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Abstract The authors consider one specific kind of heat transfer problems in a three-
dimensional layered domain, with nonlinear Stefan-Boltzmann conditions on the bound-
aries as well as on the interfaces. To determine the unknown part of the boundary (or
corrosion) by the Cauchy data on the reachable part is an important inverse problem in
engineering. The mathematical model of this problem is introduced, the well-posedness of
the forward problems and the uniqueness of the inverse problems are obtained.
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1 Introduction

The parabolic equations with nonlinear boundary conditions have been extensively studied

in recent decades, and there are some fundamental results in [1, 15, 16, 25]. Such kind of

problems, which involve the Stefan-Boltzmann interface condition, are usually derived from the

modeling of heat transfer process that can be found in the fields such as materials science,

geophysics, engineering and so on. The problems studied here arise from the procedure of

the steel-making, where the steel is heated and melt in the container built with composite

materials. Sometimes, corrosions will appear on the inside surface of the container, and the

detection of them turns out to be an important objective for both the theory and the application.

The additional information for detecting the corrosions is the thermal observation data on the

outside surface of the container. Mathematically, the problems can be treated as boundary

determination problems.

Similar problems have been studied by Banks, Kojima and Winfree [5, 6], where the non-

destructive evaluation methods in thermal tomography are used to characterize structural flaws

(e.g. corrosion, cracks, etc.) which may not be detectable by visual inspection. Besides, some

interesting theoretical results have been developed, for instance, the uniqueness theory by Bryan

and Caudill [9] and by Chapko, Kress and Yoon [10], the logarithmic stability by Vessella [24]

and by Canuto, Rosset and Vessella [12]. Reconstruction methods for the heat equation have

been proposed by Banks, Kojima and Winfree [5, 6] in the case where Ω is a rectangle, Chapko,
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Kress and Yoon [10] where domain Ω is the unit disk, and Bryan and Caudill [7, 8] where Ω is a

strip. Recently, Bryan and Caudill also considered the inverse Cauchy problem in n dimensions

and developed a Newton-like algorithm (see [4]).

Different from the works we mentioned above, here we consider the heat transfer problem

with the Stefan-Boltzmann boundary conditions. The Stefan-Boltzmann law comes from the

black-body radiation theory, which describes the nonlinear heat transfer phenomenon of the

high temperature materials. The purpose for using the nonlinear conditions is to characterize

the discontinuity of the temperature across the interfaces of the multi-layered domain. The

nature of discontinuity is discovered by the experiments data from the thermal sensors in the

applications, and has been verified by our numerical simulations. Yang, Yamamoto and Cheng

have provided some theoretical results for such kind of heat transfer problem in one-dimensional

case (see [26]), and we intend to extend the results into a multi-dimensional situation in this

paper. Additionally, we will introduce the corresponding inverse problem in later sections,

which is a boundary determination problem arising from the practical need in industry.

In our previous work of [20], we focused on the numerical methods of this boundary de-

termination problem. We provided a stable numerical scheme for the forward problem, which

is used to simulate the heat transfer process in composite materials with Stefan-Boltzmann

conditions; the numerical results showed the accordance between the mathematical modeling

and the practical observations. Besides, we also proposed an effective reconstruction method

for determining the inside boundary (where the corrosions appear) with the Cauchy data on

the outside surface; more importantly, the initial value was set to be unknown for the inverse

problem which is from practical requirement. The numerical results showed that these algo-

rithms are applicable. In [13], we proposed the Robin-Robin domain decomposition methods

combining with the monotone method to decouple the nonlinear interface and boundary condi-

tion. The monotone properties are proven for both the multiplicative and the additive domain

decomposition methods.

In this paper, we mainly study the mathematical theories for this kind of heat transfer

problem. For the forward problem, which describes the heat transfer process in composite ma-

terials with Stefan-Boltzmann conditions in three dimensional case, we prove its well-posedness

nature; especially, we focus on the existence and the uniqueness of the solution to the problem.

Then for the corresponding inverse problem, which is described as a boundary determination

problem here, we provide a uniqueness theorem for it. And we mention that our uniqueness

result for the inverse problem does not require the knowledge of the initial value, which accords

with the requirements of the industry applications and the numerical methods we developed in

[20].

The paper is organized as follows. In Section 2, we introduce the mathematical formulations

of both the forward problem and the inverse problem. In Section 3, the well-posedness of the

forward problem is studied. In Section 4, the uniqueness of the inverse problem is obtained.

The conclusions are given in Section 5.

2 Mathematical Formulation

The problem is discussed in the bounded domain Ω ∈ R
3, which is shown in Figure 1. The
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Figure 1 Ω = Ω1 ∪ Ω2 ∪ Ω3

mathematical model is described as

∂tu1(x, t) = α1∆u1(x, t), x ∈ Ω1, t ∈ (0, T ), (2.1)

∂tu2(x, t) = α2∆u2(x, t), x ∈ Ω2, t ∈ (0, T ), (2.2)

∂tu3(x, t) = α3∆u3(x, t), x ∈ Ω3, t ∈ (0, T ), (2.3)

where ∂Ωi is C1 continuous, i = 1, 2, 3, and ∂t denotes the derivative ∂
∂t

. The boundary

conditions and interface conditions are defined as follows

u1(x, t) = uM , x ∈ Γ0, (2.4)

− λ1∂n1u1(x, t) = σ1(u
4
1(x, t) − u4

2(x, t)), x ∈ Γ1, (2.5)

λ1∂n1u1(x, t) = −λ2∂n2u2(x, t), x ∈ Γ1, (2.6)

− λ2∂n2u2(x, t) = σ2(u
4
2(x, t) − u4

3(x, t)), x ∈ Γ2, (2.7)

λ2∂n2u2(x, t) = −λ3∂n3u3(x, t), x ∈ Γ2, (2.8)

− λ3∂n3u3(x, t) = σ3(u
4
3(x, t) − u4

A), x ∈ Γ3, (2.9)

where nj is the outward unit normal of Ωj , ∂nj
denotes the normal derivative ∂

∂nj
, and αj > 0,

λj > 0, σj > 0, uM , uA > 0 are constants for j = 1, 2 and 3. The initial value is set as

u(x, 0) = a(x), x ∈ Ω1 ∪ Ω2 ∪ Ω3, (2.10)

and we assume the compatibility condition for a(x),





a(x) ∈ C2+κ(Ω1 ∪ Ω2 ∪ Ω3), κ ∈ (0, 1),

a(x) > 0, x ∈ (Ω1 ∪ Ω2 ∪ Ω3),

a(x) = uM , x ∈ Γ0,

−λ3∂n3a(x) = σ3(a
4(x) − u4

A), x ∈ Γ3.

