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1 Introduction

Fractional order equations are useful models for the description of anomalous dynamic be-

haviors, such as charge carrier transport in amorphous semiconductors, nuclear magnetic reso-

nance diffusometry in percolative and porous media, transport on fractal geometries, diffusion

of a scalar tracer in an array of convection rolls, dynamics of a bead in a polymeric network,

transport in viscoelastic materials, etc. For the Cauchy problem of the fractional order operator

L = ∂2
t + (−∆)σ in the sense of Fourier multipliers, we define the σ-energy (σ > 0) of the

solution as

Eσ(u)(t) :=
1

2
‖u‖2

Ḣσ(RN )
+

1

2
‖ut‖2

L2(RN ).

It is clear that the energy conservation law holds as in the case of classical wave equations.

Generally speaking, a moderate damping term will engender energy decay; for instance, in the

field of electromagnetic waves, a kind of polynomial decay has been observed for the damped

wave equations which describe the voltage and the current on an electrical transmission line

with distance and time:

Ett −
1

LC
∆E +

R

L
Et = 0,

where E = (V, I)T, V denotes the voltage, I the current, L the distributed inductance, C the

capacitance, R the distributed resistance of the conductors. We know that, except for supercon-

ductors below critical temperature, in the physical world, metals, semiconductors, insulators,

ionic liquids and electrolytes all generate distributed resistance and inductance arising from the

movement of electrons. As times goes on, the electromagnetic field energy will be changed into
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thermal energy. At the same time, the electric resistance of a typical metal increases linearly

with rising temperature, while the electrical resistance of a typical semiconductor decreases

with rising temperature. Consequently, R is not a constant any more, but is a function of time.

With [7, 8] one has considered the energy decay of the operator L = ∂2
t − ∆ + θ(t)∂t which

explains the above phenomenon. As a matter of fact, when we apply a certain viscoelastic effect

to the damped term, the situation will change. This is demonstrated in [5]. For E1(u)(t) of

the operator L = ∂2
t − ∆ − ∆∂t, there is no decay any more due to the viscoelastic influence.

This shows an important fact of the alkaline cells. The more electrolyte and electrode material

there is in the cell, the greater the capacity of the cell, and the longer the discharge time.

Denote A = −∆. In this paper, we mainly consider the time-dependent viscoelastic damped

system of fractional orders:

{
utt + θ(t)Aσut + A2σu = 0, in (0,∞) × RN ,

(u(0, x), ∂tu(0, x)) = (u0(x), u1(x)), in RN .
(1.1)

Next we introduce three types of θ(t) as a classification of damping effects.

Γ(0) (Constant Structural Dissipation): θ(t) ≡ µ, µ ∈ (0, +∞);

Γ(1) (Strictly Decreasing Structural Dissipation): θ(0) ∈ (0, 2), θ(t) ∈ C1[0,∞) strictly

decreases to 0, and ∫ t

0

θ(τ)dτ > 1, as t → +∞;

Γ(2) (Strictly Increasing Structural Dissipation): there exists a critical point Tc ≥ 0, such

that θ(Tc) ∈ (2, +∞), and when t ∈ [0, Tc), θ(t) = 0, θ(t) ∈ C2[Tc,∞) strictly increases to +∞
and ∫ t

Tc

θ−1(τ)dτ > 1, as t → +∞.

Moreover, when t ≫ Tc,

d0
θ(t)

Θ(t)
≤ θ′(t)

θ(t)
≤ d1

θ(t)

Θ(t)
, |θ′′(t)| ≤ d2θ(t)

( θ(t)

Θ(t)

)2

,

with Θ(t) :=
∫ t

Tc
θ(τ)dτ , and the constants d0, d1, d2 > 0 are all independent of t.

Accordingly, we define the homogeneous high-order energy of the solution as

Eκ
σ(u)(t) := ‖u‖2

Ḣ|κ|+2σ(RN )
+ ‖ut‖2

Ḣ|κ|(RN )

with |κ| > 0.

