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Abstract The concept of Koszul differential graded (DG for short) algebra is introduced
in [8]. Let A be a Koszul DG algebra. If the Ext-algebra of A is finite-dimensional, i.e.,
the trivial module Ak is a compact object in the derived category of DG A-modules, then
it is shown in [8] that A has many nice properties. However, if the Ext-algebra is infinite-
dimensional, little is known about A. As shown in [15] (see also Proposition 2.2), Ak is not
compact if H(A) is finite-dimensional. In this paper, it is proved that the Koszul duality
theorem also holds when H(A) is finite-dimensional by using Foxby duality. A DG version
of the BGG correspondence is deduced from the Koszul duality theorem.
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1 Introduction

In [8], we introduced the concept of Koszul DG algebras. Let k be a field. By a connected

DG algebra we mean a cochain k-algebra A such that A =
⊕
n≥0

An and A0 = k. A connected

DG algebra A is said to be Koszul if the trivial DG module Ak has a semifree resolution with a

semifree basis concentrated in degree 0. Let A be a connected DG algebra. We write D(A) to be

the derived category of A, and Dc(A) to be the full triangulated subcategory of D(A) generated

by AA, that is, the smallest triangulated subcategory of D(A) containing AA as an object and

closed under isomorphisms. We say that a DG module AM is compact if AM ∈ Dc(A). Let

A be a Koszul DG algebra, and let E = Ext∗A(Ak,Ak) be its Ext-algebra. If the trivial DG

module Ak is compact, then the Koszul DG algebra A has nice properties such as ( i ) the

Yoneda algebra of E is isomorphic to the cohomology algebra H(A); (ii) there is a duality of

triangulated categories between the bounded derived category of finite modules over E and

Dc(A). However, if Ak is not compact, little is known about E and A.

Examples of DG algebra from differential geometry and algebraic topology usually have the

property that the cohomology algebra is finite-dimensional. A DG algebra with this property

was said to be compact by Kontsevich and Soibelman [10]. In this case, the trivial module Ak

must not be compact (see Proposition 2.2). Hence the results obtained in [8] can not be applied
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to these DG algebras. In this paper, by using Foxby duality, we show that a Koszul DG algebra

A such that H(A) is finite dimensional still has the same properties (see Theorems 3.1, 3.2 and

4.1) as in the case that Ak is compact. The method of this paper is different from that of [8].

Throughout, k is a fixed field, unadorned ⊗ means ⊗k. Let B be a graded algebra, M and

N be graded B-modules. We write HomB(M,N) =
⊕
n∈Z

HomB(M,N(n)) to be the set of all

graded B-module homomorphisms and ExtB(−,−) to be the derived functor of HomB(−,−).

For the notations and properties of DG algebras we refer to the references [1, 4, 8, 11].

2 Some Basic Properties of Koszul DG Algebras

Let A be a connected DG algebra. For convenience, we use A♮ to denote the underlying

connected graded algebra of A. Similarly, if M is a DG A-module, we use M ♮ to denote the

underlying graded A♮-module. We use M ♯ to denote the graded vector space dual.

As in [4], let R = B(A) be its bar construction for the augmented DG algebra A.

Lemma 2.1 (see [4]) (i) The augmentation map B(A;A) = A ⊗ R
ǫ⊗ǫ
−→ Ak is a quasi-

isomorphism, and hence A⊗R is a semifree resolution of Ak.

(ii) The map ϕ : R♯ −→ EndA(A⊗R) defined by

ϕ(f)(1[a1| · · · |an]) =

n∑

i=0

(−1)|f |ωi1[a1| · · · |ai]f([ai+1| · · · |an])

is a quasi-isomorphism of DG algebras, where R♯ = Homk(R, k) =
⊕
i∈Z

Homk(Ri, k) and ωi =

|a1|+ · · ·+ |ai|+ i.

Proposition 2.1 Let A be a Koszul DG algebra. If gl.dimA♮ <∞ and dimA1 <∞, then

Ak is compact.

Proof By the previous lemma, ExtnA(k, k) ∼= Hn(R♯). Let us inspect the cohomology of R.

