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1 Introduction

It is well-known that the set of all locally holomorphic automorphisms of the hyperquadric

Sn+1 = {(z, w) ∈ Cn × C | Im w = |z|2} is the group of SU(n + 1, 1) given by fractional linear

transformations. This group plays an important role in the study of spherical CR manifold (cf.

[19]). It is interesting and important to determine all locally holomorphic automorphisms of a

real submanifold in Cn (cf. [7]). A criterion for the finite dimensionality of the automorphism

group of a hypersurface was given by Stanton [17, 18]. Baouendi, Ebenfelt and Rothschild

[3, 4] also studied the condition under which the Lie algebra of locally defined infinitesimal

CR automorphisms of a real submanifold is finite dimensional. On the other hand, Beloshapka

[5] obtained a description of the Lie algebra of infinitesimal automorphisms of any quadric Q.

Shevchenko [16] constructed canonical forms for nondegenerate CR-quadrics of codimension two

in a complex space and gave a complete description of the algebra of infinitesimal holomorphic

automorphisms. Ežov and Schmalz [9] realized arbitrary automorphism of a non-degenerate

(n, 2)-quadric by a rational map of degree not more than two. For higher codimension, it is

known that each (3, 3)-quadric possessing non-linear automorphisms is equivalent to one of

eight quadrics (cf. [13, 14]), whose automorphism groups are determined in [1].

For higher degree model surface, Beloshapka considered the surface Q3 in the space Cn ⊕

Cn2

⊕ Ck with coordinates (z ∈ Cn, w2 ∈ Cn2

, w3 ∈ Ck), given by the equations Imw2 =

〈z, z〉, Im w3 = 2 ReΦ(z, z), where 〈z, z〉 is an n2 scalar linearly independent Hermitian form,

and Φ(z, z) is a homogeneous C
k-valued form of degree three, and gave the structure of the

automorphism algebra of the cubic (cf. [7] and references therein). See [6, 15] for results for

the polynomial models of even higher codimension and degree. It is also interesting to consider
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the case when the domain and the image of a holomorphic mapping are different, e.g. from Bn

to BN , n 6= N . Huang, Ji and Xu classified the proper holomorphic mappings f : Bn → BN

between the unit balls in Cn and CN with N ≥ n ≥ 1 (cf. [10, 11]).

All models above are homogeneous, i.e., the holomorphic automorphisms act on them tran-

sitively. Moreover, these models can be given the structure of nilpotent groups. Kolář [12] gave

a complete description of local automorphism groups for Levi degenerate hypersurfaces of finite

type in C2. Here we consider a class of non-homogeneous rigid hypersurfaces in CN+1.

Let M be a real rigid hypersurface through the origin in CN+1, i.e., there are coordinates

(z1, · · · , zN , w) such that M is given by an equation of the following form:

Im w = F (z, z). (1.1)

Consider the non-homogenous rigid hypersurfaces of the form

Γ =
{

(z1, · · · , zN , w) ∈ C
N+1

∣
∣
∣ Im w =

N∑

j=1

|zj|
2nj

}

, (1.2)

where nj ∈ Z+ and nj > 1.

By a germ at the origin of holomorphic automorphism of Γ, we mean a local biholomorphism

of CN+1 defined in a neighborhood U of the origin that maps U ∩ Γ into Γ. We denote by

Aut(Γ, 0) the set of germs at the origin of holomorphic automorphisms of Γ. Also denote by

hol(Γ, 0) the set of real-analytic infinitesimal CR automorphisms of Γ at the origin, i.e., hol(Γ, 0)

consists of all germs at the origin of vector fields X tangent to Γ such that the local 1-parameter

group of transformations generated by X are biholomorphic transformations of C
N+1 preserving

Γ. From [2, Proposition 12.4.22], hol(Γ, 0) can be written in the following form:

hol(Γ, 0) =
{

X(z, w) = 2 Re
( N∑

µ=1

fµ(z, w)
∂

∂zµ

+ g(z, w)
∂

∂w

)}

, (1.3)

where X is tangent to Γ, fµ(z, w) and g(z, w) are holomorphic functions near the origin and

z = (z1, z2, · · · , zN). By Aut0 Γ we denote the set of germs in Aut(Γ, 0) preserving the origin.

Denote by hol0 Γ the set of vector fields in hol(Γ, 0) vanishing at the origin.

In this paper, we obtain an explicit formula of hol(Γ, 0).

