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1 Introduction

In this article, we are concerned with the following stochastic fractional Anderson model

with a fractional noise potential:

ou H .
e =Ayu+ W% ou, in[0,7T] xR, (1)
u(0) = uy,

where Ay = (=7 A)% = —(—2525)% with A > 0, WH (t,2) = 2 BH(t,z) with H =
(h1,h2) € (3,1) x (3,1) is the formal derivative of a double-parameter fractional field BY (see
Section 2), and “¢” denotes Skorokhod integral. The precise meaning of a solution of (1.1) will
be stated in Section 2.

First, let us recall some related works on stochastic partial differential equations (SPDEs)

as follows:
t .
QULD)  Luft,a) + flult,2)) +ult.0)E(tx), (12) € Ry x R, (1.2)
where L = %A or L = —A2, f is some specified function and F' denotes a white noise or a

fractional noise on some probability space (£, F, P). In [25] Uemura treated the 1-dimensional
heat equation with F(t, ) = w(z), where w(z) is a space noise, and studied the Holder conti-

nuity of the solution on the model, whereas, in the case of F being a fractional noise, Nualart
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and Ouknine [19] discussed the existence and uniqueness of the solution under some restrictive
conditions.

When the drift term f = 0, equation (1.2) is called an Anderson model. Hu got the
Lyapunov exponent estimates on the solutions of the equations with fractional noise potentials
under appropriate assumptions on Hurst parameter H = (hg, h1,- -+, hq) in [10]. Furthermore,
for the (deterministic) Cahn-Hilliard equation, the case of L = —A? was first proposed in
material science. A stochastic version of the equation was developed by Cardon and Weber in
[6], who proposed stochastic Cahn-Hilliard equations with space-time white noises with space
dimensions d < 3. Bo and Wang [5] considered stochastic Cahn-Hilliard equations with Lévy
space-time white noises, and they established the local mild solution of the equation. Moreover,
Bo et al. [2, 4] proposed a fourth-order stochastic Anderson model and Cahn-Hilliard equation
with fractional noises, and discussed the existence, uniqueness of the solution.

On the other hand, stochastic fractional partial differential equations have been widely
developed. For example, in [1, 8], the authors proved the existence, uniqueness and regularity
of the solution for a stochastic fractional Laplacian operator partial differential equation driven
by a space-time white noise in one dimension. Moreover, there are some papers discussing the
stochastic fractional differential operator heat equations with Lévy noises and fractional noises
(see, e.g., [12]). In particular, the main results of Bo et al. [2] can be covered by this paper as
the case of A = 4.

Motivated by these works, we now suggest a new “Anderson model” with a fractional Lapla-
cian operator, and the noise term is a fractional noise, i.e., equation (1.1). In this article, we
shall establish the existence and uniqueness of the solution of (1.1) on some Hilbert space. Then
we estimate the Lyapunov exponent of the solution by a continuous embedding theorem and
some estimates of the Green function. Moreover, we will prove the Holder continuity of the
solution and give the Holder continuous order of the solution of (1.1). Another objective of this
paper is to discuss the absolute continuity of the solution through Malliavin calculus.

The rest of this paper is organized as follows. In the coming section, we will give the
definitions of multiple stochastic integrals with respect to double-parameter fractional noises
and define a solution of (1.1), as well as the introduction of the Malliavin calculus. The existence
and Lyapunov exponent estimate of the solution will be considered in Section 3. Section 4 is
devoted to studying the Holder continuity of the solution of (1.1). We will discuss the absolute

continuity of the solution in the last section.

2 Preliminaries

In this section, we will define a multiple stochastic integral with respect to a double-
parameter fractional noise (see also [2]), and then define a solution of (1.1) in S, sense af-
ter proposing the Green function and inducting some properties. On the other hand, we will

introduce the Malliavin calculus with respect to fractional noises.

