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Abstract The authors obtain an interlacing relation between the Laplacian spectra of a

graph G and its subgraph G − U , which is obtained from G by deleting all the vertices

in the vertex subset U together with their incident edges. Also, some applications of this

interlacing property are explored and this interlacing property is extended to the edge

weighted graphs.
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1 Introduction

In this work, we are primarily interested in undirected graphs without loops or multiple

edges, i.e., simple graphs. Let G = (V, E) be a simple graph with vertex set V = V (G) =

{v1, v2, · · · , vn} and edge set E = E(G) = {e1, e2, · · · , em}. Each edge in E can be represented

by its endpoints such as (u, v). If (u, v) ∈ E, we use the notation u ∼ v. Denote the set of

neighbors of v by NG(v) and the degree of v by dG(v) = |NG(v)|. We say v is a pendant vertex

if dG(v) = 1.

The Laplacian matrix of G is defined as L(G) = D(G)−A(G), where D(G) is the diagonal

matrix of vertex degrees and A(G) is the (0, 1) adjacency matrix of G. It is well-known that

L(G) is a real symmetric, positive semidefinite matrix and its eigenvalues are all real and

nonnegative.

The eigenvalues of an n×n real symmetric matrix M are denoted by λi(M) (i = 1, 2, · · · , n),

where we always assume the eigenvalues to be arranged in nonincreasing order: λ1(M) ≥

λ2(M) ≥ · · · ≥ λn(M). While for a graph G, we use λi(G) instead of λi(L(G)) (i = 1, 2, · · · , n).

The Laplacian spectrum of G is defined as LSpec(G) = (λ1(G), λ2(G), · · · , λn(G)). It turns

out that λn(G) = 0 and λ1(G) ≤ n with equality if and only if the complement of G is not

connected.

Let e be an edge of G, and G − e be the subgraph obtained from G by deleting e. In [4,

9], Grone and Mohar first studied the relation between the Laplacian spectra of G and G − e.
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Using different methods they both showed an interlacing property as

λi(G) ≥ λi(G − e) ≥ λi+1(G), i = 1, 2, · · · , n − 1. (1.1)

Let u be a vertex of G, and G− u be the subgraph obtained from G by deleting u together

with its incident edges. In [8], Lotker studied the relation between the Laplacian spectra of G

and G − u, and showed

λi(G) ≥ λi(G − u) ≥ λi+1(G) − 1, i = 1, 2, · · · , n − 1. (1.2)

Let U be a subset of V (G) with |U | = k (0 ≤ k ≤ n). Then G−U is the subgraph obtained

from G by deleting all the vertices in U together with their incident edges. In this work, we

will investigate the relation between the Laplacian spectra of G and G−U , and will present an

interlacing property (see Theorem 2.1 in Section 2) as follows

λi(G) − w1 ≥ λi(G − U) ≥ λi+k(G) − w2, i = 1, 2, · · · , n − k, (1.3)

where w1 = min
v∈V \U

|NG(v) ∩ U | and w2 = max
v∈V \U

|NG(v) ∩ U |.

This interlacing inequality (1.3) generalizes the interlacing inequality (1.2). In addition, it

has some interesting applications (see Corollaries 3.1–3.6) on the algebraic connectivity, vertex

connectivity, bounds of λi(G), etc., which will be shown in Section 3. Moreover, we will give a

generalization of (1.3) for edge weighted graphs in Section 4.

2 Relation Between the Laplacian Spectra of G and G − U

In this section, we first give some preliminary results on real symmetric matrices. Then we

prove the interlacing inequality (1.3) of the Laplacian spectra of G and G − U .

Lemma 2.1 (see [7]) Let A be an n × n real symmetric matrix, m be an integer with

1 ≤ m ≤ n, and Am be an m × m principal submatrix of A. Then

λi(A) ≥ λi(Am) ≥ λi+n−m(A), i = 1, 2, · · · , m.