(2.11)

And all the following results are discussed in the class of

u1 ∈ C1([0, T ], C2(Ω1)), u2 ∈ C1([0, T ], C2(Ω2)), u3 ∈ C1([0, T ], C2(Ω3)). (2.12)

Now we introduce our forward problems and inverse problems.
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Problem 2.1 (Forward Problems) Assume that (2.1)–(2.12) are satisfied. Determine

u(x, t) = (u1, u2, u3), if a(x), uM , uA, Ωi, αi, λi, σi, i = 1, 2, 3 are given.

Problem 2.2 (Inverse Problems) Assume that (2.1)–(2.12) are satisfied. Determine u(x, t)

= (u1, u2, u3) and Γ0, if uM , uA, Ω1, Ω2, αi, λi, σi, i = 1, 2, 3 and the Dirichlet condition on

Γ3 are given,

u3(x, t) = f(x, t), x ∈ Γ3, t ∈ (0, T ). (2.13)

Actually, with (2.9) and (2.13), we have the Neumann condition on Γ3 for Problem 2.2,

∂n3u3(x, t) = g(x, t) = −
σ3

λ3
(u4

3(x, t) − u4
A), x ∈ Γ3.

Therefore, the inverse problem we consider here is to reconstruct the inside boundary Γ0 by

the Cauchy data on the outside boundary Γ3, while the initial value a(x) is not given.

We list our main results of the paper. For Problem 2.1 (forward problems), we have the

following theorems.

Theorem 2.1 (Global Uniqueness and Existence in Time) Assume that a(x) satisfies

(2.11). Let T be arbitrarily given. Then there exists a unique solution u(x, t) of the problem

(2.1)–(2.10) within the class of (2.12).

And for Problem 2.2 (inverse problems), we have the result as follows.

Theorem 2.2 (Uniqueness) Assume that T = ∞, and there exist constants M,γ0 > 0,

such that ‖f‖, ‖g‖ ≤ M , ‖f − uM‖ ≥ γ0. If there exist {Γ0, u(x, t)} and {Γ̃0, ũ(x, t)} which

satisfy Problem 1.2 respectively, then Γ0 = Γ̃0 and u(x, t) = ũ(x, t) must hold.

3 Well-Posedness of the Mathematical Model

3.1 Green’s functions

In subdomain Ω1, the Green’s function G1(x, t; ξ, τ) is the solution of the following problem

(see [14, 22]):

− ∂τG1 − α1∆ξG1 = δ(ξ − x)δ(τ − t),

G1(x, t; ξ, τ) = 0, ξ ∈ Γ0,

∂n1G1(x, t; ξ, τ) = 0, ξ ∈ Γ1,

G1 = 0, τ > t.

By this Green’s function, we have

u1(x, t) = −

∫ t

0

∫

Ω1

(G1(∂τu1 − α1∆ξu1) + u1(∂τG1 + α1∆ξG1))dξdτ. (3.1)

On the other hand, we have

−

∫ t

0

∫

Ω1

(G1∂τu1 + u1∂τG1)dξdτ =

∫

Ω1

G1(x, t; ξ, 0)u1(ξ, 0)dξ =

∫

Ω1

G1(x, t; ξ, 0)a(ξ)dξ,
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as well as

−

∫ t

0

∫

Ω1

α1(−G1∆ξu1 + u1∆ξG1)dξdτ

= α1

∫ t

0

∫

∂Ω1

(G1∂n1u1 − u1∂n1G1)dξdτ

= α1

∫ t

0

∫

Γ1

(G1∂n1u1 − u1∂n1G1)dξdτ + α1

∫ t

0

∫

Γ0

(G1∂n1u1 − u1∂n1G1)dξdτ

= α1

∫ t

0

∫

Γ1

G1∂n1u1dξdτ − α1

∫ t

0

∫

Γ0

uM∂n1G1dξdτ.

Here Green’s formula is used in the first equality. Combining with (3.1), we get the expression

u1(x, t) = α1

∫ t

0

∫

Γ1

G1∂n1u1dξdτ − α1

∫ t

0

∫

Γ0

uM∂n1G1dξdτ +

∫

Ω1

G1(x, t; ξ, 0)a(ξ)dξ

≡ ũ1(x, t) + α1

∫ t

0

∫

Γ1

G1(x, t; ξ, τ)f1(ξ, τ)dξdτ, (3.2)

where ũ1 is

ũ1(x, t) =

∫

Ω1

G1(x, t; ξ, 0)a(ξ)dξ − α1

∫ t

0

∫

Γ0

uM∂n1G1dξdτ.

Similarly, Gi (i = 2, 3) are the Green’s functions on Ωi respectively,

− ∂τGi − αi∆ξGi = δ(ξ − x)δ(τ − t),

∂ni
Gi(x, t; ξ, τ) = 0, ξ ∈ Γi−1,

∂ni
Gi(x, t; ξ, τ) = 0, ξ ∈ Γi,

Gi = 0, τ > t,

and let

ũi(x, t) =

∫

Ωi

Gi(x, t; ξ, 0)a(ξ)dξ.