2.1 Skorokhod integral

Definition 2.1 A double-parameter fractional Brownian field B = {BH(t,z) : (t,z) €
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[0,T] x R} with Hurst parameter H = (hy, hg) for h; € (0,1) (i = 1,2) is a centered Gaussian

field with covariance
E[B(t,2)B" (s,y)] = i[t%l R e e | e S Y e O T (2.1)
forallt,s € [0,T] and x,y € R.
For z,y € R and h € (0,1), we denote
on(z —y) = h(2h — 1)|z — y|/*" 2
Let n=1,2,---. Define H,, by

H,, = {f :([0,T] x R)™ — R; f is measurable and

/0 ] 2,1‘/]1%2" H(‘Ohl (phz( yz)f( )f(?‘, y)

i=1

x dxy - --dapdyy - - -dypdry - - - drpdsy - - - dsy, < oo},

which is a Hilbert space, and the inner product of f,g € H, is defined by

/ / H Pny (8i = 13)ons (T — y3) (s, 2)g(r,y)
0 T 2n JR2n i1
x dzy -+ -dx,dy; - - dy,dry - - - drpdsy - - - dsy,. (2.2)

Then we have a sequence of Hilbert spaces {H,, }nen.

First we briefly introduce the following stochastic integral as follows:

t
{//f(s,x)BH(ds,dx);t € [O,T]}, fe ™.

0JR
For the stochastic integral, it is easy to check the following properties.

Proposition 2.1 For f, g € Hi, we have

//fs;v dsdx)}zo,
//fstHdsdx// 5,) dsdx)}:(f,gﬂfl

Proof See [10]. We omit the details.

Next, we will introduce the multiple integral for fractional noises. Suppose that {e; }ien is

an orthonormal basis of H;. Define
Hy = {f € Hn; f((slvul)v Ty (Sna Un)) = f((so'(l)5u<7(l))a ) (Sa(n)vua(n)))
for all permutations o = {o(1),--- ,o(n)} of {1,2,--- ,n}}
If f e ﬁn, then we say that f is “symmetric”. And define

= {fEHn; fZ Z Ay oo i €1 D €y Q- Q€55 iy iy ER},

finite sum
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where ® denotes the symmetric tensor product. Let H,,(x) be the Hermite polynomial of degree
n € NU{0}, ie.,

H,(z) = (—1)"erx—n[e_T], x € R.

For e € Hy and ||e||3, = 1, define a multiple integral of It6-type of the function e®™ by

/ / P (51, Spy Ut - ,un)BH(dsl,dul) o BH(dsn,dun)
[0 T]n n

— 11, /{m /R e(r,2)B (dr, d2) ). (2.3)

n(ei ®ep ®: - ®ei,)

/ / 611 '®ein(51;"' y Sny ULyt o 5un)BH(d51;du1)BH(dSnvdun)
0,7 JR"

Then

by the polarization argument (see, e.g., [7, 10]).
For each f € C,,, we have

I.(f) = Z iy - ,ann(en ® - ®ej,). (24)

finite sum

Then the following isometry holds:

E|L(N)* = nllfI7,. (2.5)

Note that for f € ﬁn there exists a sequence {fi}ren C Cy such that fr — f in C,. It follows
from (2.5) that {I,,(fx)}xren is a Cauchy sequence in L*(Q), and the limit point of L,(fx) (as
k — o0) is independent of the choice of {fx}ren. We call the limit point the multiple integral
of Ito-type and denote it by

L,(f) = / f(s,2)B™(dsy,day) - -- BH (ds,,, dz,)
[0,7]"JR"

klim L.(fr), in L*(Q) sense. (2.6)

It is easy to check that for f,g € H,, there holds
E[L(/)1n(9)] = n)f, 9)m,.- (2.7)

Let I = @ F,, where F, is the nth chaos of F (see, e.g., [11]). For each p € R, we
n=0
introduce a Hilbert space

:{ @Fn, ;)n' PE|F,? < oo}

and define

oo

1l = | D [PEIF,[2.

n=0

In particular, if p = 0, then S, = L*(Q).
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2.2 Definition of the solution

In order to define the solution of (1.1), we first introduce the fractional Laplacian Ay with
A > 0 and the symmetric fractional derivative of order A on R. This is a non-local operator

defined via the Fourier transform F:
F(Aw)(z) = —|z|*F(v)(2).

The Green function Gy(t,x) associated to equation (1.1) on [0,7] x R is the fundamental
solution of the Cauchy problem:

%G(f,x) = A\G(t,z), in[0,T] xR,

G(07 .I) = 60(17)5

(2.8)

where Jp is the Dirac distribution. Using Fourier transform, we see that G (¢, x) is given by

Ga(t,z) = F e ' M) (2) = /ReQi”Eeft‘E‘kdﬁ = Fle "M (2).

