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Abstract The authors define the Gauss map of surfaces in the three-dimensional Heisen-
berg group and give a representation formula for surfaces of prescribed mean curvature.
Furthermore, a second order partial differential equation for the Gauss map is obtained,
and it is shown that this equation is the complete integrability condition of the represen-
tation.
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1 Introduction

It is well-known that the classical Weierstrass representation formula represents minimal
surfaces in R? via holomorphic functions. Since it is a fundamental and extremely useful tool
in the theory of surfaces (see, e.g., [13]), many efforts have been made by geometers to extend
it to general cases. For example, Kenmotsu [7] discovered a representation formula for surfaces
of prescribed mean curvature in R3. In three-dimensional Minkowski space L3, Kobayashi [8]
proved the Weierstrass representation formula for maximal surfaces, and then Akutagawa and
Nishikawa [1] generalized his results to the case of spacelike surfaces with prescribed mean
curvature in L3. In hyperbolic space H®, Bryant [2] gave a representation formula for surfaces
of constant mean curvature one. Later, Kokubu [9] obtained a formula for minimal surfaces in
H3. Generalizing these, Shi [11] proved the Weierstrass representation formula for surfaces of
prescribed mean curvature in H3.

On the other hand, the three-dimensional Heisenberg group Nils equipped with the left in-
variant metric is one of the eight models in Thurston’s geometries (see [12]), and it is interesting
to consider surfaces in this space. In 2000, Inoguchi, Kumamoto, et al [5] derived a Weierstrass
representation for minimal surfaces in Nils. Later, Inoguchi [6] obtained another integral rep-
resentation formula for minimal surfaces in Nil3 by making some improvement. Meanwhile,
Mercuri, Montaldo and Piu [10] used a new method to get a representation formula for minimal
surfaces in Nils. Also, Daniel [4] developed a method which is different from those of Inoguchi
[6] and Mercuri, Montaldo and Piu [10] to give a representation for minimal surfaces in Nils.
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Recently, Berdinsky and Taimanov [3] obtained a generalized Weierstrass representation for
surfaces in three-dimensional Lie groups including Nils by using Dirac equations.

In this paper, we define the Gauss map of surfaces in the Heisenberg group Nils and obtain
a Weierstrass representation formula for surfaces of prescribed mean curvature, which is a
generalization of the above mentioned results of Mercuri et al. We find that the complete
integrability condition of this representation formula is exactly a second order partial differential
equation for the Gauss map. Using our representation formula, we explicitly construct some

examples of minimal surfaces as well as surface with constant mean curvature in Nils.

2 Surface Theory in Nilj

The three-dimensional Heisenberg group Nil3 can be viewed as R?® endowed with the left-
invariant metric ) ) 5
g= dx% + dx% + (dxg + Exgd:zrl — 5171(15172) .

It can also be represented in GL(3,R) by

1 Tr1 X3 + %xlxg
0 1 To
0 0 1

with z; € R, i = 1,2,3. The left-invariant orthonormal frame {F1, Eo, F3} is given by

8 i) 8 8 X 8 8
! 6,@1 2 (95[:37 2 6$2 + 2 (95[:37 3 6$3

Let V be the Levi-Civita connection of Nils. The expression of V in this frame is the following:

Vi, B =0, Ve b= —5EBs, Vg By =5k,
_ 1 _ o 1
VElEQ = §E3a VEQEQ - O, VE3E2 g §E117
= 1 — 1 _

Vg B3 = _§E27 Vg, E3 = §E1, Ve, E3 =0.

Let = (21, z2,23) be a point in Nils. For an arbitrary tangent vector X at z, if

X =a i—l—a i—l—a i
a 1(9&[:1 2(9&[:2 3(95[:3,
then

1
X =a1F1 +asEs + |az + 5(1‘2&1 — l‘lag)} FEs.

Let ¥ be an oriented two-dimensional connected Riemannian manifold and z : ¥ — Nils
an isometric immersion of ¥ into Nils. In a neighborhood of any point of ¥, we choose an
isothermal coordinate z = & + i{s and making use of it the metric of ¥ can be written as
ds? = A\2|dz|? (A > 0). Fori=1,2, let