Then u2(x, t) can be expressed as

u2(x, t) = ũ2(x, t) + α2

∫ t

0

∫

Γ2

G2(x, t; ξ, τ)f2(ξ, τ)dξdτ

− α2

∫ t

0

∫

Γ1

G2(x, t; ξ, τ)
λ1

λ2
f1(ξ, τ)dξdτ, (3.3)

u3(x, t) = ũ3(x, t) + α3

∫ t

0

∫

Γ3

G3(x, t; ξ, τ)f3(ξ, τ)dξdτ

− α3

∫ t

0

∫

Γ2

G3(x, t; ξ, τ)
λ2

λ3
f1(ξ, τ)dξdτ. (3.4)

Now let fi be the normal derivatives on the interfaces Γi respectively, i.e., fi(x, t) = ∂ni
ui(x,

t), for x ∈ Γi. According to the definition of fi(x, t) and the interface conditions (2.5), (2.7),

(2.9), we obtain

f1 =
σ1

λ1
(u4

2(x, t) − u4
1(x, t))
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=
σ1

λ1

{[
ũ2 + α2

∫ t

0

∫

Γ2

G2f2dξdτ − α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f1dξdτ

]4

−
[
ũ1 + α1

∫ t

0

∫

Γ1

G1f1dξdτ
]4}

, (3.5)

f2 =
σ2

λ2
(u4

3(x, t) − u4
2(x, t))

=
σ2

λ2

{[
ũ3 + α3

∫ t

0

∫

Γ3

G3f3dξdτ − α3

∫ t

0

∫

Γ2

G3
λ2

λ3
f2dξdτ

]4

−
[
ũ2 + α2

∫ t

0

∫

Γ2

G2f2dξdτ − α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f1dξdτ

]4}
, (3.6)

f3 =
σ3

λ3
(u4
A − u4

3(x, t))

=
σ3

λ3

{
u4
A −

[
ũ3 + α3

∫ t

0

∫

Γ3

G3f3dξdτ − α3

∫ t

0

∫

Γ2

G3
λ2

λ3
f2dξdτ

]4}
. (3.7)

Based on the integral equations, the local uniqueness of the solution will be proved by fixed

point theorem.

3.2 Local uniqueness and existence in time

Proposition 3.1 Assume that a(x) satisfies (2.11). Then there exists a sufficiently small

t0 > 0, such that problem (2.1)–(2.10) has a unique solution u(x, t) = (u1, u2, u3) with u1 ∈

C1([0, t0], C
2(Ω1)), u2 ∈ C1([0, t0], C

2(Ω2)), and u3 ∈ C1([0, t0], C
2(Ω3)).

We need the following lemma to prove Proposition 3.1.

Lemma 3.1 For all ǫ > 0, there exists t0 ∈ (0, 1) such that
∫ t0

0

Gi(x, t; ξ, τ)dτ < ǫ, i = 1, 2, 3.

Proof It follows from [2, 11] that the Green’s function G(x, ξ, τ) satisfies the following

inequality

0 ≤ G(x, ξ, τ) ≤
C

τ
d
2

exp
(−|x− ξ|2

Cτ

)
,

where C is a constant, d represents the dimension, and x, ξ ∈ R
d. In our 3D case, d = 3,

therefore, we have
∫ t0

0

Gidτ ≤

∫ t0

0

C

τ
d
2

exp
(−|x− ξ|2

Cτ

)
dτ ≤ C1

∫ t0

0

C2

τ
3
2

exp
(
−
C2

τ

)
dτ

≤ C1

∫ t0

0

C2

τ2
exp

(
−
C2

τ

)
dτ = C1 exp

(
−
C2

τ

)∣∣∣
t0

0
= C1 exp

(
−
C2

t0

)
,

where C1 = C
C2

, C2 = min |x−ξ|2

C
. It is clear that exp(−C2

t0
) → 0 as t0 → 0+. Then the proof is

complete.

In order to use the fixed point theorem, we need one mapping relation. From (3.5)–(3.7),

we define the mapping K by

(f1, f2, f3) = K(f1, f2, f3),
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and define the set A as

A =
{
(f1, f2, f3)

∣∣∣ fi ∈ C(Ωi × [0, t]),
∥∥∥f1 −

σ1

λ1
(ũ4

2(x, t) − ũ4
1(x, t))

∥∥∥ ≤ N1,

∥∥∥f2 −
σ2

λ2
(ũ4

3(x, t) − ũ4
2(x, t))

∥∥∥ ≤ N2,
∥∥∥f3 −

σ3

λ3
(u4
A − ũ4

3(x, t))
∥∥∥ ≤ N3

}
,

where Ni > 0 are constants, and ‖ · ‖ denotes the norm in C(Ωi × [0, t]). We introduce some

notations to simplify the expressions

X = ũ2 + α2

∫ t

0

∫

Γ2

G2f2dξdτ − α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f1dξdτ,

Y = ũ1 + α1

∫ t

0

∫

Γ1

G1f1dξdτ,

X̃ = ũ2 + α2

∫ t

0

∫

Γ2

G2f̃2dξdτ − α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f̃1dξdτ,

Ỹ = ũ1 + α1

∫ t

0

∫

Γ1

G1f̃1dξdτ.

It can be shown that for arbitrarily small M̃ > 0, there exists t0 ∈ (0, 1), such that

max
{∥∥∥α2

∫ t

0

∫

Γ2

G2f2dξdτ
∥∥∥,

∥∥∥α2

∫ t

0

∫

Γ2

G2f̃2dξdτ
∥∥∥,

∥∥∥α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f1dξdτ

∥∥∥,
∥∥∥α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f̃1dξdτ

∥∥∥,
∥∥∥α1

∫ t

0

∫

Γ1

G1f1dξdτ
∥∥∥,

∥∥∥α1

∫ t

0

∫

Γ1

G1f̃1dξdτ
∥∥∥
}
< M̃

for 0 < t < t0. Since f1, f2, f̃1, f̃2 are bounded due to the definition of set A, we can conclude

the results above by Lemma 3.1. Therefore, we know that X , Y , X̃, Ỹ will be bounded by

some constant M > 0 when 0 < t < t0,

max{‖X‖, ‖Y ‖, ‖X̃‖, ‖Ỹ ‖} ≤M.