Remark 1.1 When σ = 1
2 , this model is frequently used in the determination of lifespan

for primary or rechargeable batteries. When σ = 1, this is the Petrowsky system.

Remark 1.2 Typical θ(t) for the strictly decreasing or increasing structural dissipations

are classified as

(1) θ(t) = µ(1 + t)−γ0(log(e + t))−γ1 · · · (log[m](e[m] + t))−γm , with µ ∈ (0, 2), nonnegative

γi, i = 1, · · · , m and γ0 ∈ (0, 1]. In particular, log[0] x = x, log[m+1] x = log log[m] x and

e[m+1] = ee[m]

;

(2) θ(t) = µ(1 + t)γ , µ ∈ (2, +∞), γ ∈ (0, 1].
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Remark 1.3 The case Γ(2) models the typical superconductivity phenomenon occurring

in certain materials generally at very low temperatures, characterized by exactly zero electrical

resistance and the exclusion of the interior magnetic field (the Meissner effect), including tin

and aluminium, various metallic alloys and some heavily-doped semiconductors. Generally

speaking, the electrical resistivity of a metallic conductor decreases gradually as the temperature

is lowered. However, in ordinary conductors such as copper and silver, impurities and other

defects impose a lower limit. Even near absolute zero, a real sample of copper shows a non-zero

resistance. This is why we assume θ(Tc) > 2, Tc = 0 for this model. And the resistance of a

superconductor, despite these imperfections, drops abruptly to zero when the material is cooled

below its critical temperature. In this case, Tc > 0.

Now we denote Hs as Hs(RN ) (s > 0) and turn to the main result.

Theorem 1.1 For Cauchy problem (1.1) with a positive θ(t) satisfying Γ(0), Γ(1) or Γ(2),

for large time t, we have

Γ(0) : Eκ
σ(u)(t) . t−

|κ|+2σ

σ ‖u0‖2
H|κ|+2σ + t−

|κ|
σ ‖u1‖2

H|κ| ; (1.2)

Γ(1) : Eκ
σ(u)(t) .

( ∫ t

0

θ(τ)dτ
)− |κ|+2σ

σ ‖u0‖2
H|κ|+2σ +

( ∫ t

0

θ(τ)dτ
)− |κ|

σ ‖u1‖2
H|κ| ; (1.3)

Γ(2) : Eκ
σ(u)(t) .

( ∫ t

Tc

θ−1(τ)dτ
)− |κ|+2σ

σ ‖u0‖2
H|κ|+2σ +

(∫ t

Tc

θ−1(τ)dτ
)− |κ|

σ ‖u1‖2
H|κ| . (1.4)

Remark 1.4 When we choose θ(t) = µ(1 + t)δ, |δ| ∈ (0, 1], µ > 0, for sufficiently large

time, we have the following polynomial decay and log-type decay respectively:

|δ| ∈ [0, 1) : Eκ
σ(u)(t) . t−

(1−|δ|)(|κ|+2σ)
σ ‖u0‖2

H|κ|+2σ + t−
(1−|δ|)|κ|

σ ‖u1‖2
H|κ| ,

|δ| = 1 : Eκ
σ(u)(t) . log−

|κ|+2σ

σ (t)‖u0‖2
H|κ|+2σ + log−

|κ|
σ (t)‖u1‖2

H|κ| .

The rest of the paper is organized as follows. Section 2 is devoted to the constant structural

dissipation, while Section 3 is for strictly decreasing structural dissipation and Section 4 for

strictly increasing structural dissipation. Some powerful tools from micro-local analysis and

WKB analysis will be used to obtain the precise decay estimates. In the final analysis, some

concluding remarks concerned with engineering applications and open problems complete this

paper.

2 Constant Structural Dissipation

In this section, we deal with the constant structural dissipation, which corresponds to the

constant distributed resistance of the conductors.