Consider the following second quadrant double complex P:

...

dv

��

· · ·

∑

i+j+k=4

Ai ⊗Aj ⊗ Ak

dv

��

dh

oo A1 ⊗A1 ⊗A1

dv

��

dh

oo

· · ·

∑

i+j=4

Ai ⊗Aj

dv

��

dh

oo

∑

i+j=3

Ai ⊗Aj

dv

��

dh

oo A1 ⊗A1

dv

��

dh

oo

· · · A4dh

oo

��

A3dh

oo

��

A2dh

oo

��

A1dh

oo

��
· · · 0oo 0oo 0oo 0oo koo
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where dv and dh are defined as follows:

dh(a1 ⊗ · · · ⊗ an) =
n∑

i=1

(−1)ωi+1a1 ⊗ · · · ⊗ d(ai)⊗ · · · ⊗ an,

dv(a1 ⊗ · · · ⊗ an) =

n∑

i=2

(−1)ωia1 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ an,

in which ωi =
∑
j<i

(|aj | − 1).

It is clear that the bar complex R = Tot⊕P. Let R̂ = TotΠP. Then R is a subcomplex of

R̂. Choose a filtration on R̂ as follows:

F0R̂ = R̂, FnR̂ = TotΠP(n) for n < 0,

where P(n) is the double subcomplex of P by deleting the right n columns. Then this filtration

is exhaustive and complete. The E0-level of the spectral sequence induced by the filtration

{FnR̂} is the following diagram:

...

dv

��

· · ·

∑

i+j+k=4

Ai ⊗Aj ⊗ Ak

dv

��

A1 ⊗A1 ⊗A1

dv

��

· · ·

∑

i+j=4

Ai ⊗Aj

dv

��

∑

i+j=3

Ai ⊗Aj

dv

��

A1 ⊗A1

dv

��

· · · A4

��

A3

��

A2

��

A1

��
· · · 0 0 0 0 k

It follows from gl.dimA♮ < ∞ that the spectral sequence is bounded. By the complete

convergence theorem (see [20]), the spectral sequence converges to H(R̂). Since A1 is finite-

dimensional and gl.dimA♮ < ∞, it follows that dimH0(R̂) < ∞. Since R is a subcomplex of

R̂, H0(R) = Z0(R) ⊆ Z0(R̂) = H0(R̂). Hence dimExt0A(k, k) = dim(H0(R♯)) = dimH0(R) ≤

dimH0(R̂) <∞.

We do not know when Ak is compact in general. However, we have the following proposition

which is proved in [15], as a corollary of some homological identities over DG algebras. For

completeness we give a direct proof here.

Proposition 2.2 Let A be a nontrivial connected DG algebra (that is, H(A) 6= k). If

dimH(A) <∞, then the trivial module Ak is not compact.

Proof Suppose that Ak is compact. Let P be a minimal semifree resolution of Ak with

a semifree filtration P (0) ⊆ P (1) ⊆ · · · ⊆ P ( i ) ⊆ · · · and a finite set of semifree basis. By
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adjusting the filtration, we may get a new semifree filtration F (0) ⊆ F (1) ⊆ · · · ⊆ F (i) ⊆ · · · of

P satisfying the following conditions: (i) there are graded vector spaces 0 6= U( i ) for i = 0, · · · , t

such that F ( i )/F (i− 1) = A ⊗ U( i ) for i = 0, · · · , t and F ( i )/F (i− 1) = 0 for i > t; (ii) the

graded vector space U( i ) is concentrated in degree ji for each i and j0 ≤ j1 ≤ · · · ≤ jt. Since

H(A) is finite-dimensional, there is an integer n such that Hn(A) 6= 0 and Hi(A) = 0 for all

i > n. By the truncation of A at the n-th position, we have a bounded DG module N such

that N i = 0 for i > n or i < 0 and a quasi-isomorphism of DG modules A −→ N . Then we get

a quasi-isomorphism of DG modules P = A ⊗A P −→ N ⊗A P . Write M = N ⊗A P . There

is a natural filtration M(0) ⊆ M(1) ⊆ · · · ⊆ M( i ) ⊆ · · · inheriting from P . Clearly, we have

M( i )/M(i− 1) = N ⊗ U( i ) for i = 0, · · · , t and M( i )/M(i− 1) = 0 for i > t. By inspecting

the (jt +n)-th cohomology of M , one can easily see that Hjt+n(M) 6= 0, hence a contradiction.