The function G, (¢, z) has the following properties (see, e.g., [1, 8]), which will be used later on.

Lemma 2.1 For X € (0,2], we have the following cases.
(1) For anyt € (0,400) and x € R, there hold

Gi(t,z) >0 and /GA(t,x)dzzrzl.
R

(2) ’%;E—GT}(t,:zr) =% 8;?1* (1,y)] 1, foralln = 0. In particular, when n =0, it is
1 y= x

called the scaling property. That is
Gat,x) =t XGA(1,t 3 x).

(3) Gy is C™ on (0,00) X R, and for n > 0, there exists a Cy, > 0 such that for any t € Ry
and x € R,

8”G)\ (t )‘ < 1 Cn
T — .
ozn 7 T 4Rl

(4) For any (s,t) € Ry x Ry,

Ga(s, ) *Ga(t, -) = Ga(s+t, ).
(5) Jo dt [, dzGS(t,2) < oo if and only if 3 < o <1+ A.
Remark 2.1 Throughout the paper, we restrict A € (1,2].

For k € N, set
f;gl\)(faw;slazla"' , Sk, Zk) 1= / Ga(t—sp, @ —21) - - Ga(S2 — 51, 22 — 21)GA (51, 21 — Y)uo(y)dy
R

and

f;g)\)(ux;sluzla" . 7Sk72/€) = Sym[flgA)(tux;Sluzlu' c 7Skuzk)]7

where “Sym” denotes the symmetrization with respect to k variables (s1,21),- -+, (Sk, 2k)-

Now, we define a solution of (1.1) in S, sense.
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Definition 2.2 We say that a stochastic field {u(t,z) : (t,x) € [0,T] x R} is a solution
of (1.1) in S, sense, if u(t,z) = lim w,(t,z) on S, (ie., |u(t,z) — u,(t,z)|, — O for each
(t,x) € 10,T] x R), where
uo(t, ) = GA( ) * uo(w),

and I,(f)(t,x) is defined by (2.6), 10(“3”)@, z) = ug(t, z).

The following lemma gives an embedding from L# to H; (see [15]), which is useful for our

derivations below.

Lemma 2.2 Ifh e (4,1) and f,g € L ([a,b]), then

1
2

/ / Fg(e)lu— o 2dud < OO g 0o 1901 oy

where C(h) > 0 is a constant depending only on h.

In fact, if @ = —o0 or b = +00, the above inequality also holds.

2.3 Malliavin calculus with respect to fractional noises

Note that {BH(t,z) : (t,z) € [0,T] x R} is Gaussian, so we will develop the Malliavin
calculus for fractional noises (see, e.g., [22]).
Let BH(h fo Jg h(t,z)B” (dz,dt) for h € Hi, and let A be the class of smooth and

cylindrical random variables of the form
F = f(B¥(h),--,B"(h,)), (2.9)

where f € Cp°(R™) (the set of all bounded C'*° functions with bounded derivatives of all orders)
and h; € Hy (i=1,--- ,n and n € N). For each F' € A, define the derivative D; ,F' by

Dy, F = Z 7 -, B (h)) it ).

Let D12 be the completion of A under the norm
IF]1% 2 = E[F? + |DF|3,].
Then D2 is the domain of the closed operator D. For each h € H; and F € A, define
d H H
DpF = hm d—f(B (hl) + E<h1, h>H17 cee ,B (hn) + €<hn, h>H1),

which may be extended as a closed operator on L?(f2) (with the domain Dj, being the closure
of A) under the norm
IFI[; = E[F? + Dy F ).
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Let {h, : n > 1} be an orthonormal basis of H;. Then F' € D%? if and only if F € D), for
each n € N and

> ED,, F|? < .
n=1

In this case,
Dy F = (DF,h)y, .

On the other hand, the divergence operator ¢ is the adjoint of the derivative operator D char-
acterized by
E[Fé(u)] = E(DF,u)y, forany F €A,

where v € L?(Q,H;1). Then, we denote the domain of § by Domd, which is the set of all
functions u € L2(2,H;) such that

E|(DF, u)#,| < C[|F[|L2(a)»
where C' is some positive constant.

Proposition 2.2 Let A € F, and let ' be a square integrable random variable that is
measurable with respect to the o-field Fac. Then

DFI, =0, a.s.