Similarly, for arbitrarily small M̃ > 0, there exists t0 ∈ (0, 1), such that for all 0 < t < t0

and fi, f̃i ∈ A,

max
{∥∥∥α2

∫ t

0

∫

Γ2

G2dξdτ
∥∥∥,

∥∥∥α2

∫ t

0

∫

Γ1

G2
λ1

λ2
dξdτ

∥∥∥,
∥∥∥α1

∫ t

0

∫

Γ1

G1dξdτ
∥∥∥
}
< M̃.

Lemma 3.2 If t ∈ (0, 1) is sufficiently small, then

(1) KA ⊆ A,

(2) there exists an h ∈ (0, 1), such that for all fi, f̃i ∈ A,

‖K(f1, f2, f3) −K(f̃1, f̃2, f̃3)‖ ≤ h‖(f1, f2, f3) − (f̃1, f̃2, f̃3)‖, (3.8)

i.e., K is a contraction mapping.

Proof Let 0 < t < t0. Firstly, we prove KA ⊆ A, and we just consider K(f1) since the

rest parts are similar. From the definition of K,

K(f1) =
σ1

λ1

{[
ũ2 + α2

∫ t

0

∫

Γ2

G2f2dξdτ − α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f1dξdτ

]4
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−
[
ũ1 + α1

∫ t

0

∫

Γ1

G1f1dξdτ
]4}

.

Then
∥∥∥K(f1) −

σ1

λ1
(ũ4

2(x, t) − ũ4
1(x, t))

∥∥∥

=
σ1

λ1

∥∥∥
[
ũ2 + α2

∫ t

0

∫

Γ2

G2f2dξdτ − α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f1dξdτ

]4

−
[
ũ1 + α1

∫ t

0

∫

Γ1

G1f1dξdτ
]4

− (ũ4
2 − ũ4

1)
∥∥∥

=
σ1

λ1

∥∥∥
[
α2

∫ t

0

∫

Γ2

G2f2dξdτ − α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f1dξdτ

]
(X + ũ2)(X

2 + ũ2
2)

− α1

∫ t

0

∫

Γ1

G1f1dξdτ(Y + ũ1)(Y
2 + ũ2

1)
∥∥∥

≤
σ1

λ1
[2M̃(M + ‖ũ2‖)(M

2 + ‖ũ2‖
2) + M̃(M + ‖ũ1‖)(M

2 + ‖ũ1‖
2)]

= M̃
σ1

λ1
[2(M + ‖ũ2‖)(M

2 + ‖ũ2‖
2) + (M + ‖ũ1‖)(M

2 + ‖ũ1‖
2)].

Since M̃ can be arbitrarily small, and all other parts are bounded, it is obvious that there exists

a t0 ∈ (0, 1) such that, for all 0 < t < t0,
∥∥∥K(f1) −

σ1

λ1
(ũ4

2(x, t) − ũ4
1(x, t))

∥∥∥ ≤ N1.

As for K(f2) and K(f3), we can make the similar conclusion, while it is easy to know that

K(fi) ∈ C(Ωi × [0, t]). Thus the first part of Lemma 3.2 is proved.

Next, we prove the second part of Lemma 3.2.

‖K(f1) −K(f̃1)‖ =
∥∥∥σ1

λ1

{[
ũ2 + α2

∫ t

0

∫

Γ2

G2f2dξdτ − α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f1dξdτ

]4

−
[
ũ1 + α1

∫ t

0

∫

Γ1

G1f1dξdτ
]4}

−
σ1

λ1

{[
ũ2 + α2

∫ t

0

∫

Γ2

G2f̃2dξdτ − α2

∫ t

0

∫

Γ1

G2
λ1

λ2
f̃1dξdτ

]4

−
[
ũ1 + α1

∫ t

0

∫

Γ1

G1f̃1dξdτ
]4}∥∥∥

=
σ1

λ1

∥∥∥
(
α2

∫ t

0

∫

Γ2

G2(f2 − f̃2)dξdτ − α2

∫ t

0

∫

Γ1

G2
λ1

λ2
(f1 − f̃1)dξdτ

)

(X + X̃)(X2 + X̃2) − α1

∫ t

0

∫

Γ1

G1(f1 − f̃1)dξdτ(Y + Ỹ )(Y 2 + Ỹ 2)
∥∥∥

≤
σ1

λ1

{
‖f2 − f̃2‖

∥∥∥α2

∫ t

0

∫

Γ2

G2dξdτ
∥∥∥‖X + X̃‖‖X2 + X̃2‖

+ ‖f1 − f̃1‖
∥∥∥α2

∫ t

0

∫

Γ1

G2
λ1

λ2
dξdτ

∥∥∥‖X + X̃‖‖X2 + X̃2‖

+ ‖f1 − f̃1‖
∥∥∥α1

∫ t

0

∫

Γ1

G1dξdτ
∥∥∥‖Y + Ỹ ‖‖Y 2 + Ỹ 2‖

}
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≤
σ1

λ1
(8M̃M3‖f1 − f̃1‖ + 4M̃M3‖f2 − f̃2‖)

= C1‖f1 − f̃1‖ + C2‖f2 − f̃2‖,

where C1 = 8M̃M3 σ1

λ1
, and C2 = 4M̃M3 σ1

λ1
. As for ‖K(f2)−K(f̃2)‖ and ‖K(f3)−K(f̃3)‖, the

following results can be argued similarly:

‖K(f2) −K(f̃2)‖ ≤ C3‖f1 − f̃1‖ + C4‖f2 − f̃2‖ + C5‖f3 − f̃3‖,

‖K(f3) −K(f̃3)‖ ≤ C6‖f2 − f̃2‖ + C7‖f3 − f̃3‖.

Therefore we can obtain

‖K(f1, f2, f3) −K(f̃1, f̃2, f̃3)‖ ≤ h‖(f1, f2, f3) − (f̃1, f̃2, f̃3)‖.

Then we can conclude that K is a contraction mapping (see [23]).

Now we can complete our proof of Proposition 3.1. With Lemma 3.2 and the Banach

fixed point theorem, we know that there exists a unique f = (f1, f2, f3) such that Kf = f ,

fi ∈ C(Ωi × [0, t0]). By the Volterra integral equations, we can improve the regularity of fj,

fj ∈ C1+κ(Ωj × [0, t0]), j = 1, 2, 3, κ ∈ (0, 1).