19 1 <0x 9 1[0n O Ors 1/ dxy O
“= 378 "3 78 oo~ aoe Pt ae Pt (g T 3lege —nge)) B
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Then {ey, ea} defines an orthonomal tangent frame field on ¥ compatible with the orientation.
From (e;, e;) = d;;, we have
8171 8171 8%2 8%2 8173 1 8$1 8172 8%3 1 8171 8%2
i 0 (ot a2
96 0¢; 0§ 9¢;  LOG 2\ T O 0&; /1L 0¢; 9§ 9&;
where 7,5 =1, 2.
Let n be a unit normal vector field of X, that is, (n,n) =1 and (n,e;) =0 for i = 1,2. In

)} = A2, (2.1)

3
terms of the left-invariant orthonormal frame, n is given explicitly by n = Y es; F;, where
i=1

Jxs Ox dx1 Ox
5258, 7% ~ 96, 7%,

(91:1 (91:2 (91:2 (91:1

= =), 2.2
06, 08 0€ 0&, (agl 06 96 352)] (2:2)
6,@1 (91:2 6$2 (91:1

633:p(8—€18—§2—8—€18—§2), 631+€32+€33:1.

We note that the dual coframe of {e1,e2} on ¥ is
w'=\d¢&, i=1,2,

and the connection 1-forms are

; 1ox . 1 0\ |

= - w0, =1,2.

(.()Z )\2 aglw A2 ag]w Y 7’5.] )
The formulas of Gauss and Weingarten for ¥ in Nils are the following:
2
Veej=> wheex +hyn, Ven=—> hpger, i,j=12,
k=1 k=1

where h;; is the second fundamental form on . By an elementary calculation, we see that the
above formulas can be written in terms of local coordinates as follows:

021, (8/\ 8951 o\ 8951 5 Z o\ 6:51) B 1 0xo {6:53 l( oxy
2

p— f— _ :I: —_—
9606, \\og g T o€, 06 a, 06 ) 2 9&; Log; 20,
6$2 1 (91:2 6$3 1 6,@1 6$2 2
“1oe; )} 2 0¢; {agi + (””2 a&  Voe )} + A hijean,
82132 _ l (Q 8$2 o\ 8$2 Z o\ 8$2) 102, [8173 1 ( 0x1
06,08 A\O&; ¢ 353 ¢ « 08y, OE}, 2 0¢; Log; 2o¢;
6$2 1 (91:1 6$3 1 6,@1 6$2 2;
“1oe; )} 2 0¢; {agi 2 (””2 a&  Voe )} + A hijess, 03
Oas _ 1 [P0y DA Drs L0V, On_y Jay 100 O Do |
0608  ALO& 08 085 95 208 \ T O 0§ 2 0¢; i 3
2L 0N 0wz w1 O Oxz  wa ON Oy w3 ON Oy Zm Oz
2 06 06 208 06 20608 2 08 0 * 08k &y,
2
1 0\ (91:1 6$2 £L'1 o\ 6$2 ,TQ o\ (91:1
5 7 J
Z 2 0, ( 351) Z < O&}, 3€k Z < OC}, 351@}

k=1
lx%[% l(x%_x%)} lx%[% l(x%
Yog Log; T 2\Pag, Tog )l T ag Lo T 2\ o
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6$2 1 6$2 (91:3 1 (91:1 6$2 1 6$2 (91:3
_””13_@)} 1298 [agj +5 (e e, 13_@-)} Z”a_gj[a@
2 2
+ %(@%—? — 1 g?)} - %thijeL%l + %xlhij€32 + /\th‘j633,
and
6631 1 6$2 1 (91:3 1 (91:1 (91:2
o9&, 208 T 5[3@ * 5( 20¢, ~ Vog )}632 th’“ agk
8832 1 8171 8173 8172
T TSR TOU R PR - D
6633 1 6$2 1 (91:1 (91:3 1 (91:2
98, 20g T 279, Z [_ 5( xla_gk)}'

k=

The mean curvature is given by H = %(hll + haa). Let ¢ = %(hll — hag) — ihy2. The multipli-
cation in Nils is defined to be the multiplication of matrices, i.e., x -y = (z1 + y1, T2 + Y2, 23 +
ys + %(xlyg — xotn)) for © = (z1,22,23), ¥y = (y1,y2,y3) € Nils. The unit element of Nils is
=(0,0,0), and 27! = (=21, —29, —23) for & = (21,22, 73) € Nils.
As Nilj is a Lie group, by the left translation of n, we get
0 0

