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Gap Property of Bi-Lipschitz Constants of Bi-Lipschitz
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Abstract For a given self-similar set E ⊂ R
d satisfying the strong separation condition,

let Aut(E) be the set of all bi-Lipschitz automorphisms on E. The authors prove that
{f ∈ Aut(E) : blip(f) = 1} is a finite group, and the gap property of bi-Lipschitz constants

holds, i.e., inf{blip(f) 6= 1:f ∈ Aut(E)} > 1, where lip(g) = sup
x,y∈E

x 6=y

|g(x)−g(y)|
|x−y|

and blip(g) =

max(lip(g), lip(g−1)).
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1 Introduction

Lipschitz equivalence of fractal is a very interesting topic, for example, Cooper and Pignatro

[1], Falconer and Marsh [3–5], David and Semmes [2], Xi [13, 14] studied the shape of Cantor

set, nearly Lipschitz equivalence, BPI equivalence and quasi-Lipschitz equivalence.

For self-similar sets, we suppose that {Si : Rd → Rd}N
i=1 are similitudes with contractive

ratios {ri}N
i=1 ⊂ (0, 1), and let K =

N
⋃

i=1

Si(K) be the corresponding self-similar set. If
N
⋃

i=1

Si(K)

is a pairwise disjoint union, we say that K satisfies the strong separation condition. Let Aut(K)

denote the set of all bi-Lipschitz automorphisms on K. For g ∈ Aut(K), let blip(g) be the bi-

Lipschitz constant of g defined by

blip(g) = max(lip(g), lip(g−1)),

where lip(f) = sup
x,y∈K

x 6=y

|f(x)−f(y)|
|x−y| . Notice blip(g) ≥ 1 for any g ∈ Aut(K).

In [9], Lyapina discussed bi-Lipschitz automorphisms on Cantor set Cr = (rCr)∪(rCr+1−r),

which is a self-similar set with ratio r ∈ (0, 1
2 ), Then, in [9, 15], it was proved that {f ∈ Aut(Cr) :

blip(f) = 1} = {f1(x) ≡ x, f2(x) ≡ 1 − x}, and

inf{blip(f) > 1 : f ∈ Aut(Cr)} = min
[1

r
,

1 − 2r3 − r4

(1 − 2r)(1 + r + r2)

]

> 1,

Manuscript received September 8, 2008. Revised April 14, 2009. Published online February 2, 2010.
∗Institute of Mathematics, Zhejiang Wanli University, Ningbo 315100, Zhejiang, China.
E-mail: xilf@zwu.edu.cn

∗∗Department of Mathematics, South China University of Technology, Guangzhou 510641, China.
E-mail: xiongyng@gmail.com

∗∗∗Project supported by the National Natural Science Foundation of China (Nos. 10671180, 10571140,
10571063, 10631040, 11071164) and the Morningside Center of Mathematics.



212 L. F. Xi and Y. Xiong

which means that there is a gap in {blip(f) : f ∈ Aut(Cr)} near 1.

Furthermore, in [7], the complete set M with suitable Moran-like structure in R1 was studied

to get the gap property of bi-Lipschitz constants: there is a constant c0 > 1 such that for any

f ∈ Aut(M), blip(f) = 1 or blip(f) ≥ c0.

In this paper, we obtain the following results.

Theorem 1.1 Suppose that the self-similar set K satisfies the strong separation condition.

Then {f ∈ Aut(K) : f is isometric} is a finite group.