Then by Theorems 5.2 and 5.3 (see [21, pp. 317–323]), we can conclude that there exists

a unique solution u = (u1, u2, u3) to problem (2.1)–(2.10) with ui ∈ C1([0, t0], C
2(Ωi)) for

i = 1, 2, 3. The proof of Proposition 3.1 is completed.

By the local existence and uniqueness result of Proposition 3.1, we can directly obtain the

global uniqueness.

Proposition 3.2 Assume that a(x) satisfies (2.11). Let T be arbitrarily given. If the

solution u(x, t) to the problem (2.1)–(2.10) exists, then it should be unique within the class of

(2.12).

Proof Assume contrarily that the theorem is not right. Then we will have two different

solutions u(x, t), ũ(x, t) satisfying the problem (2.1)–(2.10). We can also make the assumption

that there exists a t1 ≥ 0, such that u(x, t) 6= ũ(x, t) while t > t1. Then we can set the initial

value of the time interval to t1, and make the following conclusion with Theorem 2.1: there

exists a t0 ∈ (0, 1), such that the problem (2.1)–(2.10) has a unique solution in t ∈ [t1, t1 + t0],

which is obviously a contradiction to our previous assumptions.

3.3 Global existence in time

By the maximum principle of the parabolic equation (see [22]), we have the following lemmas.

Lemma 3.3 Let ui satisfy (2.1)–(2.10). Then ui attains its maximum or minimum value

only on the parabolic boundary, i.e.,

(1) for u1(x, t) : {x ∈ Γ0}, {x ∈ Γ1}, or u1|t=0 = a(x),

(2) for u2(x, t) : {x ∈ Γ1}, {x ∈ Γ2}, or u2|t=0 = a(x),

(3) for u3(x, t) : {x ∈ Γ2}, {x ∈ Γ3}, or u3|t=0 = a(x).
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Lemma 3.4 Let ui satisfy (2.1)–(2.10). Then

u1|x∈Γ0 , u1|x∈Γ1 , u2|x∈Γ1 , u2|x∈Γ2 , u3|x∈Γ2 , u3|x∈Γ3 > 0.

Proof Assume contrarily that the lemma is not correct. From the continuity of u1,u2,u3,

at least one or more ui(xj, tk) on the corresponding boundary would equal zero at some time tk.

Set t0 = min{tk}. Without loss of generality, we consider the boundary Γ1, and assume that

there is one point x ∈ Γ1 which gives ui(x, t0) = 0. Then we have the following three cases:

(1) u1(x, t0) equals zero while u2(x, t0) does not. Then by the equality from (2.5),

−λ1∂n1u1(x, t0) = σ1(u
4
1(x, t0) − u4

2(x, t0)), x ∈ Γ1.

We get ∂n1u1(x, t0) > 0. By the continuity of u1, there must exist x1 ∈ Ω1, such that

u1(x1, t0) < 0, which is a contradiction to Lemma 3.3.

(2) u2(x, t0) equals zero while u1(x, t0) does not. Similarly, as the first case, it is impossible.

(3) u1(x, t0) and u2(x, t0) both equal zero. From the equalities we used above, we can

derive ∂n1u1(x, t0) = 0, but by the Strong Maximum Principle for parabolic equation we know

that it is impossible.

Therefore, u1|x∈Γ1 and u2|x∈Γ1 cannot equal zero. And we can similarly prove that u1|x∈Γ0 ,

u2|x∈Γ2 , u3|x∈Γ2 , u3|x∈Γ3 cannot equal zero. Since a(x) > 0 and ui are continuous, we can

conclude that they must be positive.

Lemmas 3.3 and 3.4 lead us to the following proposition, which is essential for the theorem

of global existence.

Proposition 3.3 Let u = (u1, u2, u3) satisfy (2.1)–(2.10), and T > 0 be arbitrarily fixed.

Then we have

max{‖u1‖C(Ω1×[0,T ]), ‖u2‖C(Ω2×[0,T ]), ‖u3‖C(Ω3×[0,T ])}

≤ max{‖a‖C(Ω1∪Ω2∪Ω3), |uM |, |uA|}.

Proof Set M1 = max
{

max
x∈Ω1∪Ω2∪Ω3

a(x), uM , uA

}
. We first prove

uj(x, t)≤M1, x ∈ Ωj , t ∈ [0, T ], j = 1, 2, 3. (3.9)

Set µ < 0 and vj(x, t) = eµt(uj(x, t) −M1). Then for i = 1, 2 and 3, we have

∂tvi(x, t) = αi∆vi(x, t) + µvi(x, t),

and (v1, v2, v3) remains in the class defined by (2.12). Assume that vj attains the maximum at

x0 ∈ Ω1 ∪ Ω2 ∪ Ω3, t0 ∈ (0, T ]. By Lemma 3.3, we know

max
j=1,2,3

max
x∈Ωj

t∈[0,T ]

vj(x, t) =

{
v1(x0, t0) or v2(x0, t0), if x0 ∈ Γ1,

v2(x0, t0) or v3(x0, t0), if x0 ∈ Γ2.

Define M0 = max
j=1,2,3

max
x∈Ωj

t∈[0,T ]

vj(x, t). If M0 ≤ 0, then vj(x, t) = eµt(uj(x, t) −M1) ≤ 0, we

have proved (3.9). If M0 > 0, without loss of generality, we assume x0 ∈ Γ1, then
{
−λ1∂n1v1(x0, t0) = σ1e

µt0(u4
1(x0, t0) − u4

2(x0, t0)),

λ1∂n1v1(x0, t0) = −λ2∂n2v2(x0, t0).
(3.10)
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If M0 = v1(x0, t0), then ∂n1v1(x0, t0) ≥ 0 since v1( · , t0) attains maximum in Ω1 at x0. Now

if ∂n1v1(x0, t0) > 0, then u1(x0, t0) < u2(x0, t0) due to (3.10) and Lemma 3.4. This implies

v1(x0, t0) < v2(x0, t0), which is a contradiction since v1(x0, t0) is the maximum. Otherwise, if

∂n1v1(x0, t0) = 0, we have ∂tv1(x0, t0) ≥ 0 and ∆v2(x0, t0) ≤ 0, moreover, µv1(x0, t0) < 0. It

is also impossible since

0 ≤ ∂tv1(x0, t0) = α1∆v1(x0, t0) + µv1(x0, t0) < 0.