- 0 ,
n=~L,1,(n)= 8318—:101(6) +ego— Ry (e) € Te(Nils)

(e)+e 3383

by using the stereographic projection with respect to the north pole and the south pole respec-
tively, and we have two maps of ¥ into CU {oo} as follows:

€31 tlesn
1— €33

Golr) = S for i€ Us = S%(1)\ {5},

for n € Uy = S%(1) \ {N},
(2.5)

where S2(1) is the unit sphere of the Lie algebra of Nil3, N(S) is the north (south) pole of
S2(1). The map G = G (or Gy) is called the Gauss map of the surface z(%).

3 Weierstrass Representation Formula

Let X be a surface immersed in Nilg by a mapping x : ¥ — Nils, and G denote the Gauss
map of ¥ into CU {oco} as in the above section. In this section, we shall give a Weierstrass
representation formula for surfaces of prescribed mean curvature. First, we prove the following
lemma.

Lemma 3.1 If x = (x1,x2,23) : ¥ — Nils is an isometric immersion, then

o olip e )

a
[%+%( 83_ 1%”(%* %?)AQGJF?W- (3.3)
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Proof We see from (2.2) that

¢ ,2[%%_%% ! (fﬁﬁxz %%)}
TNz 92 0z 0z 27\ 8: Bz 0z 0-
21 8$1 8%3 8$1 8%3 1 8$1 8%2 8$1 8%2
B s s B ] _ o 3.4
€32 /\2[62 9z 0z 0z 2" (a— 9z 0z az)] (34)
e3 — 2_(%% - %%)
B7\oz 92 0z 0z /)
And from (2.5), we have
~e31 ties
Gl - 1 — e33 ) (35)
(1+[G1*)(1 - ez3) = 2. (3.6)

On the other hand, since z = &; + i&,, for which (&1,&2) is an isothermal coordinates on X, it
follows from ds? = A\?|dz|? that

o 0 2 o 0 o 0
<&’£>:%v (3532 = (3 32) =©

Ox1 0x1 Oxo Oxo {8333 1( 0x1 81:2)} [83:3 1( 0x1 3172)} B A2

ie.,

9z 0z 0z 0z Loz 2, e, 0z oz T ez )] T o
(50) +(52) + [+l ~m2)] =0 o

8$1 2 8172 2 8%3 1 8$1 8%2
(5) + () + [+t —n )] =
Substituting (3.4) into (3.5), and making use of (3.7) and (3.6), we can then obtain (3.1)—(3.3)

through a straightforward calculation.

We shall now compute the derivatives of the Gauss map G. First we prove the following

proposition.

Proposition 3.1

6G1 - (1 + |G1|2)2 .92 6,@1 6$2

o = 1 (e + 2H)( 5% +i 5% ) (3.8)

6G1 - (1 + |G1|2)2 6,@1 ,6,@2 . (91:1 ,(91:2

5= i) (G i) (8.9)

Proof By a simple calculation, we get
ox ox; ox; ox; (%cl (%cl
h +h ih h .
(1185 1285 121851 12285) +¢
Then from (2.4), we see
O _ 1 02 1 (% 1,080 1 %)_ O 0n
9z 2709z 2%\Uoz "2 0z 2710 Dz oz’
desz 1, O 1, (% 1,00 1 %)_ Owz _ 012
9z 2 %9z 2%\ oz T2 0 270 9z 9z’ (3.10)
Oss Lm0 Lo, 00 gt o001y (g00 00 '
9z 270z 2 %0z 0z oz 27\ 5z oz
8:172 8:172
tam (H P ¢E)
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Differentiating (3.5) with respect to Z and applying (3.10), we get