Example 1.1 Theorem 1.1 may be not valid for self-similar sets in other spaces. For exam-

ple, when considering the symbolic system Σ2 = {0, 1}∞, which is a self-similar set satisfying

the strong separation condition and equipped with a metric d satisfying d(x1x2 · · · , y1y2 · · · ) =

2−min{i: xi 6=yi} for x1x2 · · · 6= y1y2 · · · , we have

D∗ ⊂ {f ∈ Aut(K) : f is isometric}, (1.1)

where D∗ = {bijection f : Σ2 → Σ2 | for any n ≥ 0 and any u1 · · ·un ∈ {0, 1}n, there exists

v1 · · · vn ∈ {0, 1}n such that f([u1 · · ·un]) = [v1 · · · vn]}. Here [w] is the cylinder with respect to

the word w. It is easy to check D∗ ⊂ {f ∈ Aut(K) : f is isometric}, however #D∗ = ∞ and

thus {f ∈ Aut(K) : f is isometric} is an infinite group.

Example 1.2 For any integer n ≥ 2, there is a self-similar set Kn ⊂ R2 = C such that

#{f ∈ Aut(Kn) : f is isometric} ≥ n. In fact, for a given n, let zj = e
2πj

n for j = 0, · · · , n − 1.

Then G = {z0, · · · , zn−1} = {z ∈ C : zn = 1} is a group. Suppose that Tj : C → C is

defined by Tj(z) = r(z − zi), where r ∈ (0, 1) is small enough. Then we get a self-similar set

Kn =
n−1
⋃

j=0

TjKn. Let fi(z) = ziz (j = 0, · · · , n − 1 ). We conclude

{fi}
n−1
i=0 ⊂ {f ∈ Aut(Kn) : f is isometric}.

So we only need to verify fiKn = Kn, i.e., fiKn =
n−1
⋃

j=0

Tj(fiKn). In fact zizj = zi+j (mod n),

we have

fiKn = fi

n−1
⋃

j=0

TjKn =
n−1
⋃

j=0

zir(Kn − zj) =
n−1
⋃

j=0

r(ziKn − zi+j (mod n))

=

n−1
⋃

t=0

r(fiKn − zt) =

n−1
⋃

t=0

Tj(fiKn).

Theorem 1.2 Suppose that the self-similar set K satisfies the strong separation condition.

Then

b∗ := inf{blip(f) : f ∈ Aut(K) and blip(f) > 1} > 1,

and there is an automorphism f ∈ Aut(K) such that blip(f) = b∗.

In [7], there is a Moran set E constructed such that

b∗ := inf{blip(f) : f ∈ Aut(E) and blip(f) > 1} = 1. (1.2)

Moreover, it is easy to see that equation (1.2) holds for any subset E of the Euclidean space

which contains non-empty interior.
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Let O(K) = {f ∈ Aut(K) : f is isometric}. The following property is useful:

blip(hg) = blip(gh) = blip(g), (1.3)

whenever h ∈ O(K) and g ∈ Aut(K).

We give an equivalence relation ∼ on Aut(K) such that f ∼ g if and only if f ◦g−1 ∈ O(K).

Then we can induce a metric on Aut(K)/ ∼ such that

d([f1], [f2]) = log(blip(f1f
−1
2 )), (1.4)

where [f ] is the equivalence relation with respect to f, and d([f1], [f2]) is independent of the

choice of f1 and f2, since for any f ′
i = hi ◦ fi ∈ [fi] with hi ∈ O(K) for i = 1, 2, we have

blip(f ′
1f

′−1
2 )) = blip(h1f1f

−1
2 h−1

2 ) due to (1.3).

Then we get the following theorem.

Theorem 1.3 Suppose that K is a self-similar set satisfying the strong separation condi-

tion. Then d([f ], [g]) defined by (1.4) is a metric on Aut(K)/ ∼ and (Aut(K)/ ∼, d) is discrete,

and Aut(K) is also discrete under the following metric:

D(f, g) = log[blip(fg−1)] + sup
x∈K

|f(x) − g(x)|.

The paper is organized as follows. Section 2 is a preliminary including Proposition 2.1 and

Lemma 2.4, which are key points of this paper. Section 3 is devoted to proving Theorems

1.1–1.3. Finally, we give the proof of Proposition 2.1 in Appendix.