It follows that Ak is not compact.

Proposition 2.3 Let A be a Koszul DG algebra and E = Ext0A(k, k) be its Ext-algebra.

Then E is a local algebra with residue field k.

Proof If Ak is compact the result was proved in [8]. We now assume that Ak is not

compact, hence E is infinite dimensional. By [8, Theorem 3.1], E = k ⊕
( ∏

i≥1

Ei

)
for some

vector spaces Ei, such that each Fn =
∏
i≥n

Ei (n ≥ 1) is an ideal of E and E is a filtered

algebra with the filtration E = F0 ⊃ F1 ⊃ · · · . The filtration defines a topology on E so that

E is a complete topological algebra. Next, we show that J = F1 is the Jacobson radical of

E. To this end, it suffices to show that for any 0 6= x ∈ J , 1 + x has a left inverse. Since

E is complete, we may write x = x1 + x2 + · · · with xi ∈ Ei. Set x
(1)
1 = x1. We have

(1 − x
(1)
1 )(1 + x) = 1 + x1 +

∑
i≥2

xi − x
(1)
1 − x

(1)
1 x = 1 +

∑
i≥2

xi − x
(1)
1 x. Since E is filtered,

x(2) =
∑
i≥2

xi − x
(1)
1 x ∈ F2. Hence, we may write x(2) = x

(2)
2 + x

(2)
3 + · · · with x

(2)
i ∈ Ei for

i ≥ 2. We have

(1 − x
(2)
2 )(1 − x

(1)
1 )(1 − x) = (1 − x

(2)
2 )(1 + x(2))

= 1 + x
(2)
2 +

∑

i≥3

x
(2)
i − x

(2)
2 − x

(2)
2 x(2)

= 1 +
( ∑

i≥3

x
(2)
i − x

(2)
2 x(2)

)
.

Now x(3) =
∑
i≥3

x
(2)
i − x

(2)
2 x(2) ∈ F3. Similarly to the previous procedure, we may write x(3) =

x
(3)
3 + x

(3)
4 + · · · with x

(3)
i ∈ Ei for i ≥ 3.

Inductively, we have a sequence of elements {x
(n)
n | n ≥ 1} such that

(1− x(n)
n )(1− x

(n−1)
n−1 ) · · · (1 − x

(1)
1 )(1 + x) = 1 + x

(n+1)
n+1 + x

(n+1)
n+2 + · · · (2.1)

with x
(n+1)
i ∈ Ei for i ≥ n+ 1. Set yn =

n−1∏
i=0

(1 − x
(n−i)
n−i ) and zn = 1 +

∑
i≥n+1

x
(i)
i . We get two

sequences of elements {yn | n ≥ 1} and {zn | n ≥ 1}. Since yn − yn−1 = (1− xn
n)yn−1 − yn−1 =

−xn
nyn−1 ∈ Fn, it follows that {yn | n ≥ 1} is a Cauchy sequence. Hence {yn | n ≥ 1} converges
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in E. Set y = lim
n→∞

yn. Taking limit on both sides of (2.1), we have

lim
n→∞

(yn(1 + x)) = lim
n→∞

zn.

It follows

y(1 + x) =
(

lim
n→∞

yn

)
(1 + x) = lim

n→∞
zn = 1,

that is, 1 + x has a left inverse. Hence E is local.

3 Koszul Duality

Examples of DG algebra from differential geometry and algebraic topology usually have the

property that the cohomology algebra is finite-dimensional. For example, let X be a finite CW

complex, and let B = C∗(X ; k) be the singular cochain algebra on X . Then H(B) is finite-

dimensional. There is a connected DG algebra A which is weakly equivalent to B (see [4]), that

is, there are finitely many DG algebrasD1, · · · , Dn which are connected by quasi-isomorphisms:

B
≃
−→ D1

≃
←− · · ·

≃
−→ Dn

≃
←− A.