0G1 . J res31 +1ieso . 1 dest .0eso dess
5_6_7( 1—633)_1—633(67 +187 +G1 (92)

o 1 i 8$1 . 8%2 i 8173 1 8$1 1 8172

= (T +5E) +3( T tangE Tan )il —ew)

H(@xl 8:62) _¢(6x1 -i-l%)—i—Gl( 6316552 le %)

oz oz 0z 0z oz 2 %9z
(91:3 1 6,@1 1 (91:2 — (91:3 1 6,@1 1 (91:2
~GH(Gn +ymgr —gmgs ) ~Ga( P +gm - 5m )|

Then by (3.1), (3.2) and (3.6), it is verified that

oG 1+1G1)?)? .. ox ox
0 O (i%2),
Similarly, we obtain
6G1 i 0 €31 +i€32 - 1 6631 ,6632 6633
W_az( 1—633)_1—633(82 +182 +G 32’)
- 1 i 8$1 ,8.%2 8173 1 8$1 1 8172
“ramlaen(Gr +ig0) +a (T g - )Gl - en)
8$1 . 8:172 8171 8:172 1 8$2 1 8171
-H(G i) oG +ige) + G s - e

G H (8x3 1 0z; 1 8x2)_G1¢(8x3 1 0z; 1 %)}

5. 3%, 3%, oz T3z 37 gz

By (3.1) and (3.2), it is verified that

0G1 _(1+|G1|2)2¢(%+ 8:62) (%+ 6:52)

9z 2 0z 0z 0z 0z

By the same argument, we can also prove the following
Proposition 3.2
0Gy (1 + |G2|2)2

_ . 2 et .—
7 1 (1633+2H)(az laz)’
8G2 - (1 + |G2|2)2 8171 ,8172 . 8$1 ,8$2
5 =55 i) (5 15s)

0Gy

We can calculate the norms of the complex vectors %zt and 8G2.

Corollary 3.1

0G AL
g _Z|l€§3+2H|(1+|G1|2),
0G4 AL
57 | = Z|1€§3 +2H|(1 + |G2[?).

Proof We shall prove only (3.13). By making use of (3.2) and (3.3), we have

A
14 |GL*

(91:1 ,6,@2
oz Vs

(3.11)

(3.12)

(3.13)

(3.14)
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Then from (3.8), we see
0Gh

AL
g = leegg + 2H|(1 + |G1|2)
Thus we have the following representation formula.

Theorem 3.1 Let x = (z1,22,23) : ¥ — Nilg be an isometric immersion and G : ¥ —
C U {oc0} be the Gauss map. Then we have

o
(o —icy) 2 = PG O
y4

(1+1[G1[?)?
s 3.15
CH —ie) 5 =~ [ap)? a2 (3:15)
(91:3 4G1 l‘g(G% — 1) il’l(l + G%) 6@1
(2H — 1633) :{_ 22 22 22} )
9z (L+[GiP)?  (A+[GiP)»? (1 +]Gi?)?] 9z
on Uy, where e33 = 1+\‘C2¥1_\%’ and
8171 Z(G% — 1) 862
2H — =
( ie33) 5~ 9z (1+|G2]?)? 0z’
Ory  2i(1+ G3) 0Go
2H — = 3.16
( ie33) 5 9z (1+|G2]?)? 0z’ ( )
O3 4Gy xz(Gg — 1) iiZ?l(l + G%) 8G_2
(2H —iejy) >~ [ 02 22 22 ’
0z L1+[G?)?  (1+]Go)?  (1+41G2?)?] 0z
on Us, where e33 = %
Proof By (3.8), we get
6@1 o 6—G1 - (1 + |G1|2) (91:1 ,(91:2
= = (2l e 33)(82 13), on U. (3.17)
Then from (3.1) and (3.2), we see
6G (1 + |G |2) (91:1 (91:2
2 1 1 .
Gt = e — i) (G + i ) (3.18)
Hence, by adding (3.17) to (3.18), we have
861 (1 + |G1|2) 8$2
2 — —_
(1+GY) 5, 1 5 (2H —ie3;)—=— 5
and by subtracting (3.17) from (3.18), we have
861 (1 + |G1|2) 8171
2 _ —
(G —1) o 5 (2H )82'
Thus we get
6,@1 2(G2 — 1) 6@1
2H —ie3y)— = L 1
( i€33) 0z (14 |G1]?)? 9z’ (3.19)
Oxo 2i(1 + G2) 0G,
2H —iefs)——— = — 2
e (T AR (3.20)
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on U;. Note that from (3.2) we also have