2 Preliminaries

Suppose that the similitudes {Si : Rd → Rd}N
i=1 with contractive ratios {ri}N

i=1 ⊂ (0, 1) are

given. Let K =
N
⋃

i=1

Si(K) be the corresponding self-similar set satisfying the strong separation

condition

Si(K) ∩ Sj(K) = ∅, whenever i 6= j.

Definition 2.1 For a given subset X of the Euclidean space Rd, let dim(X) be the dimension

of the smallest hyperplane containing X. Here set dim(X) = d if X can not be contained in any

hyperplane of R
d.

Lemma 2.1 Suppose that H is the smallest hyperplane containing K, or H = Rd if K can

not be contained in any hyperplane of Rd. Then SiH = H for each i.

Proof Suppose on the contrary that SiH 6= H. We have SiK ⊂ SiK ∩ K ⊂ SiH ∩ H,

where dim(SiH ∩ H) < dim(H) = dim(K). Then dim(SiK) < dim(K), which contradicts the

fact that dim(SiK) = dim(K) due to the similarity of Si.

Without loss of generality, we assume K ⊂ R
d and

dim(K) = d. (2.1)

Otherwise, we get

Ti = Si|H with K =
N
⋃

i=1

TiK,
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where H is the smallest hyperplane containing K. Here by Lemma 2.1, we have Ti : H → H

where H is isometric to the Euclidean space Rdim(H).

The key points of the paper are the isometric extension theorem on Euclidean spaces (see

Proposition 2.1) and Lemma 2.4 as its deduction. Proposition 2.1 may be known, but we will

give its proof in Appendix only for the self-containedness of this paper.

Proposition 2.1 Suppose that A ⊂ Rd with dim(A) = d. Then each isometry on A exists

a unique isometric extension on Rd.

Under assumption (2.1), we get the following lemma from Proposition 2.1.

Lemma 2.2 For any isometry f on K ⊂ Rd with dim(K) = d, there is a linear and

isometric extension F : Rd → Rd such that F |K = f and F (x) = Qx + b where Qd×d is an

orthogonal matrix and b ∈ Rd.

Here some compact property of the function space Aut(K) under the uniform topology is

needed. For c ≥ 1, let

Autc(K) :=
{

f ∈ Aut(K) : blip(f) ≤ c
}

.

Lemma 2.3 Suppose that {fi}i≥1 ⊂ Autc(K) and {fi} converges uniformly to a limit

function f . Then f ∈ Autc(K) and

blip(f) ≤ lim inf
i→∞

blip(fi). (2.2)

As a result, the set Autc(K) is compact with respect to the uniform topology.

Proof It is easy to check that f ∈ Autc(K) and blip(f) ≤ lim inf
i→∞

blip(fi). Therefore

the set Autc(K) is closed under the uniform topology. Since Autc(K) is also equicontinuous,

Arzelà-Ascoli theorem implies that Autc(K) is compact.

For each finite word w = u1 · · ·un ∈ {1, · · · , N}n of length |w| = n, we write

Sw = Su1 ◦ · · · ◦ Sun
and Kw = Sw(K).

Let conv(B) denote the convex hull of B ⊂ R
d. Notice that for any B ⊂ R

d and any linear

mapping T : Rd → Rd,

T [conv(B)] = conv[TB]. (2.3)

Lemma 2.4 There exists an integer γ > 0 depending on K such that if f ∈ Aut(K) is an

isometry of K onto K with

f(Kw) = Kw for any w ∈ {1, · · · , N}γ , (2.4)

then f = id, i.e., f(x) ≡ x for any x ∈ K.