Of course, H(A) is finite-dimensional. By Proposition 2.2, the trivial module Ak is not compact.

Hence, the Koszul duality established in [8] is not applied to this class of DG algebras. In this

section, we prove a version of Koszul duality theorem for Koszul DG algebras with finite-

dimensional cohomology algebra by using Foxby duality (see [5]).

If A is a Koszul DG algebra, Proposition 2.3 says that E = Ext0A(k, k) is a local algebra

with residue field k. Hence k is a left E-module by the trivial action. If we view E as a DG

algebra concentrated in degree 0, then A⊗ E is an augmented DG algebra.

For any DG A-modules M and N , let HomA(M,N) = HomA♮(M ♮, N ♮). Let RHomA(−, N)

be the right derived functor of HomA(−, N).

Let I be a K-injective resolution of Ak, and let B = HomA(I, I). Then B is a DG algebra

and I is a DG A ⊗B-module. Since A is Koszul, Hi(B) = 0 for i 6= 0. We have the following

truncation:

B′ := · · ·B−n −→ B−n+1 −→ · · · −→ B−1 −→ Z0(B) −→ 0,

where Z0(B) is the 0-th cocycles of B. Then one can easily check that B′ is a DG subalgebra

of B, and the inclusion map B′ →֒ B is a quasi-isomorphism. Hence I is a DG A⊗B′-module.

Write

F = RHomA (−, I) : D(A) −→ D(B′),

G = RHomB′(−, I) : D(B′) −→ D(A).

Then F and G is a pair of adjoint contravariant functors.

Let

A(A) = {M ∈ D(A) | the adjunction map M −→ GFM is isomorphic}

be the Auslander class, and

B(B′) = {N ∈ D(B′) | the adjunction map N −→ FGN is isomorphic}

be the Bass class.
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Lemma 3.1 (Foxby Duality) If (F,G) is a pair of adjoint contravariant triangulated func-

tors between triangulated categories C and D, then

( i ) the Auslander class and the Bass class are full triangulated subcategories,

(ii) F and G induce a pair of dualities between the Auslander class and the Bass class.

By the Foxby duality, F : A(A) −→ B(B′) and G : B(B′) −→ A(A) is a pair of duality

functors between triangulated categories.

Lemma 3.2 The regular DG module B′B′ is in the Bass class B(B′).

Proof In D(B′), we have

FG(B′) = RHomA(RHomB′(B′, I), I)

= HomA(HomB′(B′, I), I)

= HomA(I, I)

∼= B′B′.

Hence B′B′ is in the Bass class B(B′).

Temporarily, we write 〈Ak〉 and 〈B′B′〉 to be the full triangulated categories of D(A) and

D(B′) generated by Ak and B′B′ respectively.

Lemma 3.3 The trivial DG module Ak is in the Auslander class A(A), and hence F and

G induce a pair of duality functors between 〈Ak〉 and 〈B′B′〉.

Proof In D(A), since we have G(B′B′) = RHomB′(B′, I) = HomB′(B′, I) = I ∼= Ak, by

Foxby duality, Ak is in the Auslander class A(A). Hence we have a pair of duality functors

F : 〈Ak〉 −→ 〈B′B′〉,

G : 〈B′B′〉 −→ 〈Ak〉.

Since A is Koszul, E = Ext0A(k, k) = H0(B) = H0(B′). Since B′ is concentrated in negative

degrees, there is a quasi-isomorphism of DG algebras

ϕ : B′ −→ E.

Lemma 3.4 (see [11]) Let D and D′ be DG algebras. If there is a quasi-isomorphism of

DG algebras ψ : D −→ D′, then the restriction of ψ induces an equivalence of triangulated

categories ψ∗ : D(D′) −→ D(D) with the inverse functor D′ ⊗L
D −.

