", Z(Q +il,) ™).

3 Proof of Theorem 1.3

For (W, n) € Dy, 1, we write
(©,2) :== (W, n).

Thus
Q=i(L, + W)(I,, - W)™, Z=2in(I, - W) " (3.1)

Since
d(I, = W)= ' = (I, = W) *aw (1, - W)™,
In+ Ly + W)(In = W)™ ' =2(I, - W)™,
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we get the following formulas from (3.1):

1

:E(Q_ﬁ):(In_W)il(In_WW)(In_W)ila (3'2)
V= (2~ 7) =l ~ W) (L T, (3.3)
dQ = 2i(I,, — W)~ W (I, — W)™, (3.4)
dZ = 2i{dn + n(L, — W) HdW¥(I, — W)L (3.5)

According to (3.2) and (3.4), we obtain
c(Y1dQY Q) = 4o ((I,, - WW )~ AW (I, — WW) " *dW ). (3.6)

From (3.2)—(3.4), we get

oY1V VYldQy —1dQ) = (a) + (b) + (c) + (d), (3.7)
where
(a) := 4o ((I, — WW ) Yign(L, —WW)"Y(I,, = W)(I,, — W) *dW (I, — WW)~1dW),
(b) :== 4o ((I, — WW) " (I, — WW )~ tdW (I, — WW)~1dW ),
(( '

)_ (In - W)(In _WW)_l tﬁn(In _WW)_l
x (I, = W)L, = W) {dW (I, - WW) " :dW),
(d) := 4o ((I, — W) NI, — W)(I, = WW) " tigq(l, — WW ) tdW (I, — WW)~tdW).

According to (3.2) and (3.5), we get

o(Y™14d2)dZ) = (e) + (f) + (g) = (h), (3.8)
where
(¢) = 4o((I, — WW )~ *(dn)dn),
(f) := 4o ((I, = WW )~ 1AW (I,, — W)~ tnd7),
(g) = do (I, = WW )~ (dn)7(L, = W)~ dW),
(h) := do((L, = WW )" dW (I, = W)~ igi(L, — W) ~HdW ).
From (3.2)—(3.5), we get
—o(VY~HQY14dZ)) = (i) + () + (k) + (1) (3.9)
where
() := —do(n(I, — W) (I, = W), — WW )~ taW (I, - WW)~ 1 (dp))
() := —4o((L, = W) (I, — W) (I, = W)(I,, - WW )" tdW (I,, - WW)~1dW ),
(k) := —4a(7(L, — WW )~ 1AW (I, = WW)~ 1 *(d7)),
(1) := —do((I, — W) V7L, — WW) AW (I, — WW)~1dW ).

—o(VY QY1 *(d2Z)) = (m) + (n) + (o) + (p), (3.10)
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where
(m) 40@( n W)_I(In - W)(In - WW)_ldW(In - WW)_I t(dn)%
(n) == —4o((L, — W) oi(L, = W) (I, = W)(I, —= WW) " {dW (I, — WW )~ dw),
(0) := —4o(n(I, — WW) ™ dW (I, — WIW )~ (dn)),
(p) == —do((I, — W) am(L, = WW)~ AW (I,, — WW )~ tdW).

If we add (f), (i) and (k), we get
(£) + (i) + (k) = do((W = ) (In — WW )" dW (I, = WW) "' 1(dp)). (3.11)
Indeed, transposing the matrix inside (f), we get
(£) = 40(p(T, — W)~ dW (L, — W)~ (d7).
Adding (f) and (i) together with (k), we get (3.11) because

(I, = W)™t — (I, - W)~ }(1, —W)(I — WW)*
=L = W) H(I =WW) = (I, )}( W)t
=L, - W) "I, - WW(I, —-WW)™ ! = W(I —-Www) !

If we add formulas (g), (m) and (o), we get
(8) + (m) + (0) = 4o (W — 1)(L, = WW) ™ dW (I, = WIW ) ™" *(dn)). (3.12)
Indeed, we can express (g) as
(&) = 4oL, — T ) dW(L, — WTT) " {(dn)).
Adding (g) and (m) together with (o), we get (3.12) because

W)™ = (L = W) (I = W)L, = WW)
:( n = W) = WW) = (I, = W)}, = WW) ™!