Remark 2.2 Let {u(t,z) : (t,x) € [0,T] x R} be an {F; : t € [0, T]}-adapted random field.
According to Proposition 2.2, D yu(t,z) =0, a.s. for any 0 <t < s <T and z,y € R.

Proposition 2.3 Let F € D'2. If |[DF||3, >0, a.s., then the law of the random variable

F' is absolutely continuous with respect to the Lebesgue measure.

Proof The proof is a standard argument like that in [23, Theorem 2.1.3].

3 Lyapunov Exponent Estimate of the Solution

In this section, we will establish the existence and uniqueness of the solution for (1.1) and

then give a Lyapunov exponent estimate on the solution. We state the main theorem as follows.

Theorem 3.1 (Existence, Uniqueness and Lyapunov Exponent Estimate) Let hi, ho €
(3,1), A2h1 — 1)+ ho > 1 and p € (2}11%1, ﬁ) If up € L*=(R), then (1.1) has a unique

solution {u(t,z) : (t,z) € [0,T] x R} on S, (for each p < %}M). Moreover,

lim sup log (sup Hu(t,:v)Hi)f“ < C(hy, hy)
t—o00 T€R

(4h1+h271) (47(37}12)[)
2

o —p)L, and C(hy, hy) is some positive constant.

for k=
In order to prove the theorem, we need the following technical lemmas.
Lemma 3.1 For each k € N, define
k
<I>,(€’\)(t,:v, 8,1) = /R% il:[lcphz(ui —0)|GA(t — sp,x —ug)| - |Ga(s2 — 81, u2 — uq)|
X |GA(t — rg,x —vg)| -+ |Ga(ra — r1,v2 — v1)|dug - - - dugdoy - - - dog,
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where (t,x) € [0,T) xR, s = (s1,-+-,85) and r = (r1,--- ,7r,). Then there exists a positive

constant C'(A, he) depending on A and he such that

—1 hg—1

k
<I>(A)(t x,8,1) < [C(A, ha)] kH Sit+1 — Si) = (rig1 —mri) > (3.1)
i=1

with Sg+1 = Tg41 = t.
Proof We first consider 55’\)(51, S2,T1, T2, U2, V2) by

¢§A)(81,S2,7‘17T27U27U2) = / Oho (U1 — 01)|GA(52 — 51, u2 — u1)||GA (12 — 71,02 — v1)|durdo.
R2
By Lemma 2.2, we get

A
&M (51, 82,71, 72, uz, v2) < const.||Gx(s2 — s1,uz — ')||L%(R)||G,\(Tz —T1,02 — ')||L%(R),

where
ha
|Gx(s2 — s1,u2 — -) (/|G,\ S — 81, U 2—U1)|"2dul)
1 1 ha
(/ Sy — S1) i |GA(1, (s2 — s1) " X (ug — uy))| "2 dul)
_1 1 h2
(/ So — 81 T by |G>\(1,u1)| ha dul)

1
_ syhad—hp) ¢\
(52 = 1) ’ /R(1+|u1|2) do
< O()\, hQ)(SQ — 81)%(}1271).

IN

So
SN (51, 59,71, 79, g, v2) < C(A, ha)((52 — 81)(r1 — 12)) 3 *271),

Since the estimate of ®1(s1, 82,71, 72, u2, v2) is independent of time parameter (us,vs), one can

prove (3.1) similarly for the cases k > 2. Thus the proof of the lemma is completed.

Let us recall the definition of the symmetrical function. Note
A 1 A
e, (s ) (s wn) = DAY (0, (5001) ur)s o+ (Som) o)) (3:2)

where the sum is taken over all permutations ¢ = {o(1),--- ,0(n)} of {1,2,--- ,n}. For each
ke NU{0} and (t,2) € [0,T] x R, let

A A
v (. 2) = B (Y (1,2) (3:3)
Recall Definition 2.2. By (2.7) and (3.3), we have

TVt z) = K FV @ 2) 1Z, < RIFO @ )3, - (3.4)
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Lemma 3.2 If hy,hy € (3,1), A(2hy —1)+ho > 1 and p € (2h1 5T )‘h ), then there exists

a positive constant C(\, h1, he) depending on A, h1 and ha, such that, for all k € N,

2(Ahq+ho—1)k
- x

TN (£ ) < [C(N hy, ha)]FR! [ . (t,2) €[0,T] x R,

—h 2
P(k(1 = BE58) £ 1))
where T'(z) = [ e "t*~1dt is the Gamma function.