Similarly, it is impossible that M0 = v2(x0, t0). We can get the same conclusion for x0 ∈ Γ2.

Thus, M0 cannot be positive, so that (3.9) is proved.

Next, set

m1 = min
{

min
x∈Ω1∪Ω2∪Ω3

a(x), uM , uA

}
,

with µ < 0 and wj(x, t) = eµt(uj(x, t) −m1). We can argue similarly to see that

uj(x, t)≥m1, x ∈ Ωj , t ∈ [0, T ], j = 1, 2, 3. (3.11)

Combining this inequality with (3.9), the proof of proposition is complete.

Now we finish the proof of Theorem 2.1.

Proof of Theorem 2.1 With Propositions 3.1–3.3, by referring to [16, Theorem 3], we can

conclude that there exists a unique solution to problem (2.1)–(2.10) within the class of (2.12),

when a(x) satisfies (2.11).

4 Uniqueness of Inverse Problem

4.1 Some lemmas

In this subsection, we introduce several important lemmas for the proof of our theorem. For

the constant α > 0, denote the operator L ≡ ∂t − α∆. In this section, the convergence v → u

is in the sense of L2 norm, i.e., ‖u− v‖L2 = 0.

Lemma 4.1 For any bounded domain Ω ∈ R
3 with piecewise smooth boundary ∂Ω, if

function u(x, t) satisfies

Lu = 0, x ∈ Ω, t > 0,

u(x, t) = C, x ∈ ∂Ω, t > 0,

where C is a constant, then we have

u(x, t) → C, x ∈ Ω, t→ ∞.

The result of Lemma 4.1 can be derived by the theorem of eigenvalues and eigenfunctions

of the operator, or one can refer to [15].

Next, we introduce a Carleman estimate for parabolic equations, obtained by Imanuvilov

and Yamamoto (see [17, Theorem 2.1]).
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Let (t,x) ∈ Q = (0, T ) × Ω. We assume that the boundary ∂Ω is sufficiently smooth.

Let ω ⊂ Ω be an arbitrarily fixed subdomain, Qω = (0, T ) × ω and ω0 ⊂ ω be an arbitrary

fixed subdomain of Ω such that ω0 ⊂ ω. Then there exists a function ψ ∈ C2(Ω) such that

ψ(x) > 0,x ∈ Ω, ψ|∂Ω = 0, and |∇ψ(x)| > 0 for x ∈ Ω \ ω0. The weight functions ϕ(t,x) and

α(t,x) are

ϕ(t,x) =
eλψ(x)

t(T − t)
and α(t,x) =

eλψ(x) − e2λ‖ψ‖C(Ω)

t(T − t)
, (4.1)

where λ > 0 is a parameter. Consider the initial boundary value problem

Lu = 0, (t,x) ∈ Q, (4.2)

u|∂Ω = 0, u(0, · ) = u0. (4.3)

Lemma 4.2 (Carleman Estimate) Let functions ϕ and α be defined by (4.1). Then there

exists a number λ̂ > 0 such that for arbitrary λ ≥ λ̂, we can choose s0(λ) > 0 satisfying: there

exists a constant C1 > 0 such that for each s ≥ s0(λ) the solution u ∈ L2(Q) to the problem

(4.2) and (4.3) satisfies the following inequality:

∫

Q

((sϕ)1−2ℓ|∇u|2 + (sϕ)3−2ℓu2)e2sαdxdt ≤ C1

∫

Qω

(sϕ)3−2ℓu2e2sαdxdt, (4.4)

where ℓ ∈ [0, 1], constant C1 is dependent continuously on λ and independent of s.

Remark 4.1 We would like to mention that the functions ϕ, α defined by (4.1) satisfy the

following for any k ≥ 0,

lim
t↓0

ϕk(t,x)e2sα(t,x) = lim
t↑T

ϕk(t,x)e2sα(t,x) = 0.

With Lemma 4.2, we can derive the following proposition.

Proposition 4.1 Let domain ω ⊂ Ω, function u(x, t) satisfy

Lu = 0, x ∈ Ω, t > 0.

If we have the following estimation in ω,

u(x, t) → C, x ∈ ω, t→ ∞,

where C is a constant, then we can conclude the following in Ω,

u(x, t) → C, x ∈ Ω, t→ ∞.

Proof Set υ(x, t) = u(x, t) − C. Then υ(x, t) satisfies

∂tυ(x, t) = α∆υ(x, t), x ∈ Ω, t > 0.

By the assumptions, we know that for any ε > 0, there exists T0 > 0 such that for any

t > T0 the function u(x, t) satisfies

‖u(x, t) − C‖L2(ω) < ε, x ∈ ω, t > T0,
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which means

‖υ(x, t)‖L2(ω) < ε, x ∈ ω, t > T0.

For the simplicity of the proof, we set t̂ = t− T0 and have

‖υ(x, t̂ )‖L2(ω) < ε, x ∈ ω, t̂ > 0.