Proof By the above discussion, we may assume dim(K) = d, and thus we can pick {xi}d
i=0

⊂ K such that {xi − x0}d
i=1 are linearly independent. Let C = conv(K). Since the diameter of

Sw(C) tends to zero uniformly when |w| → ∞, we can find an integer γ > 0 and d + 1 finite

words w0, · · · , wd of length γ such that

( i ) xi ∈ Kwi for 0 ≤ i ≤ d;

(ii) If yi ∈ Swi(C) for 0 ≤ i ≤ d, then {yi − y0}d
i=1 are linearly independent.
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We will show that this integer γ is required. For this, suppose that the isometry f satis-

fies (2.4). According to Lemma 2.2, there is a linear and isometric extension F : Rd → Rd of

f . It follows from (2.3) and (2.4) that for 0 ≤ i ≤ d,

F (Swi(C)) = F (Swi(conv(K)))

= conv[F (Swi(K))] = conv[f(Kwi)] = conv(Kwi)

= conv[Swi(K)] = Swi [conv(K)]

= Swi [C]. (2.5)

Notice that C and Swi(C) are compact and convex. Then it follows from (2.5) and Brouwer’s

Fixed Point Theorem that there exist yi ∈ Swi(C) such that

F (yi) = yi for 0 ≤ i ≤ d.

By the property (ii) of γ, {yi}d
i=0 can not be contained in any hyperplane of Rd, i.e., dim ({yi}d

i=0)

= d. Then by Proposition 2.1, since F |{yi}d
i=0

(yi) = yi, F |{yi}d
i=0

has a unique isometric extension

F (x) ≡ x for x ∈ R
d,

that means f = id.

3 Proofs of the Main Results

Proof of Theorem 1.1 It follows from Lemma 2.3 that Aut1(K) = O(K) is compact with

respect to the uniform topology. Suppose on the contrary that #O(K) = ∞. Then we pick up

a sequence {gn}
∞
n=1 ⊂ O(K) such that gi 6= gj for any i 6= j and {gn}n converges to g∗ ∈ O(K)

uniformly. Let fn = (g∗)−1gn ∈ O(K). Then

{fn}n → id uniformly and fi 6= fj for any i 6= j.

Suppose that γ is defined in Lemma 2.4. Notice that id(Kw) = Kw for any word w with |w| = γ

and the distance d(Kw, Kw′) > 0 for any different words w, w′ of length γ. Since {fn}n → id

uniformly, there exists an integer β such that for any n ≥ β,

fn(Kw) = Kw for any word w of length γ.

Then it follows from Lemma 2.4 that

fn1 = fn2 = id

for any n1, n2 ≥ β, which is a contradiction.

Proof of Theorem 1.2 Let {fi}i≥1 ⊂ Aut(K) such that blip(fi) > 1 for each i and

lim
i→∞

blip(fi) = b∗.

Without loss of generality, we suppose {fi}i≥1 ⊂ Autc(K) with c > 1. According to Lemma 2.3,

we may assume that {fi}i converges uniformly to an automorphism f0 ∈ Aut(K). We will

distinguish two cases.

Case 1 blip(f0) > 1
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In this case, it follows from inequality (2.2) that

blip(f0) ≤ b∗,

and thus blip(f0) = b∗.

Case 2 blip(f0) = 1

For each g ∈ Aut(K) and each finite word w, we define an N×N matrix M(g, w) to describe

the sets {g(Kwp)}N
p=1, where Kwp = Sw ◦ Sp(K). For 1 ≤ p, q ≤ N , let

M(g, w)p,q =

{

1, if g(Kwp) ∩ Kwq 6= ∅,

0, if g(Kwp) ∩ Kwq = ∅.
(3.1)

Let hi = f−1
0 fi ∈ Autc(K) and thus {hi}i → id uniformly in Autc(K). Here f0, f

−1
0 ∈ O(K),

it follows from (1.3) that blip(hi) > 1 for any i and

lim
i→∞

blip(hi) = lim
i→∞

blip(fi) = b∗. (3.2)

As the discussion mentioned above, there is an integer α such that for any i ≥ α,

hi(Kw) = Kw for any word w of length γ, (3.3)

where γ is defined in Lemma 2.4. For each i ≥ α, since hi 6= id, we let

m(i) = max{m : hi(Kw′) = Kw′ for any word w of length m}. (3.4)

Then m(i) ≥ γ; furthermore there is a word wi with length m(i) such that

M(hi, w
i) 6= E, (3.5)

where E is the identity matrix.