Denote v(t, ξ) = û(t, ξ). After partial Fourier transformation, (1.1) becomes

{
vtt + µ|ξ|2σvt + |ξ|4σv = 0,

(v(0, ξ), vt(0, ξ)) = (v0(ξ), v1(ξ)).
(2.1)

Let

λi(ξ) =
−µ + (−1)i+1

√
µ2 − 4

2
|ξ|2σ, i = 1, 2.
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Then apply the basic principles for ordinary differential equations, we have the following explicit

representations concerned with the solution:

(1) For µ 6= 2,

v(t, ξ) = (λ1 exp(λ2t) − λ2 exp(λ1t))(λ1 − λ2)
−1v0(ξ)

+ (exp(λ1t) − exp(λ2t))(λ1 − λ2)
−1v1(ξ),

vt(t, ξ) = (exp(λ2t) − exp(λ1t))λ1λ2(λ1 − λ2)
−1v0(ξ)

+ (λ1 exp(λ1t) − λ2 exp(λ2t))(λ1 − λ2)
−1v1(ξ);

(2.2)

(2) For µ = 2,

v(t, ξ) = (1 − λ1t) exp(λ1t)v0(ξ) + t exp(λ1t)v1(ξ),

vt(t, ξ) = −tλ2
1 exp(λ1t)v0(ξ) + (1 + tλ1) exp(λ1t)v1(ξ)

(2.3)

with λ1 + λ2 = −µ|ξ|2σ, λ1 − λ2 =
√

µ2 − 4 |ξ|2σ and λ1λ2 = |ξ|4σ. Actually, according to the

mean value theorem, when we choose a fixed 0 < ǫ < 1, for 2 − ǫ ≤ µ < 2 and 2 < µ ≤ 2 + ǫ,

(2.2) can be transformed into

v(t, ξ) = (exp(λ1t) − λ1t exp(λ̃t))v0(ξ) + t exp(λ̃t)v1(ξ),

vt(t, ξ) = −tλ1λ2 exp(λ̃t)v0(ξ) + (exp(λ2t) + tλ1 exp(λ̃t))v1(ξ),
(2.4)

λ̃ lies between λ1 and λ2. In particular, in C, only the imaginary part changes accordingly, i.e.,

λ1 and λ2 have the same real part. λ̃ may be not identical in (2.4); since no confusion appears,

we keep the same notation. For the intervals 2− ǫ ≤ µ < 2 and 2 < µ ≤ 2 + ǫ, we deduce from

(2.4) respectively (c is independent of t and µ):

|ξ||α||v(t, ξ)| . exp(−cµ|ξ|2σt)(|ξ||α||v0(ξ)| + |ξ||α|−2σ|v1(ξ)|),
|ξ||κ||vt(t, ξ)| . exp(−cµ|ξ|2σt)(|ξ||κ|+2σ|v0(ξ)| + |ξ||κ||v1(ξ)|),

(2.5)

|ξ||α||v(t, ξ)| . exp(−c(µ −
√

µ2 − 4)|ξ|2σt)(|ξ||α||v0(ξ)| + |ξ||α|−2σ|v1(ξ)|),
|ξ||κ||vt(t, ξ)| . exp(−c(µ −

√
µ2 − 4)|ξ|2σt)(|ξ||κ|+2σ|v0(ξ)| + |ξ||κ||v1(ξ)|).

(2.6)

When µ = 2, one easily finds out that the estimates are just the limit case of µ → 2 in (2.5)

or (2.6). This indicates the continuity of the estimates for 2 − ǫ ≤ µ ≤ 2 + ǫ. For the other

intervals, we apply the same procedure and reach similar conclusions. Finally, the property of

exponential functions and the Parseval’s formula jointly show (1.2).

3 Strictly Decreasing Structural Dissipation

In this section, we consider the strictly decreasing structural dissipation, which corresponds

to the nonconstant distributed resistance of typical semiconductors. Define Dt := −i∂t and the

micro-energy:

V(t, ξ) = (v1(t, ξ), v2(t, ξ))
T = (|ξ|2σv(t, ξ), Dtv(t, ξ))T.