Proof This proof is similar to that of [2, Lemma 3.2], in which we only use 3 (hy — 1)
instead of %. So the details are omitted.
Lemma 3.3 Let hy,hy € (3,1), A(2hy — 1)+ ho > 1 and p € (2h1 T T h ). Then for each

(2-p)A—2(1—ha)p

n € N, u,(t,z) in Definition 2.2 is an element on S, with p < o

Proof We will briefly prove this lemma. For more details, please refer to [2].

Using Stirling’s formula
MNz+1)=K(z)z"e ™™, z>-1,

where the function K (z) satisfies =% < K(z) < 0* for some constant 6 > 0, we can obtain the
following estimates. Let 8y :=1 — M € (0,1). Then we have

kYot iy (28— (p+ 1) F D |
ﬁﬁ(ep) 5 23
C(kBs + 1)) 55 TR — (p+ 1)) + 1)

and

lun(t, 2)||2 = S kDPTN (¢, )

k=0
N o (B (p 1) T 2o
< 2_[O0h, he)(6777) [ EEIY T — (h+1) +1
= 8,7 (k%2 = (p+ 1) +1)
200y tha =)
S Bz (1) (CO T, o)t )

where
(22— (p+1) 0D
EEN
By"
and E,(z) is the Mittag-Leffer function with parameter > 0. Note % —p—1>0. Then by
the asymptotic property of the Mittag-Leffer function (see, e.g., [24]), we obtain

>0

O\ 1, ha) = O\, by, ho)f 7 ~2

const. ~ 2(\hytho—1) 28y .
[[un (2, ZC)Hp S exp(C(\, hi,ho)t™ * (2> —(p+1))

DY ) < +o0, (3.5)

if p< w. Thus the proof of the lemma is completed.

Now we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1 It suffices to check that under the assumptions of Theorem

3.1, {un(t,z) : (t,2) € [0,T] x D}pen in Definition 2.2 is a Cauchy sequence on S, for p <

%}M' Through the lemmas above, it follows that

limsup [Ju, (t, )2 = S [k U (¢, 2)

< 5 const. eXp(Cﬁ(/\’hl,hQ)tM(MT*—(pH))—l
= (p+1)

< 00,

)

where By =1 — M. Hence for m,n € N;

lum(t,2) = un(t, )2 = Y KIPOD(E ) =0, asnm — oo,
k=m-+1

Since S, is a Hilbert space under the norm | - || ,, there exists a unique stochastic field {u(¢, x) :
(t,z) € [0,T] x D} on S, such that

u(t,z) = lim wu,(t,z), in S, sense,
which is the unique solution of (1.1). Moreover, from (3.8) in Lemma 3.3, we immediately get

the Lyapunov exponent estimate. This completes the proof of Theorem 3.1.

4 Holder Continuity of the Solution

In this section, we will check the Holder continuity of the solution {u(t, x) : (¢,z) € [0, T| xR}

of (1.1) on both space and time variables.
Theorem 4.1 Assume
1
hi,ho € (5, 1) and (4h1 — 3))\ + 2hg > 2.

If up € L>®(R) is an a-Holder continuous function with o € (0,1), then the solution {u(t,z) :
(t,x) € [0,T] x R} is p-Hélder continuous in t and v-Holder continuous in x, where p €
(0, min{§, ’\’“/\4“7_:112_1}) and v € (0, min{a, Ahy + he — 1}).

Proof Recall Definition 2.2,
uo(t, &) = GA(t) * ug(z),

n (4.1)

7) = ka@”(t,x)), n=1,2
It follows from the proof of Lemma 3.3 that if p € (57— L #’\h)), then u, € S, with p <
w for all n = 1,2,---. In particular, u,, € Sy = L?(Q2) since (2_’))’\;# > 0.