Lemma 2.2 (see [7]) Let A, B be two n×n real symmetric matrices. Then for each integer

i with 1 ≤ i ≤ n we have

min
r+s=i+1

{λr(A) + λs(B)} ≥ λi(A + B) ≥ max
r+s=n+i

{λr(A) + λs(B)}.

Theorem 2.1 Let G be a graph on the vertex set V with |V | = n, and U ⊆ V with |U | = k.

Then

λi(G) − w1 ≥ λi(G − U) ≥ λi+k(G) − w2, i = 1, 2, · · · , n − k,

where w1 = min
v∈V \U

|NG(v) ∩ U | and w2 = max
v∈V \U

|NG(v) ∩ U |.

Proof Remove the rows and columns of L(G) that correspond to the vertices in U , and

the resulting principal submatrix of L(G) is denoted by LU (G). Applying Cauchy-Poincaré’s

theorem (see Lemma 2.1), we have λi(G) ≥ λi(LU (G)) ≥ λi+k(G) (i = 1, 2, · · · , n − k).
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Let DU (G) = LU (G) − L(G − U). Then DU (G) is a diagonal matrix whose diagonal entry

corresponding to v is |NG(v) ∩ U |. Thus by the Weyl’s inequalities (see Lemma 2.2), for each

i = 1, 2, · · · , n − k, we have

λi(G − U) = λi(L(G − U)) = λi(LU (G) − DU (G))

≤ min
r+s=i+1

{λr(LU (G)) + λs(−DU (G))}

≤ λi(LU (G)) + λ1(−DU (G))

= λi(LU (G)) − λn−k(DU (G))

≤ λi(G) − min
v∈V \U

|NG(v) ∩ U |, (2.1)

λi(G − U) ≥ max
r+s=n−k+i

{λr(LU (G)) + λs(−DU (G))}

≥ λi(LU (G)) + λn−k(−DU (G))

= λi(LU (G)) − λ1(DU (G))

≥ λi+k(G) − max
v∈V \U

|NG(v) ∩ U |. (2.2)

Combining (2.1) and (2.2), we complete the proof.

The following Corollaries 2.1–2.2 immediately follow from Theorem 2.1.

Corollary 2.1 Let G be a graph on the vertex set V with |V | = n, and U ⊆ V with |U | = k.

Then

λi(G) ≥ λi(G − U) ≥ λi+k(G) − k, i = 1, 2, · · · , n − k. (2.3)

Moreover, if every vertex of U is adjacent to all the vertices of V \U , then

λi(G) − k ≥ λi(G − U) ≥ λi+k(G) − k, i = 1, 2, · · · , n − k. (2.4)

Corollary 2.2 Let G be a graph on n vertices, and u be a vertex of G. Then

λi(G) ≥ λi(G − u) ≥ λi+1(G) − 1, i = 1, 2, · · · , n − 1. (2.5)

Moreover, if u is adjacent to all the other vertices of G, then

λi(G) − 1 ≥ λi(G − u) ≥ λi+1(G) − 1, i = 1, 2, · · · , n − 1. (2.6)

The interlacing inequality (2.5) is the main result of [8]. While it can be improved as (2.6)

provided that the vertex u is the common neighbor of all the other vertices of G.

Now we study the tightness of the inequality (2.6). Firstly, λi(G − u) = λi+1(G) − 1 will

never occur when i = n − 1 since λn−1(G − u) = λn(G) = 0. Secondly, as we will see in the

following, there exist graphs such that both the equalities in (2.6) hold for some i.

Example 2.1 Consider the complete graph Kn. Delete a vertex u from Kn and the resulting

graph is Kn−1. Recall

LSpec(Kn) = (n, · · · , n︸ ︷︷ ︸
n−1

, 0) and LSpec(Kn−1) = (n − 1, · · · , n − 1︸ ︷︷ ︸
n−2

, 0).