-W) ML, - WHW(IL, - WW) ' =W(, -WW)!

If we add (a) and (p), we get
(a) + (p) = —do((I, = WW ) Vign(I,, — WW) ' WdW (I, —- WW) ™ 1dW ). (3.13)
Indeed, transposing the matrix inside (p), we get
(p) = —4o((In — WW )~ ign(L, — W)~ HdW (I, - WW)~1dW).

Adding (a) and (p), we get (3.13) because

(In = WW) Ly =W )(Ly = W)™ = (I, = W) ™!
=(In =WW) (L, = W) = (I, = WW)}(I,, — W)~
= (L, = WW) Y =W)(L, = W)L, = W)~ = —(I, - WW)~'W.
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Adding (d) and (1), we get

() + (1) = —do(W (I, - WW) 51, — WW )~ AW (I, — WW)~LdW ) (3.14)
because
(In = W)™ I = W) (I =WW) ™ = (I, =W )~}
:( n W) 1{(In_W) (In_WW)}( n WW)
=(L, = W) NI, =W)(-W)(I, - WW) ' = -W(I, -WW)™ L.
Adding (h) and (j), we get
(h) + () = 4o ((I, = W) MW (I, — WW ) XdW (I,, — WW) " 1dW). (3.15)

Indeed, transposing the matrix inside (h), we get
(h) = 4o ((I, = W) gL, — W) 'dW (I, - WW)~1dWV).
Adding (h) and (j), we get (3.15) because

(I, = W)t — (I, = W) NI, = W) (I, - WW)~*
= (In - W)_l{(ln - WW) - (In - W)}(In - WW)_I
= (L, - W) "I, - W)W (I, —-WW) ' =W(, -WW)™!
Transposing the matrix inside (n), we get
() = 4o ((I, = WW )~ (I, = W)(I,, = W) ign(I,, — W) 'dW (I, - WW)~'dW ). (3.16)
From (3.7)—(3.16), we obtain
c(YHYvVY QY —HdQ) + o(Y 1 H(d2)dZ)
—o(VY QY1 4(d7Z)) — o(VY QY 1 1(d2))

= () + () + (¢) + (d) + -+ + (m) + (n) + (0) + (p)
= do((In = WW )~ (dn)di) + 4o (W = 7)(In = WW )~ dW (I, = WIW) ™! ¥(d7))

+ 4o (W —n)(I, —WW) Yaw (1, — WW )~ t(dn))
—Ado((I, = WW )" (L, = WW) ' WAW (I, —- WW)~1dW)
—4o(W(I, —WW) “nﬁ([ —WW) taw (I, - WW) " LdW)
+do((I, = WW) (L, — WW) " 'dW (I,, - WW)~1dW)
+4o((I, — ) YW (L, — WW) Y dW (I, — WW)~1dW)

( 1

( n _) (In_W)( n_WW) 1t_ (I _WW)
x (I, = W)(I, = W)~ tdw (I, — WW)—ldW)
—4o((I, = WW) I, = W)L, = W) (I, — W) HdW (I, — WW)~1dW).
Consequently, the complete proof follows from the above formula, (3.6), Theorem 1.1 and the

fact that the action (1.2) of G’ on H,, is compatible with the action (2.6) of G on D,,
through the partial Cayley transform.
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4 Proof of Theorem 1.4
From (3.1), (3.4) and (3.5), we get

A U IR (AT E t((%)H, (4.1)
% = %(In - W)(%. (4.2)

We need the following lemma for the proof of Theorem 1.4. Maass [3] observed the following
useful fact.

Lemma 4.1 (a) Let A be an m xn matriz and B an n x| matriz. Assume that the entries
of A commute with the entries of B. Then '(AB) = 'B'A.

(b) Let A, B and C be a k x 1, an n x m and an m x | matriz respectively. Assume that
the entries of A commute with the entries of B. Then

HAY(BC)) = B'A'0).
Proof The proof follows immediately from a direct computation.