By the lemma above, we have a pair of quasi-inverse equivalences of triangulated categories

ϕ∗ : D(E) −→ D(B′) and E ⊗L
B′ − : D(B′) −→ D(E). Clearly ϕ∗(EE) = B′B′. By the

restriction of ϕ∗ and E ⊗L
B′ −, we get a pair of quasi-inverse equivalences

ζ : 〈EE〉 −→ 〈B′B′〉,

ξ : 〈B′B′〉 −→ 〈EE〉,

such that ζ(EE) = B′B′.
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Proposition 3.1 Let A be a Koszul DG algebra. There is a pair of duality functors between

triangulated categories

θ : Dfd(A) −→ 〈EE〉,

φ : 〈EE〉 −→ Dfd(A),

where Dfd(A) is the full triangulated subcategory of D(A) consisting of DG modules M such

that dimH(M) <∞.

Proof Let θ = ξ ◦ F and φ = G ◦ ζ. Then we have a pair of duality functors

θ : 〈Ak〉 −→ 〈EE〉,

φ : 〈EE〉 −→ 〈Ak〉.

By [8, Lemma 5.5], we have 〈Ak〉 = Dfd(A). Hence the result follows.

Theorem 3.1 (Koszul Duality on Ext-Algebra) Let A be a Koszul DG algebra, E be its

Ext-algebra. If dimH(A) <∞, then Ext∗E(k, k) ∼= H(A).

Proof Since dimH(A) <∞, AA ∈ Dfd(A). By Proposition 3.1, we have

θ(AA) = ξ ◦ F (AA)

= E ⊗L
B′ RHomA(AA, I)

= E ⊗L
B′ I

(a)
∼= Ek, (3.1)

where the isomorphism (a) holds for the following reason. Let X = E ⊗L
B′ I. Since E and B′

are quasi-isomorphic, B′
B′ is a semifree resolution of EB′ . Hence X ∼= B′ ⊗L

B′ I = I as the

complex of vector spaces. Hence H0(X) = k and Hi(X) = 0 for i 6= 0. Since E is concentrated

in degree zero, the DG E-module X is exactly a cochain complex of E-modules. Hence, by

suitable truncations, X is isomorphic to a simple E-module in D(E). While Proposition 2.3

says that E is a local algebra with residue field k, hence there is a unique simple module in the

category of E-modules. Thus X is isomorphic to Ek in D(E).

The isomorphisms in (3.1) say that the trivial module Ek is in 〈EE〉. We have the following

equalities:

Ext∗E(k, k) =
⊕

i≥0

HomD(E)(Ek,Ek[i])

∼=
(⊕

i≥0

HomD(A)(φ(Ek), φ(Ek)[i])
)op

∼=
(⊕

i≥0

HomD(A)(AA,AA[i])
)op

∼= ((H(A))op)op

= H(A).

Corollary 3.1 Let A be a Koszul DG algebra, E be its Ext-algebra. If dimH(A) <∞ and

E is Noetherian, then gl.dimE <∞.
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Proof Since E is local and Noetherian, gl.dimE = pd Ek. By Theorem 3.1, there is an

integer n such that Extn
E(k, k) = 0 since dimH(A) <∞.

Similarly to [8, Corollaries 3.8 and 3.9], we have the following results.

Corollary 3.2 Let A be a Koszul DG algebra, E be its Ext-algebra. If dimH(A) < ∞,

then

( i ) the local algebra E is quasi-Koszul (see [6]) if and only if H(A) is generated by H1(A);

(ii) E is strongly quasi-Koszul (see [6]) if and only if H(A) is a Koszul algebra.

Theorem 3.2 (Koszul Duality) Let A be a Koszul DG algebra, E be its Ext-algebra. If

dimH(A) < ∞ and E is Noetherian, then we have a pair of duality functors between triangu-

lated categories

θ : Dfd(A) −→ Db(modE), φ : Db(modE) −→ Dfd(A),

where modE is the category of finitely generated left E-modules and Db(modE) is the bounded

derived category of modE.

Moreover, under these dualities θ(AA) = Ek and θ(Ak) = EE.

Proof By Proposition 3.1, it suffices to show 〈EE〉 = Db(modE). This follows from

Corollary 3.1 and the hypothesis that E is Noetherian.