On the other hand, from (4.1), it follows that for each n € N,

Un(t,I) = IO ,\(k) t ZZT + ZI ,\(k)

—GA(t)*uo(x)—i-/o/DGA(t—s,x—z)un1(5,2)BH(ds,dz).
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Then for s,t € [0,7] and x,y € R, we have

A(t) * uo(z) — Ga(s) * uo(y)
//GA (t =7 @ — 2)up_1(r, 2) B (dr,dz)

+/O/R(GA(t—r,x—z)—GA(s—r,y—z))un1(r,z)BH(dT,dz)
=A1 + Ay + As. (4.2)

Un(t, ) — un(s,y) =Ga(

But by Azerad and Mellouk [1], we know
E[A[* < O(T)(je =yl + [t = | X). (4.3)

Applying Lemma 2.2 and (3.5) with p = 0, we get

BlAsP = [ [ onlr=men(: ~2IGat -z - 2)
[s,t]2JR?
X |Ga(t = 7,2 — Z)|E(Jun—1(r, 2)tn—1 (7, Z)|)dzdzdrdr
= [ oo = =)
[s,t]2JR2
X |Gt =T, 2 = Z)|||un—1(r, 2)||o||tn-1 (T, Z)| odzdzdrdT

<C(T / / Ohy (r =T)on, (2 = Z)|GA(t — 1,z — 2)||GA(t — T,z — Z)|dzdzdrdF
[s,t]2/R2

:C(T)/ gphl(r—T)drdT/ Ony (2 = Z)|GA(t — 1,2 — 2)||GA(t =T,z — Z)|dzdz
[5,4]2 R2

HG)\(t—T x— ) drdr

1
"2 (®) L7E ()

<C@h) [ on(r=mlGat ==,
[s,t]?

§C’(T,h1,h2)[/t (/R|GA(t—r,:1:—z)|h'12dz):fdrrhl.

By Lemma 2.1, we have

/|Gm—m—z>|hzdz—<t—r /|GA (t—r)*(z - 2)| P dz

Therefore, we obtain

E|Ay[% < O(T, ha, ho)[t — s/ GO=RD T 2 (T, by, o)t — 5205 (a1 (4.4)
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Note
Bl < 2[E‘ /OS/D(G/\(t — 1,z —z) = GA(t =,y — 2))up—1(r, 2) B (dr, dz)‘2
+ E‘ /OS/D(G/\(f —ry—2)— Ga(s =1y — 2))un_1(r, 2) BH (dr, dz)m
=2(I+1I). (45)

Let v € (0,min{A\h; + he —1,1}). Then

Ig/ / Ohy (r =T)pn, (2 —Z)|GA(t — 1z — 2) — GA(t — 1y — 2)]
[0,s]2/ D?
X |Gt =T, 2 —2) — G\t =T,y — 2)|E(Jupn—1(r, 2)upn—1(7,2)|)dzdzdrdr
gC(T)/[ / o (1 —F)pms (2 — DOt — o — 2) — Ga(t— 1y — 2)|
0,s D2
X |GA(t =T, o —Z) — GA(t = T,y — Z)|dzdzdrdF
<C(M|GA(t = -z — ) =Gt — -,y — -)IF,
=C(MIGA(t — 2= ) =Galt— -,y = H|GAlt — -,z — ) = Galt — -,y — '3,
<SCT(NGAt = -z — ) =Gt — -,y = HIGA(t — -,z — )7,
Gt — -z — )= Galt — -,y — NGt — -y — )" 3,)
=C(T 1)l +1o).

Using Lemma 2.1 and the mean-value theorem, we get

OG(t ',f )‘

ylz”/ /
OT R2

X oy (1 =T)pny (2 = Z)
< C(hy, ho)lz — y|*

(PG o) P Ta)™ g
and

[ (P e e )
R

2
h<H! 2=y IGAt = s = )|

Ha

(9G>\ ) v

(t—r2— )

8G}\( - ag E) v
ox

|GA(t — T, 2 — Z)|' 7 dzdzdrdF

:/((t—r)—%” aGA(l’(t_ag_x(g_2))‘7@—7«)—1%@“ (t =)t — )~ 7)’%dz
R ~
e [ 0GLE- ) e
S R(W————sg————’|GA“»Z”1”) =
< C(ha, )t =) 3
Therefore, if N
1 2
(X_ o )h_1+1>0
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(that is, v < Ahy + hg — 1), then

=
>
=

M

T 2h
I SC(T777h1,h2)|(E—y|27(/ (t—’f')( 7_)Wd’f') 1 SC(T7’77A7h17h2)|x_y|2v'
0

Similarly,
I, < O(T, v, A\ by, ho)|z — y|*. (4.7)

From the estimates (4.6) and (4.7), it follows that
I < C(T, v, \ by, ho)|z — y|>. (4.8)
On the other hand, we estimate the part “II”. From Lemma 2.1, we know
Gat,x) =t XGA(1,t 3 ).