Theorem 1.1 Suppose X = 2 Re
[ N∑

µ=1
fµ(z, w) ∂

∂zµ
+ g(z, w) ∂

∂w

]

∈ hol(Γ, 0). Then locally

in a neighborhood of the origin, the functions fµ, g can be written in the following form:







fµ(z, w) =
(n1

nµ

α1 + iβµ

)

zµ +
n1

nµ

α2zµw,

g(z, w) = n1α2w
2 + 2n1α1w + α3,

(1.4)

where αk, βµ ∈ R, k = 1, 2, 3, µ = 1, · · · , N .

We also get the connected component of the identity transformation of Aut(Γ, 0), which is

denoted by Autid(Γ, 0).
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Theorem 1.2 (F1, · · · , FN , G) ∈ Autid(Γ, 0) if and only if functions Fµ and G can be

written in the following form:

Fµ(z, w) =
λ

n1

nµ eiθµzµ

(1 + γ1w)
1

nµ

, G(z, w) =
λ2n1w

1 + γ1w
+ γ2, (1.5)

where λ ∈ R+, γ1, γ2, θµ ∈ R, µ = 1, · · · , N .

We will prove Theorem 1.1 in Section 2. In Section 3, we obtain a representation of Aut(Γ, 0),

and get the connected component of the identity transformation of Aut(Γ, 0) by using this

representation.

2 Real-Analytic Infinitesimal CR Automorphisms of Γ

By definition (1.2), Γ is defined by the equation

ρ(z, w, z, w) =

N∑

j=1

z
nj

j z
nj

j −
w − w

2i
= 0. (2.1)

Since any X = 2 Re
[ N∑

µ=1
fµ(z, w) ∂

∂zµ
+ g(z, w) ∂

∂w

]

∈ hol(Γ, 0) is tangent to Γ, we have

Re
[

ig
(

z, u + i

N∑

j=1

|zj|
2nj

)

+ 2

N∑

µ=1

nµznµ−1
µ znµ

µ fµ

(

z, u + i

N∑

j=1

|zj |
2nj

)]

= 0 (2.2)

for w = u+i
N∑

j=1

|zj|
2nj and (z, u) ∈ U , where U is a small neighborhood of the origin in C

N ×R.

Proof of Theorem 1.1 The theorem is proved by solving equation (2.2) in the class

of formal power series. This method was originally used by Beloshapka [7] for homogeneous

models.

Let X = 2 Re
[ N∑

µ=1
fµ(z, w) ∂

∂zµ
+g(z, w) ∂

∂w

]

∈ hol(Γ, 0). By Taylor’s expansion with respect

to variable w at the point w = u, we have

fµ

(

z, u + i

N∑

j=1

|zj|
2nj

)

=

∞∑

m=0

f (m)
µ (z, u)

im
( N∑

j=1

|zj |
2nj

)m

m!
,

g
(

z, u + i

N∑

j=1

|zj|
2nj

)

=

∞∑

m=0

g(m)(z, u)

im
( N∑

j=1

|zj |
2nj

)m

m!
,

(2.3)

where f
(m)
µ (z, u), g(m)(z, u) indicate differentiation with respect to w. Since fµ(z, u) and g(z, u)

are holomorphic in z, we can write

fµ(z, u) =

∞∑

k=0

fµk(z, u), g(z, u) =

∞∑

k=0

gk(z, u), (2.4)
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where

fµk(tz, u) = tkfµk(z, u), gk(tz, u) = tkgk(z, u).

Now substitute (2.3) and (2.4) into (2.2), we get

0 =
i

2

∞∑

k=0

[

gk(z, u) + ig′k(z, u)∆ −
1

2
g′′k (z, u)∆2 −

i

6
g′′′k (z, u)∆3 + · · ·

]

−
i

2

∞∑

k=0

[

gk(z, u) − i g′k(z, u)∆ −
1

2
g′′k (z, u)∆2 +

i

6
g′′′k (z, u)∆3 + · · ·

]

+ n1z
n1−1
1 zn1

1

∞∑

k=0

[

f1k(z, u) + if ′

1k(z, u)∆ −
1

2
f ′′

1k(z, u)∆2 + · · ·
]

+ n1z
n1

1 zn1−1
1

∞∑

k=0

[

f1k(z, u) − i f ′

1k(z, u)∆ −
1

2
f ′′

1k(z, u)∆2 + · · ·
]

...