By Lemma 4.2, we get
∫

Q

((sϕ)1−2ℓ|∇υ|2 + (sϕ)3−2ℓυ2)e2sαdxdt̂ ≤ C1

∫

Qω

(sϕ)3−2ℓυ2e2sαdxdt̂,

where Q = (0, T ) × Ω, Qω = (0, T ) × ω, ℓ ∈ [0, 1] and T > 0 is an arbitrary constant. We can

choose ℓ = 1 above, and then obtain the following since s, ϕ > 0,
∫

Q

sϕυ2e2sαdxdt̂ ≤ C1

∫

Qω

sϕυ2e2sαdxdt̂. (4.5)

Now we estimate both sides of the inequality (4.5) respectively, and we consider the right-

hand side (RHS) first. Let C2 = C1se
λ‖ψ‖

C(Ω) , −M = 2s(eλ‖ψ‖C(Ω) − e2λ‖ψ‖
C(Ω)). Then M > 0

and we get

RHS = C1

∫

Qω

sϕυ2e2sαdxdt̂

= C1

∫

ω

∫ T

0

s
eλψ(x)

t̂(T − t̂ )
υ2(x, t̂ ) exp

{
2s

eλψ(x) − e2λ‖ψ‖C(Ω)

t̂(T − t̂ )

}
dxdt̂

≤ C1s

∫

ω

∫ T

0

eλψ(x)

t̂(T − t̂ )
υ2(x, t̂ ) exp

{
2s

eλψ(x) − e2λ‖ψ‖C(Ω)

t̂(T − t̂ )

}
dxdt̂

≤ C1se
λ‖ψ‖C(Ω)

∫

ω

∫ T

0

1

t̂(T − t̂ )
υ2(x, t̂ ) exp

{
2s

eλ‖ψ‖C(Ω) − e2λ‖ψ‖C(Ω)

t̂(T − t̂ )

}
dxdt̂

= C2

∫

ω

∫ T

0

1

t̂(T − t̂ )
υ2(x, t̂ ) exp

{
−

M

t̂(T − t̂ )

}
dxdt̂.

For the function f( t̂ ) = 1bt(T−bt )
exp

{
− Mbt(T−bt )

}
in the integral part, it is clear that f( t̂ ) > 0

holds true for any t̂ ∈ (0, T ). Besides, we know from Lemma 4.2 that

limbt↓0 f( t̂ ) = limbt↑T f( t̂ ) = 0.

And further analysis shows

f ′( t̂ ) =
(T − 2t̂ )(M + t̂( t̂− T ))

t̂3(T − t̂ )3
exp

{
−

M

t̂(T − t̂ )

}
.

Since s ≥ s0(λ) in Lemma 4.2 can be arbitrarily chosen, we can find an M > 0 which is

sufficiently large to ensure that M + t̂( t̂− T ) > 0 holds true for any t̂ ∈ (0, T ). Then we get




f ′( t̂ ) > 0, t̂ ∈
(
0,
T

2

)
,

f ′( t̂ ) = 0, t̂ =
T

2
,

f ′( t̂ ) < 0, t̂ ∈
(T

2
, T

)
.
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Therefore the range of function f(t̂ ) is (0, 4
T 2 e−

4M

T2 ) in (0, T ), where its maximum is reached

when t̂ = T
2 . Thus,

RHS ≤ C2

∫

ω

∫ T

0

1

t̂(T − t̂ )
υ2(x, t̂ ) exp

{
−

M

t̂(T − t̂ )

}
dxdt̂

= C2

∫

ω

∫ T

0

f( t̂ )υ2(x, t̂ )dxdt̂

≤
4C2

T 2
e−

4M

T2

∫

ω

∫ T

0

υ2(x, t̂ )dxdt̂.

Next, we consider the left-hand side (LHS) of inequality (4.5). Denote N = −2s(1 −

e2λ‖ψ‖C(Ω)). Then N > 0 and we have

LHS =

∫

Q

sϕυ2e2sαdxdt̂

=

∫

Ω

∫ T

0

s
eλψ(x)

t̂(T − t̂ )
υ2(x, t̂ ) exp

{
2s

eλψ(x) − e2λ‖ψ‖
C(Ω)

t̂(T − t̂ )

}
dxdt̂

≥

∫

Ω

∫ T

0

s
1

t̂(T − t̂ )
υ2(x, t̂ ) exp

{
2s

1 − e2λ‖ψ‖C(Ω)

t̂(T − t̂ )

}
dxdt̂

= s

∫

Ω

∫ T

0

1

t̂(T − t̂ )
υ2(x, t̂ ) exp

{
−

N

t̂(T − t̂ )

}
dxdt̂

≥ s

∫

Ω

∫ 3
4T

1
4T

1

t̂(T − t̂ )
υ2(x, t̂ ) exp

{
−

N

t̂(T − t̂ )

}
dxdt̂.

Similarly, for the function g(t̂ ) = 1bt(T−bt ) exp
{
− Nbt(T−bt )} in the integral part, f(t̂ ) > 0 holds

true for any t̂ ∈ (0, T ). We also have limbt↓0 g(t̂ ) = limbt↑T g(t̂ ) = 0 and

g′(t̂ ) =
(T − 2t̂ )(N + t̂( t̂− T ))

t̂3(T − t̂ )3
exp

{
−

N

t̂(T − t̂ )

}
.

In the same way, since s ≥ s0(λ) in Lemma 4.2 can be arbitrarily chosen, we can find an N > 0

which is sufficiently large to ensure that N + t̂( t̂− T ) > 0 holds true for any t̂ ∈ (0, T ). Then

we get





g′( t̂ ) > 0, t̂ ∈
(
0,
T

2

)
,

g′( t̂ ) = 0, t̂ =
T

2
,

g′( t̂ ) < 0, t̂ ∈
(T

2
, T

)
.

Therefore, the range of function g(t̂ ) is
[

16
3T 2 e−

16N

3T2 , 4
T 2 e−

4N

T2
]

in [T4 ,
3T
4 ], where its maximum is

reached when t̂ = T
2 and its minimum is reached when t̂ = T

4 ,
3T
4 . Thus

LHS ≥ s

∫

Ω

∫ 3
4T

1
4T

1

t̂(T − t̂ )
υ2(x, t̂ ) exp

{
−

N

t̂(T − t̂ )

}
dxdt̂
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= s

∫

Ω

∫ 3
4T

1
4T

g(t̂ )υ2(x, t̂ )dxdt̂

≥
16s

3T 2
e−

16N

3T2

∫

Ω

∫ 3
4T

1
4T

υ2(x, t̂ )dxdt̂.

Combining the estimations above for both sides of inequality (4.5), while choosing a suffi-

ciently large s ≥ s0(λ) in Lemma 4.2, we have

16s

3T 2
e−

16N

3T2

∫

Ω

∫ 3
4T

1
4T

υ2(x, t̂ )dxdt̂ ≤
4C2

T 2
e−

4M

T2

∫

ω

∫ T

0

υ2(x, t̂ )dxdt̂.