So

G (t, z) 1 aGA(Lf%x)) (4.9)

N RS 1
5% = )\t A(tAGA(l,t ) 4 5

Recall (4.5). An analogue argument as that in (4.8), together with (4.9), shows that for n €

(0, 255=2),

1< C(T,n, A\ ha, ho)|t — s]*7. (4.10)

Apply Fatou’s lemma to (4.2). (4.3), (4.4), (4.8) and (4.10) jointly imply the desired result.
This proves Theorem 4.1.

5 Absolute Continuity of the Law of the Solution

In this section, we shall prove the absolute continuity of the law of the solution {u(t,x) :

(t,x) € [0,T] x R} given in Section 3. We need the following proposition.

Proposition 5.1 Assume
hi,hs € (% 1) and  (4hy — 3)A + 2hsy > 2.
For (t,z) € [0,T] x R, the solution u(t,x) € D2, and
D yu(t,z) = /t/R Ga(t —r,x — 2)Dg yu(r, 2) B (dr,d2) + GA(t — s, — y)u(s,y) (5.1)

for all s <t andy € R.

Proof Let {u,(t,z) : n > 1} be defined as in (4.1). Then a similar argument as that in
[29] shows that for each n € N and h € Hy, u,(t,z) € Dy, and satisfies

Dpuy,(t,z) = /O/RGA(t—s,x—y)Dhun1(s,y)BH(d$,dy)+<GA(t— = Nup—1(, ), Ay -

Since (¢, ) — u(t,z) as n — oo in L?(Q) sense, there exists a random field up)(t, z) such
that Dpu,(t, ) — ugy(t, ) as n — oo uniformly on (t,2) € [0,7] x R (the proof is similar to
that of Theorem 3.1) and the latter satisfies

h)til? //GAt—s T —yu (h)(s y)B H(ds,dy)—l—(G)\(t—~,x—-)u(~,-),h>H1.



114 Y. M. Jiang, K. H. Shi and Y. J. Wang

Hence, from the closeness of the operator Dy, it follows that u(t,x) € Dy, Dpu(t, z) = ug(t, )
and

Dhu(tvx) = ~/O~/]RG>\(t — 5T = y)Dhu(Svy)BH(dsvdy) + <G)\(t R )’U,( T ')7 h>7‘l1' (52)

Next, we proceed to prove u(t,z) € D2, Recall {h,, : n > 1} in Section 2. By (4.2),

t
E|Dhnu(t,$)|2:E‘//Gk(t—S7$—y)Dhnu(S7y)BH(dS,dy)
0JR

Gt — vz — Yl )|

t 2
— S, T — uls " S
<C(B] [ [ 6t == )i u(s0)B" (@s.dy)
+<G)\(t_ L )u(a )7hn>§{1)
=CI + 12). (5.3)

Note that (4h1 — 3)\ + 2hge > 2 implies A\(2h; — 1) + hy > 1. Then

11_/ / Ony (r =T)pn, (2 —Z)|GA(t — 1,2 — 2)]
[0,t]2JR?
X |Gx(t = 7,2 — Z)|E(|Dp,, u(r, 2)Dp,, u(7, Z)|)dzdzdrdT
</ / on (7 = o2 = |Ga(t = 1,2 = 2)
0,1]2/R2
x |G (t — T, 2 — 2)|E(|Dp, u(r, 2)|*)dzdzdrdr

e, / sup E(|Dy, u(r, 2)|2)gn, (r — )
[0,t]2 z€R

X (/ SDhQ(Z—3)|G,\(t—7°796—z)||G,\(t—F,x—?)|dzd§)drd?
R2

<Clha) [ sup (D, u(r,2))on, (7 = 7)
[0,t]2 z€R

<Gt == )l G =T =) drde

<C(ha) / sup E(|Dy,, u(r, z)|2)goh1 (r—7m)(t— 7‘)% (t— 7)$drdf
[0,t]2 z€R

<C(h2) /OtsupE(|Dhnu(r,z)|2)(t—r)hrzk1(‘/(:(7“—7“)2"1 2(t—?)$d7>d7°

z€R

<C(T,\ hs) /Ot sup E(|Dy,,, u(r, 2)|?)(t — ) 2t (/Or(r —7)

z€R

t _
<C(T, )\,hl,hg)/ sup E(|Dyp,, u(r, 2)|?)(t — 1) A (5.4)
0 z€R

On the other hand, similarly to (4.4), since Ahy + ha > 1, we have
[GA(t = -,z = Jul(-, )[Fy, < C(T,A b, ho). (5.5)
Set