+ nNznN−1
N znN

N

∞∑

k=0

[

fNk(z, u) + if ′

Nk(z, u)∆ −
1

2
f ′′

Nk(z, u)∆2 + · · ·
]

+ nNznN

N znN−1
N

∞∑

k=0

[

fNk(z, u) − i f ′

Nk(z, u)∆ −
1

2
f ′′

Nk(z, u)∆2 + · · ·
]

, (2.5)

where ∆ =
N∑

j=1

|zj |
2nj , “ ′ ” indicates differentiation with respect to w, and “· · · ” denotes the

other terms of zαzβ with |β| ≥ 3. Here α = (α1, · · · , αN ), β = (β1, · · · , βN ) are multi-indices

with αj , βj ≥ 0 and zα := zα1

1 zα2

2 · · · zαN

N , zβ := z
β1

1 z
β2

2 · · · zβN

N , |β| :=
N∑

j=1

βj . In the following,

we call a term is of type (k, l) if it has the form
∑

|α|=k

|β|=l

hβ
α(u)zαzβ for some function hβ

α(u).

Let us collect terms of type (k, l). Firstly, we consider the terms of type (k, 0) in (2.5). Note

that gk(z, u) and fµk(z, u) are terms of type (k, 0) and gk(z, u), fµk(z, u) are terms of type

(0, k). Consider terms of type (m, 0), m > 0 for example. Since nj > 1, j = 1, · · · , N , terms in

the third to the last rows in (2.5) contain the factors zβ with |β| ≥ 1, and in the second row all

terms but (0, 0) include the factors zβ (|β| ≥ 1), therefore terms of type (m, 0) only appear in

the first row. Furthermore, in this row, the terms concerning g
(δ)
k (z, u) (δ ≥ 1) also contain the

factors zβ with |β| ≥ 1. So they only exist in the first summation in this row, i.e., i
2gm(z, u).

Therefore, on the right-hand side in equation (2.5),

(0, 0) term : − Im g0(z, u),

(m, 0) term :
i

2
gm(z, u), m > 0.

So we have

Im g0(z, u) = 0, gm(z, u) = 0, m > 0. (2.6)

To determine fµk(z, u) (µ = 1, · · · , N), let us consider all terms of type (kµ, nµ) (kµ ≥ nµ − 1)

which contain z
nµ−1
µ z

nµ−1
µ on the right-hand side of (2.5),

(nµ − 1, nµ) term : nµznµ−1
µ znµ

µ fµ0(z, u),
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(nµ, nµ) term : −
1

2
(g′0(z, u) + g′0(z, u))|zµ|

2nµ

+ nµfµ1(z, u)znµ−1
µ znµ

µ + nµfµ1(z, u)znµ
µ znµ−1

µ

= −g′0(z, u)|zµ|
2nµ + nµfµ1(z, u)znµ−1

µ znµ
µ (2.7)

+ nµfµ1(z, u)znµ
µ znµ−1

µ ,

(k + nµ − 1, nµ) term : −
1

2
g′k−1(z, u)|zµ|

2nµ + nµfµk(z, u)znµ−1
µ znµ

µ

= nµfµk(z, u)znµ−1
µ znµ

µ , k ≥ 2.

We have used (2.6) in (2.7). Therefore,

fµ0(z, u) = 0, fµk(z, u) = 0, k ≥ 2, (2.8)

g′0(z, u)|zµ|
2 − nµfµ1(z, u)zµ − nµfµ1(z, u)zµ = 0, µ = 1, · · · , N. (2.9)

To determine fµ1(z, u), we consider all terms of type (2nµ, 2nµ) which contain z
2nµ−1
µ z

2nµ−1
µ in

(2.5), i.e.,

0 = −
i

4
(g′′0 (z, u) − g′′0 (z, u) )|zµ|

4nµ + inµf ′

µ1(z, u)znµ−1
µ znµ

µ |zµ|
2nµ

− inµf ′

µ1(z, u)znµ
µ znµ−1

µ |zµ|
2nµ . (2.10)

Then by (2.6), we get

f ′

µ1(z, u)zµ − f ′

µ1(z, u)zµ = 0. (2.11)

Now let us collect all terms of type (3nµ, 3nµ) which contain z
3nµ−1
µ z

3nµ−1
µ in (2.5). We have

0 =
1

12
(g′′′0 (z, u) + g′′′0 (z, u) )|zµ|

6nµ −
1

2
nµf ′′

µ1(z, u)znµ−1
µ znµ

µ |zµ|
4nµ

−
1

2
nµf ′′

µ1(z, u)znµ
µ znµ−1

µ |zµ|
4nµ . (2.12)