We tackle this problem by virtue of the fundamental system of

DtV − AV := DtV −
(

0 |ξ|2σ

|ξ|2σ iθ(t)|ξ|2σ

)
V = 0. (3.1)
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The characteristic roots for A are

λi =
iθ(t)|ξ|2σ + (−1)i−1

√
−θ2(t) + 4|ξ|2σ

2
, i = 1, 2.

The system of the corresponding eigenvalues is

Φ(t, ξ) :=

(
1 1

λ1(t, ξ)|ξ|−2σ λ2(t, ξ)|ξ|−2σ

)

with ‖Φ(t, ξ)‖ = 1. Moreover,

detΦ(t, ξ) =
−
√
−θ2(t)|ξ|4σ + 4|ξ|4σ

|ξ|2σ
= −

√
−θ2(t) + 4.

From the monotonicity of θ and θ(0) ∈ (0, 2), we conclude that |detΦ(t, ξ)| ∼ 1. This fact

indicates that Φ(t, ξ) is invertible and its inverse is

Φ−1(t, ξ) = − 1√
−θ2(t) + 4

(
λ2(t, ξ)|ξ|−2σ −1

−λ1(t, ξ)|ξ|−2σ 1

)

with ‖Φ−1(t, ξ)‖ ∼ 1. Let V(t, ξ) = Φ(t, ξ)V1(t, ξ). Then

DtV1 := DV1 − BV1 = Φ−1AΦV1 − Φ−1DtΦV1.

And the concrete forms are

Φ−1AΦ = diag
(√−θ2(t) + 4|ξ|2σ + iθ(t)|ξ|2σ

2
,
−
√
−θ2(t) + 4|ξ|2σ + iθ(t)|ξ|2σ

2

)
,

Φ−1DtΦ = (detΦ(t, ξ)|ξ|2σ)−1

(
−Dtλ1(t, ξ) −Dtλ2(t, ξ)

Dtλ1(t, ξ) Dtλ2(t, ξ)

)

=
1

2




θ′(t)√
−θ2(t)+4

− θ(t)θ′(t)
i(−θ2(t)+4)

θ′(t)√
−θ2(t)+4

+ θ(t)θ′(t)
i(−θ2(t)+4)

− θ′(t)√
−θ2(t)+4

+ θ(t)θ′(t)
i(−θ2(t)+4) − θ′(t)√

−θ2(t)+4
− θ(t)θ′(t)

i(−θ2(t)+4)


 .

The fundamental solution for this equation is E = E1Q with




E1(t, s, ξ)
(11) = exp

(1

2
i

∫ t

s

√
−θ2(t) + 4|ξ|2σdτ − 1

2

∫ t

s

θ(τ)|ξ|2σdτ
)
,

E1(t, s, ξ)
(22) = exp

(
− 1

2
i

∫ t

s

√
−θ2(t) + 4|ξ|2σdτ − 1

2

∫ t

s

θ(τ)|ξ|2σdτ
)
,

E1(t, s, ξ)
(12) = E1(t, s, ξ)

(21) = 0.

And Q satisfies

DtQ + E1(t, s, ξ)
−1B(t, ξ)E1(t, s, ξ)Q = 0, Q(s, s, ξ) = I.

In fact, the method of successive approximation enables us to construct the fundamental solution

of the system DtE(t, s, ξ) = A(t, ξ)E(t, s, ξ), E(s, s, ξ) = I. More precisely, E(t, s, ξ) is given in

the form of matrizant representation:

E(t, s, ξ) = I +
∞∑

k=1

ik
∫ t

s

A(t1, ξ)

∫ t1

s

A(t2, ξ) · · ·
∫ tk−1

s

A(tk, ξ)dtk · · ·dt1.