Un(t) = supEZ|Dh ul(t, )|?.

zeR n—1
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By (5.4) and (5.5), we obtain

<C/t—s B U (5)ds + C||Ga(t — Sx = u(-, ),

<C+ O/O (t — 8)" 5 Up(s)ds. (5.6)

Then Gronwall’s lemma yields

Un(t) < Cexp (C/Ot(t - s)$ds),

where C' := C(T, \, hi, ha) is independent of m. Let m — oo. Then we get

supEZ|Dh u(t, z)* < oco.

zeD n—1

This means u(t, z) € D2
Since u(t, z) is Fi-adapted, there exists a measurable function D ,u(t, x) € H; such that

D, yu(t,z) =0
for s > t, and for any h € Hq,
Dpu(t,z) = (Du(t, ), h)n, - (5.7)
From (4.2), (4.5) and Fubini’s theorem, it follows that
(Du(t, z), hyp,
// Ga(t — 7,2 — 2)Dpu(r, 2) B (dr,dz) + (Ga(t — -, 2 — u(-, ), h)n,
// Ga(t —r,x — 2)(Du(r, 2), h), B (dr,dz) + (GA(t — -,z — u(-, ), h)n,

//GAt—rx—z dd//// st(r, 2)h(5,7)

X Sphl (phz (y y)dydydsds + <G>\(t - - )u( Ty T )7 h>H1

//// 5,7)n, (s = 5)pn, (y — 7)dydydsds

X // Ga(t —r,x — z)D&yu(r,z)BH(dr, dz) + (Ga(t = -2 — Hul(-, ), h)n,.
s JR
Therefore
¢
D yu(t,z) = // Ga(t — 71,2 — 2)Dg yu(r, z)BH(dr, dz) + Ga(t — s, — y)u(s,y).
s JR

Thus the proof of the proposition is completed.

Now we state the main theorem in this section.
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Theorem 5.1 Assume

1
hi,hs € (5, 1) and  (4hy — 3)\ + 2hy > 2.

If
uo(x) >e0 >0 forzeR,

then for t < T and x € R, the law of the solution u(t,z) of (1.1) is absolutely continuous with

respect to Lebesgue measure.

Proof By Proposition 2.3, it suffices to check that
HDU(t,.’IJ)H'Hl >0, as.

Note
[Du(t, z)|[#, >0 <= [Du(t, )| L2(j0,gxr) > 0

Hence we only need to prove
IDu(t, 2)|| L2 (jo.)xr) > 0, a.s.

Recalling the proof of Theorem 4.1, we can formally express u(t, x) as follows:

¢
u(t,z) = Ga(t) * ug(x) + // Ga(t —r,x — 2)u(r, ) B¥ (dr,dz).
0JR
On the other hand, it is easy to check that
Gt —r,z—2)u(r,z) and Gx(t —r,x — 2)Dg yu(r, z)

belong to H;. Then from Propositions 2.1 and 5.1, we have
2
E(D; yu(t, z) / / Ga(t — 2)Dg yu(r, 2) B (dr,dz) + Ga(t — s,z — y)u(s, y)}

:E /S/RG,\(t — & — 2)Dg yu(r, z) BH (dr, dz)r

+G3(t — s, —y)Eu(s,y)]?
>GA(t — s,z — y)E[u(s,y))?
> G3(t — 5,2 — y)E[GA(t) * uo(x)]?

2
~G3(t— 5,2~ B[ [ Ga(t. ~ pualy)dy]
R
>eoGa(t— s,z — ).

Since Ga(t,z) > 0, we have

// D, yu(t,z)) dyds //Gk — 5,2 —y)Eu(s,y)]*dyds
>50//GA — s,z —y)dyds
>0,
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which implies

/t/ (Dg yu(t,z))*dyds > 0, a.s. (5.9)
0JR

Then by Proposition 2.3, the proof of the theorem is completed.
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