(2H — ie5y) [% + %(m% - xl%ﬂ = (2H — iegg)Gl(% - i%),

It then follows from (3.17) and (3.21) that on Uy,

oz 1 ox ox 4G oG
ez [0%s Lo O OmaN) 1 !
(2H 1633)[ 0z + 2 (xz 9. o )} (14+1G1]2)2 9z’
ie., i
. 9 6$3 4G1 $2(G% — 1) i$1(1 + G%) 6G1
(2H —iegg) 5~ = {_ - - :
0z (I1+1]G1?)2 (14+1G1]2)?2 (1 +|G1]?)?] 0z

(3.16) can be proved in a similar way.

H. B. Qiu

(3.21)

(3.22)

Remark 3.1 By making use of equations (3.9) and (3.12) instead of (3.8) and (3.11), we

obtain the following representation formula:

—% G% -1 8(G1 — X9 + 1171)

¢ 9z (14 |G1]?)? 0z ’
—0xs . 1+G? O(Gy —x2 +ixy)
R (PN TENEIE e :
5%:[_ 2G4 ) G? -1 _im 1+G? O(Gy — w2 +1ix1)
0z (1+]G1]2)2 2 (14+|G1]2)? 2 (14 |G1]?)? 0z ’
on Uy, and
—Ox1 _ G3—1 O(Ga+x +ixy)
0z (14 |G2]?)? 0z ’
—0z2 . 1+G% 0(Gy+ o +ix1)
P (BTGRP 92 ’
—0x3 _ 2G5 Cxm Gi-1 +ix_1 1+ G3 }6(G2+x2+ix1)
0z (14+1G212)?2 2 (1+]G2?)? 2 (1+|G2|?)? 0z ’

on UQ.

4 Integrability Condition

(3.23)

(3.24)

In this section, we shall show that the Gauss map of an arbitrary surface in Nils satisfies a

second order differential equation, which is the complete integrability condition for the system

(3.15).
Theorem 4.1 Let x : X — Nilg be an isometric immersion. Then the Gauss map G must
satisfy
82G1 B 261 0G1 0G4 . 1 8(1633 + 2H) 0G
0202 1+|Gi|2 0z 0z  iel, +2H 0z 0z
n 2 4H (ie3, + 2H)

1+ (G2 lie2s + 2H]2(1 + |G ]?)
21— |G ) (ied +2H)} G, ‘2
lieZ, + 2H2(1 + |G12)2 1 " oz

)

(4.1)
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where e3z = %, and
82G2 B 262 0G9 0G4 . 1 8(1633 + 2H) 0G9
0202 1+|Gaf? 0z 0z  ied;+2H 0z 0z
n 2 4H (ie3, + 2H)
1+ |Gof?  ied; + 2H|?(1 + |G2|?)
B 2i(1 — |G2|2)(ie§3+2H)} 8G2‘2 (4.2)
lieZ, + 2H2(1 + [Go2)2 1 21 oz | '
7 2
where e33 = %

Proof We shall only prove (4.1) for Gy, since (4.2) can be proved in a similar way. From

(2.3), we see

2 2 2 2 : 2 2

s (G )+ (G )

M 3 -5 0+ 52)
sl + 3 ) (5 +i52) + 7

E + 2 (831 + 1832).