Therefore,

1

3
g′′′0 (z, u)|zµ|

2 − nµf ′′

µ1(z, u)zµ − nµf ′′

µ1(z, u)zµ = 0, µ = 1, · · · , N. (2.13)

From (2.9), (2.11) and (2.13), we get

g′′′0 (z, u) = 0, f ′′

µ1(z, u) = 0, µ = 1, · · · , N. (2.14)

It is easy to see from (2.9) that each fµ1(z, u), µ = 1, · · · , N , can not contain the factor zk

with k 6= µ. Now we conclude that






f ′′

µ1(z, u) = 0, µ = 1, · · · , N,

fµk(z, u) = 0, k 6= 1,

Im g0(z, u) = 0, g′′′0 (z, u) = 0,

gm(z, u) = 0, m 6= 0.

(2.15)

Since fµ(z, w) and g(z, w) are holomorphic functions near the origin, and fµ1(z, u) (µ =

1, · · · , N) cannot contain the factor zk with k 6= µ, together with (2.15), we find that fµ

and g must be written in the following form:

fµ(z, w) = fµ1(z, w) = aµzµ + bµzµw, µ = 1, · · · , N,

g(z, w) = g0(z, w) = γ + βw + αw2
(2.16)
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for some α, β, γ ∈ R, aµ, bµ ∈ C.

Since X = 2 Re
[ N∑

µ=1
fµ(z, w) ∂

∂zµ
+ g(z, w) ∂

∂w

]

∈ hol(Γ, 0) is tangent to Γ, fµ and g given

by (2.16) satisfy (2.2), i.e.,

Re
[

i(γ + βw + αw2) + 2
N∑

µ=1

nµznµ−1
µ znµ

µ (aµzµ + bµzµw)
]

= 0 (2.17)

for w = u + i
N∑

j=1

|zj |
2nj and (z, u) ∈ U . Then

0 = Re
[

iγ + iβ
(

u + i

N∑

j=1

|zj |
2nj

)

+ iα
(

u + i

N∑

j=1

|zj |
2nj

)2

+ 2
N∑

µ=1

nµ

(

aµ + bµu + ibµ

N∑

j=1

|zj|
2nj

)

|zµ|
2nµ

]

=

N∑

µ=1

[

(2nµ Re aµ − β)|zµ|
2nµ + (2nµ Re bµ − 2α)u|zµ|

2nµ

− 2nµ Im bµ|zµ|
2nµ

( N∑

j=1

|zj |
2nj

)]

. (2.18)

Thus,

β = 2nµ Re aµ, α = nµ Re bµ, Im bµ = 0, µ = 1, · · · , N. (2.19)

Let α1, α2, α3 and βµ ∈ R denote Rea1, b1, γ and Im aµ, µ = 1, · · · , N , respectively. Then

aµ =
n1

nµ

α1 + iβµ, bµ =
n1

nµ

α2, µ = 1, · · · , N. (2.20)

Thus, (1.4) follows from (2.16) and (2.20). This proves Theorem 1.1.

3 Locally Holomorphic Automorphisms of Γ

Let (z, w) 7→ (F1t(z, w), · · · , FNt(z, w), Gt(z, w)) be a one-parameter group generated by

X = 2 Re
[ N∑

µ=1
fµ(z, w) ∂

∂zµ
+ g(z, w) ∂

∂w

]

∈ hol(Γ, 0) with Fµ0(z, w) = zµ, G0(z, w) = w, i.e.,

Fµt and Gt are solutions to the initial problem of the following ordinary differential equation,







dFµt

dt
= fµ(F1t, · · · , FNt, Gt) =

(n1

nµ

α1 + iβµ

)

Fµt +
n1

nµ

α2FµtGt,

dGt

dt
= g(F1t, · · · , FNt, Gt) = n1α2G

2
t + 2n1α1Gt + α3,

Fµ0(z, w) = zµ,

G0(z, w) = w,

(3.1)

where αk, βµ ∈ R, k = 1, 2, 3, µ = 1, · · · , N . Recall that hol0 Γ is the set of vector fields in

hol(Γ, 0) vanishing at the origin.