Actually, we have the following result.
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Lemma 3.1 For k ∈ N+, it holds that

∥∥∥
∫ t

s

A(t1, ξ)

∫ t1

s

A(t2, ξ) · · ·
∫ tk−1

s

A(tk, ξ)dtk · · · dt1

∥∥∥ 6
1

k!

(∫ t

s

‖A(r, ξ)‖dr
)k

.

As a matter of fact,
∫ t

s

‖A(t1, ξ)‖
∫ t1

s

‖A(t2, ξ)‖dt2dt1

=

∫ t

s

∂

∂t1

(∫ t1

s

‖A(t2, ξ)‖dt2

)(∫ t1

s

‖A(t2, ξ)‖dt2

)
dt1

=

∫ t

s

1

2

∂

∂t1

(∫ t1

s

‖A(t2, ξ)‖dt2

)2

dt1 =
1

2

(∫ t

s

‖A(r, ξ)‖dr
)2

.

By the induction method the statement follows immediately.

It is obvious that ‖Q(t, s, ξ)‖ ≤ C, which leads to E(t, s, ξ) ≤ exp
(
− 1

2

∫ t

s
θ(τ)|ξ|2σdτ

)
. We

have

‖V(t, ξ)‖ . exp
(
− 1

2

∫ t

s

θ(τ)|ξ|2σdτ
)
‖V(s, ξ)‖. (3.2)

The energy estimate (1.3) follows immediately.

Remark 3.1 In this case, the division of the phase space is of no significance, and one

step of diagonalization is sufficient. But for the strictly increasing structural dissipation, the

situation becomes more complex, and we need a further step of diagolization based on the

theory of normal forms.

4 Strictly Increasing Structural Dissipation

In this section, we deal with the strictly increasing structural dissipation, which corresponds

to the nonconstant distributed resistance of typical superconductors or metals. First and fore-

most, we introduce some useful tools from micro-local analysis. We choose sufficiently large

numbers N and T0, which will be determined later, and define the following three zones:

ZL(N) = {(t, ξ) ∈ [0,∞) × {ξ ∈ R
N \ 0} : Θ(t)|ξ|2σ ≤ N},

ZM (N, T0) = {(t, ξ) ∈ (0, T0] × {ξ ∈ R
N \ 0} : Θ(t)|ξ|2σ ≥ N},

ZH(N, T0) = {(t, ξ) ∈ [T0,∞) × {ξ ∈ R
N \ 0} : Θ(t)|ξ|2σ ≥ N}.

The separating lines are defined by Θ(tξ)|ξ|2σ = N and t = T0. In these zones, as usual, we

define the micro-energy as

V(t, ξ) = (v1(t, ξ), v2(t, ξ))
T = (|ξ|2σv(t, ξ), Dtv(t, ξ))T,

and in ZH(N, T0) the classes of symbols as

Sk{m1, m2, m3} =
{
a(t, |ξ|) ∈ Ck([T0,∞); C∞(RN \ 0)) :

|Dℓ
tD

α
ξ a(t, |ξ|)| ≤ Ck,α|ξ|m1−|α|θm2(t)

( θ(t)

Θ(t)

)m3+ℓ

for all multi-indices α and non-negative integers ℓ ≤ k
}
.
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Our considerations are based on the following properties of the symbols:

(1) Sk{m1, m2, m3} ⊂ Sk{m1 + 2σℓ, m2 + ℓ, m3 − ℓ} for ℓ ∈ N;

(2) if a ∈ Sk{m1, m2, m3} and b ∈ Sk{k1, k2, k3}, then ab ∈ Sk{m1 + k1, m2 + k2, m3 + k3};
(3) if a ∈ Sk{m1, m2, m3}, then Dℓ

ta ∈ Sk−ℓ{m1, m2, m3 + ℓ} and Dα
ξ a ∈ Sk{m1 − |α|,

m2, m3} for ℓ ≤ k;

(4) if a(t, |ξ|) ∈ S0{−2σ,−1, 2}, then
∫ t

tξ
|a(τ, |ξ|)|dτ ≤ C for all (t, ξ) ∈ ZH(N, T0).