By making use of (3.1)-(3.3), we have
82:51 ,621'2 i)\2G1 i/\2G1|G1|2 )\2HG1 - i)\2G1(1 — |G1|2) )\2HG1

0207 0207 204 1GhP2 20+ 1GiPE 14 G 204G TiFIGE

From (3.13), we have

/\2 . 16 8G1 ‘2
T lie2; + 2H2(1 + |G1?)2 ] oz

Then we have

821171 +i82£62 - 81G1(1 — |G1|2) 8G1 2 16HG1 8G1 2 (4 3)
020z 0207 |ie3; + 2H2(1 + |G1]2)*| 0z lie2, + 2H[2(1 +|G1]?)3 1 9z |~ '
From (3.8), we get
82G1 8 8G1 8 (1 + |G1|2)2 2 8171 8:172
g _ Yy _ Y BTl s o) (LI 4 22
e G TGk +2m) (G i) |
(1+|G1]?)? f0z1 . .Oxa\O(ie3; +2H) 1, , Ox1 .0xs
S S 0 ) MR (ot SO Pt o i A o) (£ 422
(i) T 10k +28) (G +i52)
O +1G1>)  (1+]Gi?)? . Oz 0%
2 _ 2
x2(1+ |G )= (e + 2H)(6zaz + 16262). (4.4)
By (3.8), (4.3) and (4.4), it is verified that
82G1 B 261 0G1 0G4 . 1 8(1633 + 2H) 0G
0202 1+|Gi|2 0z 0z  iel, +2H 0z 0z
L2 AH (ie2, + 2H)

1+ (G2 lie2s + 2H]2(1 + |G ]?)
21— |G ) (ied +2H)} G, ‘2
lieZ, + 2H2(1 + |G12)2 1 " oz
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Remark 4.1 When H = 0, the Gauss map satisfies

PGy, 269G, 9G,
9202 ' 1—|Gi]? 9z 0%

It shows that the Gauss map of minimal surfaces in Nils is harmonic (see [4]).

=0.

Theorem 4.2 Equation (4.1) is the complete integrability condition of system (3.15).

Proof From (3.15), we see

dx1 1 2(G3 - 1) G,
9z 2H —ie2, (1+|G12)? 0z’
dry 1 214G} 3G,
0z 2H —ie2, (1+|G12)2 9z
Ows 1 [ 4Gy 0Gy | x(GE—1) 0G| in(1+4GY) 0Gh
0z  2H —ie2, L1+ |G1]2)2 0z (1+]|G12)2 92z  (1+G1]?)% 0z I
Set Yal
1 1 oG
b ' 45
2H —ie3, (14 |G4]2)?2 02 -
Then
0z 2
— =2F —1
62’ (Gl )7
ox .
a_; = —2iF(1+G?),
0x3 9 . 2
-, = ~FUG1 +22(Gf = 1) +im (1 + GP)].
Set

P = (P, Py, Py) = (2F(GT — 1), =2iF (1 + G}), = F[4G1 + 22(G — 1) +iz1 (1 + GD))).
Differentiating (4.5) with respect to z, we get
or . 1 1 (8261 2G1 6@1 6@1)
0z 2H —ieZ, (1+(G12)2\0202 1+ |G1|? 02 0z
1 6(2H — iegg) 1 6@1 _ 2@1 1 6@1 6G1
(2H —ie,)? 0z (14 |G1[?)? 9z  2H —ied, (14|G1|?)? 9z 0z
By (4.1), we have

oF 4HG, G |2 2i(1 — |G41|*)G, G |2

0z lied, +2H|2(1 +|G1]2)31 0% lie2s + 2H|2(1 + |G1]?)4] 0z |~
Hence

OPy s oF oG

T e +2H2(1 + |Gh]?2)3 | oz

4G, 0G,
(2H —ic3) (1 +1Gi[?)?| 92
C16H(1+|G1[)Re Gy — 8(1 — |G1*)Im G |9G,
N lie2; + 2H|2(1 + |G4|2)* 0z

8H61(G% — 1) 8G1 ‘2 41(1 — |G1|2)61(G% — 1) 8G1 ‘2
lie2s + 2H[2(1 + |G1[?)* | 0z
2

+

2
e R.
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Similarly, we obtain

3P2 2 8F 8G1

— = —2i(1 —2iF -2

o= 1+ GGz — A 2615

16H(1 + |G1| )Im G+ 8(1 — |G1|2)Re G110Gq |2
UL T
lie2s + 2H2(1 + |G1[?)4 0z
and
OP: oF
8—; = — 4G, + 22(G? — 1) + iz (1 + G == =
G ., . O Fled 0T aG,
F[ o+ (G 1)3 200+ i+ G2 e - 26, 82}
_ 1 2 2
= |ie§3+2H|2(1+|G1|2)4 [8H(1+|G1| )(lGll 1) 8H$2(1+|G1| )ReG1
oG
+8Hzy (1 + |G [*)Im Gy + 4251 — |G1 ) Im Gy + 421 (1 — |G41[*)Re G1] 8; €R,
i.e.,
P (9P 0Py 0Py 4
az (8z 9z 82)6R'

So (4.1) is the complete integrability condition of (3.15).