Holomorphic Automorphisms of Rigid Hypersurfaces 207

Proposition 3.1 The transformation (F1, · · · , FN , G) : Γ 7→ Γ generated by any X =

2 Re
[ N∑

µ=1
fµ(z, w) ∂

∂zµ
+g(z, w) ∂

∂w

]

∈ hol0 Γ can be written in the following form:

Fµ(z, w) =
λ

n1

nµ eiξµzµ

(1 + γw)
1

nµ

, G(z, w) =
λ2n1w

1 + γw
, (3.2)

where λ ∈ R+, γ, ξµ ∈ R, µ = 1, · · · , N .

Proof Since X ∈ hol0 Γ vanishes at the origin, fµ, g can be written as (1.4) with α3 = 0.

Now let us solve the ordinary equation (3.1) with α3 = 0.

( I ) When α1 = 0, the second equation in (3.1) can be written as

dGt

dt
= n1α2G

2
t (3.3)

with G0(z, w) = w. So we have

Gt(z, w) =
w

1 − n1α2tw
. (3.4)

Then substitute (3.4) into the first equation in (3.1) to get

dFµt

dt
=

(

iβµ +
n1

nµ

α2Gt

)

Fµt =
(

iβµ +
n1α2w

nµ(1 − n1α2tw)

)

Fµt. (3.5)

It is easy to see that

Fµt(z, w) =
eiβµtzµ

(1 − n1α2tw)
1

nµ

. (3.6)

Denote ξµ = βµt, δ1 = −n1α2t. Then

Fµt(z, w) =
eiξµzµ

(1 + δ1w)
1

nµ

, Gt(z, w) =
w

1 + δ1w
, (3.7)

where ξµ, δ1 ∈ R.

(II) When α1 6= 0, the second equation in (3.1) can be written as

dGt

dt
= n1α2G

2
t + 2n1α1Gt. (3.8)

By multiplying G−2
t on both sides in (3.8) and setting X = G−1

t , we have

dX

dt
= −2n1α1X − n1α2 (3.9)

with initial data X(0) = w−1. Now solving this linear ordinary equation of first order, we

obtain

X =
( 1

w
+

α2

2α1

)

e−2n1α1t −
α2

2α1
. (3.10)

Therefore,

Gt = X−1 =
2α1e

2n1α1tw

2α1 + α2(1 − e2n1α1t)w
. (3.11)
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Then substitute (3.11) into the first equation in (3.1) to get

dFµt

dt
=

(n1

nµ

α1 + iβµ +
n1

nµ

α2Gt

)

Fµt

=
[n1

nµ

α1 + iβµ +
n1

nµ

2α1α2e
2n1α1tw

2α1 + α2(1 − e2n1α1t)w

]

Fµt (3.12)

with Fµ0(z, w) = zµ. So we have

Fµt(z, w) =
(2α1)

1

nµ e
(

n1

nµ
α1+iβµ)t

zµ

[2α1 + α2(1 − e2n1α1t)w]
1

nµ

. (3.13)

Since α1 6= 0, we get

Fµt(z, w) =
e
(

n1

nµ
α1+iβµ)t

zµ

[1 + α2

2α1

(1 − e2n1α1t)w]
1

nµ

, Gt(z, w) =
e2n1α1tw

1 + α2

2α1

(1 − e2n1α1t)w
. (3.14)

Denote λ = eα1t ∈ R+ and δ2 = α2

2α1

(1 − e2nα1t) ∈ R. Then

Fµt(z, w) =
λ

n1

nµ eiξµzµ

(1 + δ2w)
1

nµ

, Gt(z, w) =
λ2n1w

1 + δ2w
. (3.15)

From (3.7) and (3.15) we have (3.2). The proposition is proved.

Let M ⊂ Cn be a CR submanifold and p0 ∈ M . Then M is said to be of finite type m at

p0 if the tangent space of M at point p0 is spanned by commutators of length m of sections of

T 1,0M ⊕ T 0,1M and is not spanned by commutators of length up to m − 1. By of finite type

we mean that the type at each point p ∈ M is less than a fixed positive integer.

The complex tangential subbundles T 1,0Γ of the CR manifold Γ is spanned by

Zj =
∂

∂zj

+ 2injz
nj−1
j z

nj

j

∂

∂w
, j = 1, · · · , N, (3.16)

and T 0,1Γ = T 1,0Γ, which is spanned by Zj = ∂
∂zj

− 2injz
nj

j z
nj−1
j

∂
∂w

, j = 1, · · · , N . We have

[Zj , Zj ] = −2in2
j |zj |

2nj−2T,

[Zj , [Zj , Zj ]] = −2in2
j(nj − 1)z

nj−2
j z

nj−1
j T,

[[Zj , [Zj , Zj ]], Zj ] = 2in2
j(nj − 1)2|zj|

2nj−4T,

...