Thus, λi(G) − 1 = λi(G − u) = λi+1(G) − 1 = n − 1 (1 ≤ i ≤ n − 2).
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Example 2.2 Consider the star K1,n−1. Delete the central vertex u from K1,n−1 and the

resulting graph consists of n − 1 isolated vertices, whose eigenvalues are all 0 with multiplicity

n − 1. Noting

LSpec(K1,n−1) = (n, 1, · · · , 1︸ ︷︷ ︸
n−2

, 0),

we have λi(G) − 1 = λi(G − u) = λi+1(G) − 1 = 0 (2 ≤ i ≤ n − 2).

3 Applications

In this section, we give some applications of our previous interlacing results on the algebraic

connectivity, vertex connectivity, bounds of λi(G), etc., which can be obtained from Theorem

2.1 and its consequences Corollaries 2.1–2.2.

For a graph G, the second smallest eigenvalue λn−1(G) > 0 if and only if G is connected.

This observation led M. Fiedler [2] to define the algebraic connectivity of G by a(G) = λn−1(G).

The following Corollary 3.1 reflects the relation between the algebraic connectivity of G and

that of G − U .

Corollary 3.1 Let G be a graph on the vertex set V with |V | = n, and U ⊆ V with

|U | ≤ n − 2. Then

a(G) ≤ a(G − U) + max
v∈V \U

|NG(v) ∩ U |. (3.1)

Proof Let k = |U | and take i = n − k − 1(≥ 1) in (1.3). Then we have

λn−k−1(G − U) ≥ λn−1(G) − max
v∈V \U

|NG(v) ∩ U |,

which implies the result.

Consequently, when |U | ≤ n−2 one can immediately obtain a known bound (see [3, p. 288])

from (3.1) as

a(G) ≤ a(G − U) + |U |.

In addition, the equality in (3.1) can occur. For instance, delete k(≤ n − 2) vertices of the

complete graph Kn and the resulting graph is Kn−k. As we see, a(Kn) = a(Kn−k) + k = n.

Let κ(G) be the vertex connectivity of G. It is well-known that a(G) ≤ κ(G) if G 6= Kn

(see [2]). In the following, we show that this result, together with a necessary condition for the

equality case, can also be derived from Theorem 2.1.

Corollary 3.2 Let G be a connected graph on the vertex set V with |V | = n. If G 6= Kn,

then

a(G) ≤ κ(G).

Moreover, if equality holds, then for any minimum vertex cut U there exists a vertex of V \U

adjacent to all the vertices of U .

Proof Let U be a minimum vertex cut of G, and k = |U | = κ(G). Then k ≤ n − 2 since

G 6= Kn. Take i = n − k − 1(≥ 1) in (1.3). Then we have

λn−1(G) ≤ λn−k−1(G − U) + max
v∈V \U

|NG(v) ∩ U | ≤ a(G − U) + k = k,
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i.e.,

a(G) ≤ κ(G).

Moreover, if a(G) = κ(G), then max
v∈V \U

|NG(v) ∩ U | = k = |U |. The proof is completed.

Corollary 3.3 Let G be a connected graph on n vertices, and β(G) be the vertex cover

number of G. Then
{

λi(G) ≥ 1, i = 1, · · · , n − β(G),

λj(G) ≤ β(G), j = β(G) + 1, · · · , n.

Proof Let U be a minimum vertex cover of G, and k = |U | = β(G). By Theorem 2.1, we

have

λi(G) − min
v∈V \U

|NG(v) ∩ U | ≥ λi(G − U) ≥ λi+k(G) − max
v∈V \U

|NG(v) ∩ U |, i = 1, · · · , n − k.

Note λi(G − U) = 0 (i = 1, · · · , n − k). Thus, for each i = 1, · · · , n − k, we have

λi(G) ≥ min
v∈V \U

|NG(v) ∩ U | ≥ 1 and λi+k(G) ≤ max
v∈V \U

|NG(v) ∩ U | ≤ k,

which implies the result.