Suppose that ui is the prefix of wi such that |ui| = m(i) − γ ≥ 0. Write wi = ui ∗ vi with

|vi| = γ, and let

Hi = S−1
ui ◦ hi ◦ Sui , (3.6)

where Sui = id if ui is the empty word.

For each i ≥ α, it follows from (3.4), (3.5) and (3.6) that

(a1) Hi(Kw) = Kw for any w with |w| = γ;

(a2) blip(Hi) ≤ blip(hi);

(a3) M(Hi, v
i) = M(hi, w

i) 6= E with |vi| = γ.

Here {Hi}i≥α ⊂ Autc(K). By Lemma 2.3, we pick a subsequence {Hni
}∞i=1 such that for

any i,

vni ≡ vn1 , M(Hni
, vni) ≡ M(Hn1 , v

n1)

and

Hni
→ H ∈ Autc(K) uniformly as i → ∞.

Therefore, we get

(b1) H(Kw) = Kw for any w with |w| = γ;
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(b2) blip(H) ≤ b∗;

(b3) M(H, vn1) 6= E.

Now, by (b2) we only need to show blip(H) > 1. Otherwise, if blip(H) = 1, it follows from

(b1) and Lemma 2.4 that H = id, which contradicts (b3).

Proof of Theorem 1.3 Here d([f1], [f2]) = 0 if and only if f1f
−1
2 is isometric, i.e.,

[f1] = [f2]. Since blip(g1) = lip(g−1
1 ), we get d([g], [f ]) = d([f ], [g]). For f1, f2 and f3, since

blip(g1 ◦ g2) ≤ lip(g1)blip(g2), we have

d([f1], [f3]) = log blip(f1f
−1
3 )

= log blip[(f1f
−1
2 ) ◦ (f2f

−1
3 )]

≤ log blip(f1f
−1
2 ) + log blip(f2f

−1
3 )

= d([f1], [f2]) + d([f2], [f3]).

Therefore, d([f ], [g]) is a metric. Notice

d([f ], [g]) = 0 or d([f ], [g]) ≥ log(b∗)(> 0).

Then (Aut(K)/ ∼, d) is discrete. Similarly, we have

D(f, g) = 0 or D(f, g) ≥ min
[

log(b∗), min
g∈O(K)

g 6=id,

sup
x∈K

|g(x) − x|
]

,

which implies that (Aut(K), D) is discrete.

Appendix Proof of Proposition 2.1

Let f be an isometry of A onto A, we first construct an isometric extension f∗ : Rd → Rd

of f . Here dim(A) = d, i.e., A can not be contained in any hyperplane of Rd. Then there

are {xi}d
i=0 ⊂ A such that {xi − x0}d

i=1 are linearly independent. For each x ∈ Rd, suppose

x = x0 +
d
∑

i=1

ai(xi − x0), where ai ∈ R is uniquely determined by x for each 1 ≤ i ≤ d. Then

f∗ : Rd → Rd can be defined as

f∗ : x 7→ f(x0) +

d
∑

i=1

ai(f(xi) − f(x0)).

We will show that f∗ is the unique isometric extension of f . For this, we need to verify the

following three claims:

(1) f∗ is an isometry of Rd onto Rd;

(2) f∗(x) = f(x) for any x ∈ A;

(3) If g is also an isometric extension of f , then g = f∗.