Remark 4.2 By a similar argument, one can show that equation (4.2) is the complete
integrability condition of system (3.16).

Therefore, we have the following representation formula.

Theorem 4.3 Let ¥ be a simply connected Riemann surface, H : ¥ — R be a C'-function,
and G : ¥ — CU{oo} be a smooth mapping which is defined on Uy (resp. Us) by G1 (resp.
G2). Assume that G satisfies the differential equations (4.1) and (4.2) for the above H. In the
case of G(z) € Uy, we set

* G? -1 oG,
=2 ! d

1 Re{/z0 RH =31 + |G R 0= z}+01,
? —i(1+G?) oG,

x9 =2Re / - dz ¢ + co,

2=l | GETIE 0GR 0: 7 T (16)
z 1

:2 — 2 _ 2 _ 1
w=2re{ | e | 260y
i oGy
- 5171(1 +G%)} 5 1dz} + c3,
where e33 = \1%‘\;—‘; In the case of G(z) € Us, we set
z G3—1 0Gs
=2 - d

o Re{/zo (2H — ie3) (1 + [Ga])? D2 e
? i(1+G3) G,

zo = 2Re / - dz ¢ + ¢,

2=l | GETRG)  GPR 2 @
# 1
=2 2 2
w=2Ref | i 20 3G -
i oG
+ §$1(1+G§)} 5, 2dz} + cs,
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1—|Gaf?
1+[Ga[?
1s H and the Gauss map of x is G. Moreover, from Corollary 3.1, if Gz # 0 on X, then x is a

where e33 = Then x = (x1,x2,x3) is a branched surface such that the mean curvature

reqular surface.

Remark 4.3 We assume that |G| # 1. By (4.6), we get the Weierstrass representation

formula for minimal surfaces in Nils as follows:

(xl,xz),xg):(2Re{/zF(1—G%)dz},zRe{/ziF(1+G§)dz},

9Re { / [2FG1 - x—;F(l — G2+ %F(l + G%)]dz}),

Z0

_ i 3G,
where F' = B

This is the result of Mercuri, Montaldo and Piu [10].

Remark 4.4 We have found a correspondence from the set of solutions of the differential
equations (4.1) and (4.2) to the set of surfaces in Nilz by Theorem 4.3.

Next we shall study the uniqueness of the correspondence.

Theorem 4.4 Let G(z) (resp. é(w)) be a smooth mapping satisfying (4.1) for some positive
function H(z) (resp. f_\[(w)) on a simply connected two-dimensional manifold ¥. We define a
branched immersion x(z) (resp. T(w)) by Theorem 4.3. Then the following two conditions are
equivalent:

(1) There exists a holomorphic mapping w = f(z) with f'(z) # 0 on ¥ and a motion 0 of
Nils, such that Zo f(z) =0ox(z), z € X.

(2) There exists a holomorphic mapping w = f(z) with f'(z) # 0 on X, such that it has
relations G(z) = Go f(z), H(z) = Ho f(z), z € 2.

Proof (1) = (2) We may assume ¢ =identity. We have

dx 0r , Jr 07—
9~ awl ) ad o=l
Since
ds® = AN|dz]> = N|dw[* = M| f'(2)dz[* = N|f'(2)[*|d=]?,
we get

X2 =22 f'(2)].

Then we have

e XeE T Apean O G Rgp
. 20x 2 a_f/ PP F(z)
TS50 T Ao’ O T @ TG
So /
2n(2) =i(e1 +ie2) x (e — iea) = i(€y + iea) |§’E3| x (61— i) |§’E3| = 2n(w),

i.e.,, n(z) = n(w). Hence

G(2) = G(f(2))-
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Then by (3.8), we get
H(z) = H(f(2)).
(2) = (1) By the assumption and Theorem 4.3, we have 9; = %f’(z), ji=1,2, ie.,
+

Ij:

) 0z ow
T

j +¢j. Then we get

~ C1 ~ Co
T3 = T3+ 5562 - 5201 + cs,

where ¢y, ¢co, c3 are constants.