For the rest of this section, assume that A is a compact Koszul DG algebra, E is its

Ext-algebra and E is Noetherian. We next show that there is a natural t-structure on the

triangulated category Dfd(A) and the heart of the t-structure is a category of modules.

Define subclasses

D≥n = {X ∈ Dfd(A) | ExtiA(X, k) = 0 for all i > −n},

D≤n = {X ∈ Dfd(A) | ExtiA(X, k) = 0 for all i < −n}.

Proposition 3.2 (D≥0, D≤0) is a t-structure on Dfd(A).

Proof Let

T ≥n = {U ∈ Db(modE) | Hi(U) = 0 for all i < n},

T ≤n = {U ∈ Db(modE) | Hi(U) = 0 for all i > n}.

Then (T ≥n, T ≤n) is a t-structure on Db(modE). By Theorem 3.2, there is an anti-equivalence

φ : Db(modE) −→ Dfd(A).

The anti-equivalence induces a t-structure (φ(T ≤n), φ(T ≥n)) onDfd(A). We next show φ(T ≥n)

= D≤−n and φ(T ≤n) = D≥−n. We check the following steps:

U ∈ T ≥n ⇐⇒ Hi(U) = 0 for all i < n

⇐⇒ HomDb(modE)(E,U [i]) = 0 for all i < n

⇐⇒ HomDfd(A)(φ(U), φ(E)[i]) = 0 for all i < n

(a)
⇐⇒ HomDfd(A)(φ(U), k[i]) = 0 for all i < n

⇐⇒ Exti
A(φ(U), kA) = 0 for all i < n

⇐⇒ φ(U) ∈ D≤−n,
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where (a) holds by Theorem 3.2. Similarly, we have φ(T ≤n) = D≥−n. Hence the proposition

follows.

Let K be the heart of the t-structure (D≥0, D≤0). If a DG module X is an object of K,

then Exti
A(X, k) = 0 for all i 6= 0. We call such a DG module a Koszul DG module.

Theorem 3.3 Ext0A(−, k) : K −→ modE is an anti-equivalence of Abelian categories.

Proof By Proposition 3.2, φ−1 : K −→ modE is an anti-equivalence of Abelian categories.

We have natural isomorphisms

φ−1(X) = HomE(E, φ−1(X))

= HomDb(modE)(E, φ
−1(X))

∼= HomDfd(A)(X,φ(E))

∼= HomDfd(A)(X, k)

= Ext0A(X, k).

Hence φ−1 = Ext0A(−, k).

4 BGG Correspondence

In this section, we form a correspondence of triangulated categories similar to the BGG

correspondence (see [3, 8, 9, 16, 18]) for Koszul DG algebras with finite-dimensional cohomology

algebra.

Throughout this section, A is a Koszul DG algebra with H(A) finite-dimensional, and E is

its Ext-algebra.

First of all, we recall some terminologies.

Definition 4.1 (see [7]) Let R be a Noetherian local algebra with residue field k. R is said

to be Gorenstein if there is an integer d ≥ 0 such that

Extn
R(k,R) =

{
0, n 6= d,

k, n = d.

Definition 4.2 (see [13]) A connected DG algebra B is Frobenius if there is a quasi-

isomorphism BB −→ BB
♯[l] for some integer l.

Proposition 4.1 E is Gorenstein if and only if A is Frobenius.

Proof By Proposition 3.1 and the isomorphisms in (3.1), we have the following equalities:

ExtnE(k,E) = HomD(E)(Ek,EE[n])

∼= HomD(A)(φ(EE), φ(Ek)[n])

= HomD(A)(Ak,AA[n]).

It follows that ExtnE(k,E) = 0 for n 6= d if and only if HomD(A)(Ak,AA)[n] = 0 for n 6= d, and

ExtdE(k,E) = k if and only if HomD(A)(Ak,AA)[d] = k. We claim that

HomD(A)(Ak,AA[n]) =

{
0, n 6= d,

k, n = d,
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if and only if A is Frobenius. Since H(A) is finite dimensional, the DG A-module A♯
A has

minimal semifree resolution P with a set of semibasis {eα | α ∈ Λ}. Then P ♯ is a K-injective

resolution of AA. If

HomD(A)(Ak,AA[n]) = HomA(Ak, P
♯[n]) =

{
0, n 6= d,

k, n = d,

then the index set Λ has only one element. Moreover P ♯ = A♯[−d], that is, AA ∼= AA
♯[−d].