Let d1 ≥ · · · ≥ dn be the degrees of G. In [6], Guo conjectured that λi(G) ≥ di − i + 2 (0 ≤

i ≤ n − 1), where G is a connected graph on n vertices. Subsequently, Brouwer and Haemers

proved it in [1]. Here we can give a proof of a weak form of this conjecture, which can be

obtained from Theorem 2.1.

Corollary 3.4 Let G be a graph on n vertices. Then λi(G) ≥ di − i + 1 (1 ≤ i ≤ n).

Proof It is obvious that λn(G) ≥ dn − n + 1. Hence in the following we may assume

1 ≤ i ≤ n − 1. Let V = {v1, · · · , vn} be the vertex set of G, where the degree of vj is

dj (1 ≤ j ≤ n). Set U = V \{v1, · · · , vi}. Then V \U = {v1, · · · , vi}. According to Theorem

2.1, we have

λi(G) ≥ λi(G − U) + min
v∈V \U

|NG(v) ∩ U | ≥ min
v∈V \U

|NG(v) ∩ U |

= min
v∈{v1,··· ,vi}

(|NG(v)| − |NG(v) ∩ {v1, · · · , vi}|) ≥ di − i + 1.

The following upper bounds for the second largest eigenvalue λ2(G) can also be directly

obtained from the interlacing property.

Corollary 3.5 (see [5]) Let G be a connected graph with a cut vertex u. If the largest

component of G − u contains k vertices, then λ2(G) ≤ k + 1.

Proof Taking i = 1 in (2.5), we have λ1(G−u) ≥ λ2(G)−1. Thus λ2(G) ≤ λ1(G−u)+1 ≤

k + 1.

Corollary 3.6 (see [5]) Let G be a connected graph on n > 2 vertices. Suppose that u is a

vertex of G adjacent to k pendant vertices, then λ2(G) ≤ n − k.

Proof If G = K1,n−1, then k = n − 1 and λ2(G) = 1 = n − k. Otherwise, the largest

component of G − u contains at most n − k − 1 vertices. Also taking i = 1 in (2.5), we have

λ2(G) ≤ λ1(G − u) + 1 ≤ n − k.
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4 Extension to Edge Weighted Graphs

In this section, we establish an improved version of Theorem 2.1 which extend the interlacing

property to a broader range of graphs, i.e., edge weighted graphs.

An edge weighted graph, Ĝ, consists of a vertex set V = V (Ĝ), an edge set E = E(Ĝ) and

a positive-valued weight function w on E. For convenience, we simply write the weight of the

edge (u, v) as w(u, v). Define the adjacency matrix of Ĝ by A(Ĝ) = (aij), where aij = w(vi, vj)

if vi ∼ vj and aij = 0 otherwise. Let d bG(v) =
∑

u∼v

w(u, v) and D(Ĝ) be the diagonal matrix

whose diagonal entry corresponding to v is d bG(v). Then the Laplacian matrix of Ĝ, as before,

is defined as L(Ĝ) = D(Ĝ) − A(Ĝ).

An unweighted graph G can be regarded as the special case of a weighted graph by taking

the weight function as w ≡ 1 on E.

If U is a subset of V (Ĝ) with |U | = k (0 ≤ k ≤ n), then Ĝ − U is the subgraph which is

obtained from Ĝ by deleting all the vertices in U together with their incident edges and whose

weight function w is restricted on the set of the remaining edges.

In the process of the proof of Theorem 2.1, substituting |NG(v)∩U | by
∑

u∈U

u∼v

w(u, v), we have

the following Theorem 4.1.

Theorem 4.1 Let Ĝ be an edge weighted graph on the vertex set V with |V | = n, w be the

weight function of Ĝ and U ⊆ V with |U | = k. Then

λi(Ĝ) − w1 ≥ λi(Ĝ − U) ≥ λi+k(Ĝ) − w2, i = 1, 2, · · · , n − k.

where w1 = min
v∈V \U

( ∑
u∈U

u∼v

w(u, v)
)

and w2 = max
v∈V\U

( ∑
u∈U

u∼v

w(u, v)
)
.
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