[[Zj , · · · , [Zj, [Zj
︸ ︷︷ ︸

nj

, Zj ]], · · · , ], Zj
︸ ︷︷ ︸

nj

] = (−1)nj 2i(nj !)
2T,

(3.17)

where T = ∂
∂w

+ ∂
∂w

.

By taking α1 = α2 = 0 in (3.1), it is easily to see that (F1(z, w), · · · , FN (z, w), G(z, w))

with Fµ and G satisfying

Fµ(z, w) = zµeiξµ , G(z, w) = w + t1, (3.18)

where ξµ, t1 ∈ R, µ = 1, · · · , N , is a biholomorphic transformation from Γ to Γ. Let T denote

the group of such transformations.
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Proposition 3.2 Aut(Γ, 0) = T ◦ Aut0 Γ.

Proof Suppose that H is an arbitrarily chosen element in Aut(Γ, 0). We claim that H

maps (0, · · · , 0) to (0, · · · , 0, t1) with t1 ∈ R. Let

P := {(0, · · · , 0, t) | t ∈ R}. (3.19)

Clearly, P ⊂ Γ. By (3.17), we see that Γ is of type 2 at the points (z1, · · · , zN , w) with
N∑

µ=1
|zµ| 6=

0, and is of type n = 2 min{n1, · · · , nN} > 2 at the points in P . Since the type is preserved

under locally biholomorphic transformations, there is no biholomorphic transformation mapping

(0, · · · , 0) to (z1, · · · , zN , w) with
N∑

µ=1
|zµ| 6= 0. Consequently, for H ∈ Aut(Γ, 0),

H(0, · · · , 0) = (0, · · · , 0, t1)

for some t1 ∈ R. Set H1 = (F1, · · · , FN , G) with Fµ, G given by (3.18). Then H1 is a

biholomorphic automorphism of Γ mapping (0, · · · , 0) to (0, · · · , 0, t1). So we have

H = H1 ◦ H2, (3.20)

with H2 := H−1
1 ◦ H ∈ Aut(Γ, 0). Since

H2(0) = H−1
1 ◦ H(0) = H−1

1 ◦ H1(0) = 0,

therefore, H2 ∈ Aut0 Γ. Hence,

Aut(Γ, 0) ⊂ T ◦ Aut0 Γ. (3.21)

Obviously, T ◦ Aut0 Γ ⊂ Aut(Γ, 0). The proposition is proved.

Proof of Theorem 1.2 From (3.17) we can see that the real-analytic hypersurface Γ is of

finite type. Hence, by [8, Corollary 1.6], Aut0 Γ is a Lie group. It is obvious that hol0 Γ is its Lie

algebra. Therefore, hol0 Γ can generate a connected component of Aut0 Γ. From Proposition

3.1, the transformation generated by any X = 2 Re
[ N∑

µ=1
fµ(z, w) ∂

∂zµ
+ g(z, w) ∂

∂w

]

∈ hol0 Γ can

be written as

Tλξγ(z, w) = (F1(z, w), F2(z, w), · · · , FN (z, w), G(z, w))

=
( λeiξ1z1

(1 + γw)
1

n1

,
λ

n1

n2 eiξ2z2

(1 + γw)
1

n2

, · · · ,
λ

n1

nN eiξN zN

(1 + γw)
1

nN

,
λ2n1w

1 + γw

)

(3.22)

for some λ ∈ R+, ξµ, γ ∈ R, µ = 1, · · · , N . Consequently,

T = {Tλξγ | λ ∈ R+, ξ = (ξ1, · · · , ξN ) ∈ R
N , γ ∈ R}

is a connected component of Aut0 Γ. Then by Proposition 3.2, T ◦T is a connected component

of Aut(Γ, 0), whose elements can be written as (1.5). Clearly, the identity transformation is in

this component. This proves Theorem 1.2.
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Remark 3.1 We use Γ⋆ to denote (1.2) with ni1 = · · · = nim
= 1, where 1 ≤ il ≤ N .

We can also determine the real analytic infinitesimal automorphism of Γ⋆ near the origin and

the connected component of the unit of Aut0 Γ⋆, which is more complicated and will appear

elsewhere.
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