From (3.2), (4.1) and Lemma 4.1, we get the following formula:

1o (¥ (V) 25) = (@ +(3)+ () + ), (43
where
() := O'((In - WW) t((In - WW)%)%),
(3) = = (nlt = W) 0 = W) (1, = W) 222) ).
() = = ({1 = WP )0 = )7 () (= W) 20,
(6) := a(n(In S W) Iy =~ WW (I, — W)Lt t(a%) (I, — WW)(%).

According to (3.2) and (4.2), we get

4a(ya% t(@%)) - a(([n —WW)(% t(%)). (4.4)

From (3.2), (3.3) and (4.2), we get

4a(vy—1 ty t(yﬁ)—) = (&) + (O) + () + (0), (4.5)

where

(
0ol (B ),
(n) = (0L = W) (I = W ) (I = W)~ 1y t((%) (I, — WW)(%),
(0) = o (7L W) (L~ W) (L, ~ W)~ 17 t(%)(zn - WW)(%).
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Using (3.2), (3.3), (4.1), (4.2) and Lemma 4.1, we get

(v t(y%) 8%) — )+ (5) + () + (), (4.6)
where
@ =0 (- WI)52) 5),
() = 0 (0T — W)~ (L~ ) (1 - WW)%)(%)
)= o (a0, = W) 17 () (1~ TPW) )
(1) o= = (001, = )20 (52 ) (0 = W) 1)
Similarly, we get
1oV (V- 2) ) = )+ O + (o) + () (4.7)

where

because
Ly = WW)( Ly, = W) + (L, = W)L, = W) = =W (I, = W), - W)t = —W.
Adding (8), (+) and (), we get
(8) + (1) + (5) = o (=) (L = W)= ) 5 (4.9)
because
(I = W) ML, = WW) + (I, - W) I, = W) = (I, - W) I, = W)W = -W.

If we add (1) and (o), we get

(1) + (0) = —a(nW(In CWW) LYy t(a%) (I — WW)Q) (4.10)
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because
(L, — W) 'L, = W)L, —WW )™t — (I, - W)~ !
=(I, - W) NI, - W — (I, - WW)}(I, - WW )~ !
= (I, - W) ', = W) (W)L, —=WW )t = -W(, —-WW)!

If we add () and (u), we get

(6) + (u) = —o (FW (1, — WW) 11 t(a%) (I WW)(%) (4.11)

because
W) ( W)(In - WW)71 - (In - W)71
:( n= W) HIy =W — (I, = WW)}(I,, - WW)~*
—-W) NI, - W)(—W)(In —WW)™ = -Ww(I, -WWw)!

If we add (9), (€), (\) and (), we get
(6) + () + V) + (1) = o (s W (L, = W)~ 17 t((%) (I — WW)(%) (4.12)

because

(L, — W) NI, = WW)(I, —W)*1 + (I, —WW) ' = (L, - W) = (I, - W) !
=(Ln = W) HIn —WW) (Un = W)Ly = W) 4 (L = WW) ™ = (L, = W)
=W, -W)"' + (I W)™t = (L = W) = (L = W) (L = W) 4 (L, = WW) ™!
= I, + (L, -WwWw) ! { (I, —WW) + LYI, - WW) ' =WW(, - WW)™!

From (4.3) and (4.5)—(4.12), we obtain

(" (V5) a0

q) o
+o(v (Y 5)a2) o (v (7))
(©)+ (o)

=(@+@+MN+0)+-+ @)+ (&) + (o) + (m)
= ((I - WW) (( —WW)%)ai)jta(t(n—ﬁW) t(;ﬁ)(ln WW)%)
+0((n nw) ((In—WW)%)(%)—a(nW(In—WW)—“n t( )(I —WW) n)
— o (AW (L, ~ W) (a%)( n_WW)(%)
U(ﬁ([n —WW) 1ty t((%)(ln —WW)(%)
+ o (nWW (L, - W)~ 1 (%)(In—WW)(%).