For claim (1), since |f(xp) − f(xq)| = |xp − xq| for 0 ≤ p, q ≤ d, we notice that the triangle

∆x0xixj is isometric to triangle ∆f(x0)f(xi)f(xj) with 1 ≤ i 6= j ≤ d, which means for all

1 ≤ i, j ≤ d,

(f(xi) − f(x0)) · (f(xj) − f(x0)) = (xi − x0) · (xj − x0). (∗)
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Assume x, x′ ∈ Rd with x = x0 +
d
∑

i=1

ai(xi − x0), x′ = x0 +
d
∑

i=1

a′
i(xi − x0). We have

|f∗(x) − f∗(x′)|2 =
∣

∣

∣

d
∑

i=1

(ai − a′
i)(f(xi) − f(x0))

∣

∣

∣

2

=
∑

1≤i,j≤d

(ai − a′
i)(aj − a′

j)[(f(xi) − f(x0)) · (f(xj) − f(x0))]

=
∑

1≤i,j≤d

(ai − a′
i)(aj − a′

j)[(xi − x0) · (xj − x0)] (by (∗))

= |x − x′|2.

Therefore f∗ is an isometry.

To prove claims (2) and (3), we notice f∗(xi) = f(xi) for 0 ≤ i ≤ d, so we need only to

show that for y, y′ ∈ Rd,

|y − f(xi)| = |y′ − f(xi)|, ∀ 0 ≤ i ≤ d ⇒ y = y′.

If this is false, we may assume y 6= y′. Then the set {f∗(xi)}d
i=0 = {f(xi)}d

i=0 is contained in

the hyperplane

{x ∈ R
d : |y − x| = |y′ − x|}.

And thus dim({f∗(xi)}d
i=0) < d for linear isometry f∗ : Rd → Rd, which contradicts the fact

dim({xi}d
i=0) = d.

References

[1] Cooper, D. and Pignatro, T., On the shape of Cantor set, J. Diff. Geom., 28, 1988, 203–221.

[2] David, G. and Semmes, S., Fractured Fractals and Broken Dreams: Self-similar Geometry through Metric
and Measure, Oxford University Press, Oxford, 1997.

[3] Falconer, K. J., Fractal Geometry—Mathematical Foundation and Applications, John Wiley, New York,
1991.

[4] Falconer, K. J. and Marsh, D. T., Classification of quasi-circles by Hausdorff dimension, Nonlinearity, 2,
1989, 489–493.

[5] Falconer, K. J. and Marsh, D. T., On the Lipschitz equivalence of Cantor sets, Mathematika, 39, 1992,
223–233.

[6] Fan, S., Guo, Q. L. and Xi, L. F., Lipschitz constant for bi-Lipschitz automorphism of self-similar fractal,
Prog. Nat. Sci., 16(4), 2006, 415–420.

[7] Guo, Q. L., Wu, M. and Xi, L. F., Lipschitz constant for bi-Lipschitz automorphism on Moran-like sets,
J. Math. Anal. Appl., 336, 2007, 937–952.

[8] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., 30, 1981, 713–747.

[9] Lyapina, M. S., On the Lipschitz constant for a nonisometric bi-Lipschitz transformation of Cantor set, J.

Math. Sci., 120(2), 2004, 1109–1116.

[10] Niu, M. and Xi, L. F., The Hausdorff dimension of sections, Chin. Ann. Math., 28B(2), 2007, 187–194.

[11] Wen, Z. Y., Mathematical Foundation of Fractal Geometry (in Chinese), Shanghai Scientific Technological
Education Publishing, Shanghai, 2000.

[12] Xi, L. F., Porosity of self-affine sets, Chin. Ann. Math., 29B(3), 2008, 333–340.

[13] Xi, L. F., Lipschitz equivalence of self-conformal, J. London Math. Soc., 70(2), 2004, 369–382.

[14] Xi, L. F., Quasi Lipschitz equivalence of self-conformal sets, Israel J. Math., 160, 2007, 1–21.

[15] Xiong, Y., Wang, L. S. and Xi, L. F., Sharp Lipschitz constant of bi-Lipschitz automorphism on Cantor
set, Sci. China Ser. A, 52(4), 2009, 709–719.