5 Examples

Let us give some examples.

Example 5.1 Let ¥ = C, H = 0, and define G : C — CU {00} by G(z) =Z. Then G and
H satisfy (4.1), and the immersion x defined by (4.6) is written as

2Im 2 2Rez 4Rezlmz
I(Z) = (xl('z)aIQ(z)aIB’(z)) = (1 — |Z|2,_1 _Tzlga (1 j |Z|2)2), |Z| #1,

i.e., Ir3 = —T1X2.

Example 5.2 Let ¥ = C\ {0}, H = 0, and define G : C\ {0} — CU {oo} by G(z) =
Then G and H satisfy (4.1), and the immersion 2 defined by (4.6) is written as

W[

2Im z 2Re z —4RezIm z
) = @225 = (i~ oy Ry BPa - RPR) AT

Example 5.3 Let ¥ =C, H = 0, and define G : C — CU {oo} by G(z) = €. Then G and
H satisfy (4.1), and the immersion x defined by (4.6) is written as

(AZ A% z z 2|e? 21
JI(Z) = (:’El (2)75[;2(2)71;3(2)) = (1:(le_ |eze|2)7 16—T€S|27 (1|e_||ezr|I;)22), ReZ 7& 0.

Example 5.4 Let ¥ = C, H = 1, and define G : C — CU {00} by G(z) = —e®°*. Then

G and H satisfy (4.1), and the immersion x defined by (4.6) is written as
1
x(z) = (21(2),22(2),23(2)) = (cos(Re z),sin(Re z), ERez —Im z),
i.e., 3 + 3 = 1. It is the unit circular cylinder in Nils.

References

[1] Akutagawa, K. and Nishikawa, S., The Gauss map and spacelike surfaces with prescribed mean curvature
in Minkowski 3-space, Tohoku Math. J. (2), 42(1), 1990, 67-82.

[2] Bryant, R. L., Surfaces of mean curvature one in hyperbolic space, Astérisque, 154-155, 1987, 321-347.

[3] Berdinsky, D. A. and Taimanov, I. A., Surfaces in three-dimensional Lie groups, Siberian Math. J., 46(6),
2005, 1005-1019.

[4] Daniel, B., The Gauss map of minimal surfaces in the Heisenberg group, 2006. arXiv:math.DG /0606299

[5] Inoguchi, J., Kumamoto, T., Ohsugi, N. et al, Differential geometry of curves and surfaces in 3-dimensional
homogeneous spaces 11, Fukuoka Univ. Sci. Rep., 30, 2000, 17-47.

[6] Inoguchi, J., Minimal surfaces in the 3-dimensional Heisenberg group, Differ. Geom. Dyn. Syst., 10, 2008,
163-169.



132

(10]
(11]
(12]

(13]

Q. Chen and H. B. Qiu
Kenmotsu, K., Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann., 245(2), 1979,
89-99.

Kobayashi, O., Maximal surfaces in the 3-dimensional Minkowski space L3, Tokyo J. Math., 6, 1983,
297-309.

Kokubu, M., Weierstrass representation for minimal surfaces in hyperbolic space, Tohoku Math. J., 49(3),
1997, 367-377.

Mercuri, F., Montaldo, S. and Piu, P., A Weierstrass representation formula for minimal surfaces in Hs
and H? x R, Acta Math. Sin., Engl. Ser., 22(6), 2006, 1603-1612.

Shi, S. G., Weierstrass representation for surfaces of prescribed mean curvature in the hyperbolic 3-
dimensional space (in Chinese), Chin. Ann. Math., 22A(6), 2001, 691-700.

Thurston, W. P., Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer.
Math. Soc., 6(3), 1982, 357-381.

Xin, Y. L., Minimal Submanifolds and Related Topics, Nankai Tracts in Mathematics, 8, World Scientific,
Singapore, 2003.