Consequently, the complete proof follows from (4.4), the above formula, Theorem 1.2 and the
fact that the action (1.2) of G’ on H, , is compatible with the action (2.6) of G on D,,
through the partial Cayley transform.
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Remark 4.1 We proved in [11] that the following two differential operators D and L :=

%Anym;m — D on H,, ,, defined by
D= O’(Y% t(a%))

Lo O 02

oV () ) ol (v ) )

are invariant under the action (1.2) of G. By (4.4) and the proof of Theorem 1.4, we see that
the following differential operators D and L := An mil,l — D on D, defined by

f)za((l _ww) 2 t( 0 ))

and

on \om
and
LZJGQ—WW)WQ—Wmﬂg%k%ﬂ+aCM—mmxgﬂ@l_Wm%%)
+a@me)Qg—wwk%ﬂgﬂ—ﬂﬂWg—Wwy”nnyl—WWbJ
—agwmfwmql%t%yn—wwga
+a@mfwmqﬂwx%(h—wwga
+a@wmql—wwm ”-(%ﬂan WWWQ)

are invariant under the action (2.6) of G/. Indeed, it is very complicated and difficult at this
moment to express the generators of the algebra of all G-invariant differential operators on
D,,.m explicitly. We propose an open problem to find other explicit G/-invariant differential
operators on Dy, ,,.

5 Remark on Harmonic Analysis on Siegel-Jacobi Disk

It might be interesting to develop the theory of harmonic analysis on the Siegel-Jacobi disk
Dy, . The theory of harmonic analysis on the generalized unit disk I,, can be done explicitly
by the work of Harish-Chandra because ID,, is a symmetric space. However, the Siegel-Jacobi
disk D, ,, is not a symmetric space. The work for developing the theory of harmonic analysis
on D, ,,, explicitly is complicated and difficult at this moment. We observe that this work on
D, m generalizes the work on the generalized unit disk D,,.

More precisely, if we put G, = SU(n,n) N Sp(n,C), then the Jacobi group

Gg:{<<g g),@,g;i@) (g §>6G*,§ec<m"> %me}

acts on the Siegel-Jacobi disk D, ,,, transitively via the transformation behavior (1.9). It is
easily seen that the stabilizer K/ of the action (1.9) at the base point (0,0) is given by

K/ = Pb 0,0;i
* 0 ﬁ 7(7 71"{/)

PEUWLKENWM}.
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Therefore, G/ /K is biholomorphic to D,, ,,, via the correspondence
gK! —g-(0,0), geGl.

We observe that the Siegel-Jacobi disk D, ,,, is not a reductive symmetric space.
Let
Ty = Sp(n, Z) x HS™™,

where Sp(n,Z) is the Siegel modular group of degree n and
Hén’m) ={(\, u;k) € Hﬂ({“m) | A\, i, & are integral}.

We set
Ly, =T, ThmTs,

where T, was already defined in Section 2. Clearly, the arithmetic subgroup I, ,,, acts on Dy,

properly continuously. We can describe a fundamental domain F; . for I';, |, \ Dy, mn explicitly

using a partial Cayley transform and a fundamental domain F,, ,, for Ty, , \ Hy, », which is de-

scribed explicitly in [13]. The G-invariant metric d3,, ,,.4.3 on Dy, ,,, induces a metric on Fom

naturally. It may be interesting to investigate the spectral theory of the Laplacian Emm; A,B Ol

a fundamental domain 77 ;. But this work is very complicated and difficult at this moment.
For instance, we consider the case n =m =1 and A = B = 1. In this case,

Gi—{(<p q) ,(&Z;iﬁ)) ‘p,q,éeﬁ, p* —lg* =1, HGR}

q p

:={((5 g),@,o;m))’pe@ =1 neR}.

dsii;i1isa G/ -invariant Riemannian metric on D11 =Dy x C (see Theorem 1.3) and Ay 1,11

)

and

is its Laplacian. It is well-known that the theory of harmonic analysis on the unit disk D1 has
been well developed explicitly (see [3, pp.29-72]). I think that so far nobody has investigated
the theory of harmonic analysis on D; ; explicitly. For example, inversion formula, Plancherel
formula, Paley-Wiener theorem on ID; ; have not been described explicitly until now. It seems
that it is interesting to develop the theory of harmonic analysis on the Siegel-Jacobi disk D ;
explicitly.

Finally, we mention that it may be interesting to investigate differential operators on Dy, ,,
which are invariant under the natural action (1.9) of the Jacobi group G in detail (see [14]).
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