Let C3 = (3C2

4s e
(16N−12M)

3T2 )
1
2 . By taking square root on both sides above we have

‖υ(x, t̂ )‖L2(( T
4 ,

3T
4 )×Ω) ≤ C3‖υ(x, t̂ )‖L2((0,T )×ω).

Since

‖υ(x, t̂ )‖2
L2((0,T )×ω) =

∫ T

0

∫

ω

υ2dxdt̂ =

∫ T

0

‖υ(x, t̂ )‖2
L2(ω)dt̂ ≤ Tε2,

letting C4 = C3T
1
2 , we get

‖υ(x, t̂ )‖L2(( T
4 ,

3T
4 )×Ω) ≤ C4ε. (4.6)

Recalling the variable replacement t̂ = t−T0 we have made in the beginning part, (4.6) tells

us that, for any ε > 0, there exists T0 > 0 such that ‖υ(x, t)‖L2((T0+
T
4 ,T0+

3T
4 )×Ω) ≤ C4ε when

t > T0. Because ε can be arbitrarily chosen, we can conclude

υ(x, t) → 0, x ∈ Ω, t→ ∞.

By the definition of v, we have

u(x, t) → C, x ∈ Ω, t→ ∞.

The proof of Proposition 4.1 is completed.

4.2 Uniqueness proof of inverse problems

With the lemmas and proposition in last subsection, we are now able to provide the unique-

ness of the inverse problems.

Proof of Theorem 2.2 First, we have the equality on Γ3 ⊂ ∂Ω3,

u3(x, t) = ũ3(x, t), ∂n3u3(x, t) = ∂n3 ũ3(x, t), x ∈ Γ3.

By the uniqueness of the Cauchy problem (Holmgren theorem, refer to [18, 19]), we have

the following results in Ω3,

u3(x, t) = ũ3(x, t), x ∈ Ω3,
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which already prove the uniqueness of u(x, t) in Ω3. Moreover, we get

u3(x, t) = ũ3(x, t), ∂n3u3(x, t) = ∂n3 ũ3(x, t), x ∈ Γ2.

With the boundary conditions (2.7) and (2.8) on interface Γ2, we know

u2(x, t) = ũ2(x, t), ∂n2u2(x, t) = ∂n2 ũ2(x, t), x ∈ Γ2.

Repeating the process above, we can prove the uniqueness of u(x, t) in Ω2, and we obtain

the following on Γ1,

u1(x, t) = ũ1(x, t), ∂n1u1(x, t) = ∂n1 ũ1(x, t), x ∈ Γ1.

Suppose contrarily that boundary Γ0 6= Γ̃0. Then by the uniqueness of Cauchy problem we

have

u1(x, t) = ũ1(x, t), x ∈ (Ω1 \ Ω̃0) ⊂ Ω1.

Since u1(x, t), ũ1(x, t) satisfy (2.4) on Γ0, Γ̃0 respectively, we know

u1(x, t) = uM , x ∈ ∂(Ω̃0 \ Ω0).

Then we can conclude with Lemma 4.1 that

u1(x, t) → uM , x ∈ (Ω̃0 \ Ω0) ⊂ Ω1, t→ ∞.

And by Proposition 4.1, we derive

u1(x, t) → uM , x ∈ Ω1, t→ ∞.

Thus, we obtain the following on Γ1,

u1(x, t) → uM , ∂n1u1(x, t) → 0, x ∈ Γ1, t→ ∞.

Again, with the boundary conditions (2.5) and (2.6) on interface Γ1, we get

u2(x, t) → uM , ∂n2u2(x, t) → 0, x ∈ Γ1, t→ ∞.

Assume that u2(x, t) satisfies

∂tu2(x, t) = α2∆u2(x, t), x ∈ Ω2, t ∈ (0, T ),

u2(x, t) = uM , ∂n2u2(x, t) = 0, x ∈ Γ1, t ∈ (0, T ).

Then by the uniqueness of Cauchy problem, we know that u2 must satisfy

u2 = uM , x ∈ Ω2, t ∈ (0, T ).

Due to the work of Bell [3, p. 785], the similarity between u2 and u2 is defined in the sense

that

ε2 = ‖u2 − uM‖2
H1(Γ1)

+ ‖∂n2u2 − 0‖2
L2(Γ1) + ‖(∂tu2 − α2∆u2) − 0‖2

L2(Ω2)
,
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and there exists a domain Dα ⊂ Ω2 which is contiguous with Γ1, such that u2 and u2 satisfy

the following estimate inequality:

∫∫

Dα

(u2 − u2)
2dxdt ≤ c

{
ε2(1−α)M2α +

2M2

log(M
2

ε2
)

} 1

log(M
2

ε2
)
, 0 < α ≤ 1.

Since ε→ 0 as t→ ∞, it indicates that

u2(x, t) → uM , x ∈ Dα ⊂ Ω2, t → ∞.

Thus, by Proposition 4.1 we get

u2(x, t) → uM , x ∈ Ω2, t→ ∞.

Therefore we have the following results on Γ2,

u2(x, t) → uM , ∂n2u2(x, t) → 0, x ∈ Γ2, t→ ∞.

Similarly, repeating the analysis process in Ω3, we can finally derive

u3(x, t) → uM , x ∈ Γ3, t→ ∞,

which is clearly a contradiction to the assumption ‖f − uM‖ = ‖u3(x, t) − uM‖ ≥ γ0 > 0.

u(x, t) = ũ(x, t) can be obtained by the uniqueness results of the Cauchy problems if the

domain is uniquely determined.

5 Conclusion

In this paper, we mainly focus on the heat transfer problem with Stefan-Boltzmann con-

ditions on the boundaries or interfaces, which is considered in the multi-dimensional case and

in composite material situation. We provide the theorem of global existence and uniqueness in

time for the forward problem, as well as the uniqueness theorem for the related inverse problem

of boundary determination.
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