Hence A is Frobenius. The other direction of the claim is clear.

Lemma 4.1 A connected DG algebra B is Frobenius if and only if H(B) is graded Frobenius.

Proof If B is Frobenius, then there is a quasi-isomorphism of DG modules BB −→ BB
♯[l],

which implies a graded module isomorphism H(B)H(B) −→ H(B)H(B♯)[l]. Hence H(B) is

graded Frobenius. Conversely, if H(B) is graded Frobenius, then

H(B)H(B) −→ H(B)H(B♯)[l] (4.1)

is a free resolution of H(B♯). The Eilenberg-Moore resolution (see [4]) of BB
♯[l] defined by

(4.1) is

BB −→ BB
♯[l].

Hence the DG algebra B is Frobenius.

Corollary 4.1 E is Gorenstein if and only if H(A) is a graded Frobenius algebra.

Proof The proof is directly from Proposition 4.1 and Lemma 4.1.

Now suppose that E is Noetherian. Let J be its Jacobson radical. An E-module M is

called a J-torsion module if for any element m ∈ M there is an integer n such that Jnm = 0.

Let torE be the full subcategory of modE consisting of all the J-torsion modules. Since

E is Noetherian, torE is a thick Abelian subcategory of modE. Write qmodE to be the

quotient category modE/torE. Since E is Noetherian, torE is exactly the category of all

finite dimensional E-modules.

Theorem 4.1 (BGG Correspondence) If E is Noetherian, then we have an anti-equivalence

of triangulated categories

Db(qmodE) −→ Dfd(A)/Dc(A).

Proof By Theorem 3.2, there is an anti-equivalence

Db(modE) −→ Dfd(A).

Under this anti-equivalence, Ek is corresponding to AA. Hence we have an anti-equivalence

Db(modE)/〈Ek〉 −→ Dfd(A)/Dc(A).

It is clear 〈Ek〉 = Db
tor E(modE), the full triangulated subcategory of Db(modE) consisting of

complexes M such that each cohomology H•(M) is a J-torsion module. By [17],

Db(modE)/Db
tor E(modE) ∼= Db(qmodE).

Hence the result follows.
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Remark 4.1 The BGG correspondence established in Theorem 4.1 also implies the classical

one in [3].

In fact, as we see in [8], if A is a Koszul Adams connected DG algebra, then its Ext-algebra

E is a connected graded algebra. Following the notations in [8], we write ADdg(A) to be the

derived category of left DG A-modules, ADc(A) to be the full triangulated subcategory of

ADdg(A) generated by AA, and ADfd(A) to be the full triangulated subcategory of ADdg(A)

consisting of objects with finite-dimensional cohomologies. Now the Koszul duality is of the

following form:

Db(grE)
∼=
−→ ADfd(A), (4.2)

and the BGG correspondence is of the following form:

Db(qgrE)
∼=
−→ ADfd(A)/ADc(A). (4.3)

Now let R be a Noetherian Koszul AS-regular algebra. Then its Yoneda algebra S = R!

is a graded Frobenius algebra. Let A be the Adams connected DG algebra given as follows:

Ai
i = Si for i ≥ 0 and Ai

j = 0 for i 6= j. Then A is a Koszul Adams connected DG algebra.

The Ext-algebra of A is R. Since ADdg(A) = D(S) and S is finite dimensional, it follows

that ADfd(A) = Db(grS) and ADc(A) = Db(projS), where projS is the category of finitely

generated graded projective S-modules. Hence the Koszul duality (4.2) can be written as

Db(grR)
∼=
−→ Db(S),

and the BGG correspondence (4.3) as

Db(qgrR)
∼=
−→ Db(S)/Db(projS).

By [19], Db(S)/Db(projS) ∼= grS since S is graded Frobenius. Hence the BGG correspondence

is of the form

Db(qgrR)
∼=
−→ grS,

which was proved in [3, 9, 18].
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