4.1 Consideration in ZL(N)

We tackle this problem by virtue of the fundamental system of (3.1). Apply the transfor-

mation V = MV1, M =
(

1 −1
1 1

)
. Then

DtV1 − DV1 + BV1 := DtV1 −
(
|ξ|2σ + i

2θ(t)|ξ|2σ 0
0 −|ξ|2σ + i

2θ(t)|ξ|2σ

)
V1

− i

2
θ(t)|ξ|2σ

(
0 1
1 0

)
V1 = 0.

The fundamental solution for this equation is E = E1Q with






E1(t, s, ξ)
(11) = exp

(
i

∫ t

s

|ξ|2σdτ − 1

2

∫ t

s

θ(τ)|ξ|2σdτ
)
,

E1(t, s, ξ)
(22) = exp

(
− i

∫ t

s

|ξ|2σdτ − 1

2

∫ t

s

θ(τ)|ξ|2σdτ
)
,

E1(t, s, ξ)
(12) = E1(t, s, ξ)

(21) = 0.

And Q satisfies

DtQ + E1(t, s, ξ)
−1B(t, ξ)E1(t, s, ξ)Q = 0.

It is obvious that

‖E1(t, s, ξ)‖ ≤ exp
(
− 1

2

∫ t

s

θ(τ)|ξ|2σdτ
)
.

Consequently, applying the definition of ZL(N), we have ‖Q(t, s, ξ)‖ ≤ C. This leads to

‖V(t, ξ)‖ . exp
(
− 1

2

∫ t

s

θ(τ)|ξ|2σdτ
)
‖V(s, ξ)‖. (4.1)

4.2 Consideration in ZM(N, T0)

Change the characteristic roots in Section 3 into

λj =
iθ(t)|ξ|2σ + (−1)j−1i

√
θ2(t) − 4|ξ|2σ

2
, j = 1, 2.

Applying the same procedure as in the treatment of noneffective dissipation, we get

DtV1 − DV1 + BV1 := DtV1 − Φ−1AΦV1 + Φ−1DtΦV1 = 0, (4.2)

with

Φ−1AΦ = diag
( i
√

θ2(t) − 4|ξ|2σ + iθ(t)|ξ|2σ

2
,
−i
√

θ2(t) − 4|ξ|2σ + iθ(t)|ξ|2σ

2

)
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and

Φ−1DtΦ = (detΦ(t, ξ)|ξ|2σ)−1

(
−Dtλ1(t, ξ) −Dtλ2(t, ξ)

Dtλ1(t, ξ) Dtλ2(t, ξ)

)

=
1

2




θ′(t)

i
√

θ2(t)−4
+ θ(t)θ′(t)

i(θ2(t)−4)
θ′(t)

i
√

θ2(t)−4
− θ(t)θ′(t)

i(θ2(t)−4)

− θ′(t)

i
√

θ2(t)−4
− θ(t)θ′(t)

i(θ2(t)−4) − θ′(t)

i
√

θ2(t)−4
+ θ(t)θ′(t)

i(θ2(t)−4)


 .

After coordination, we have

DtV1 := D1V1 − B1V1 =

(
i
2θ(t)|ξ|2σ 0

0 i
2θ(t)|ξ|2σ

)
V1 − B1V1.

Applying the same discussion for fundamental systems, we have

‖ V(t, ξ) ‖ . exp
(1

2

∫ t

s

√
θ2(τ) − 4|ξ|2σdτ − 1

2

∫ t

s

θ(τ)|ξ|2σdτ
)
‖V(s, ξ)‖. (4.3)

4.3 Consideration in ZH(N, T0)

Note that in (4.2), D ∈ S2{2σ, 1, 0} and B ∈ S1{0, 0, 1}. To carry out a further step of

diagonalization, we follow the procedure of asymptotic theory of ordinary differential equations.

Namely, we look for a matrix N1(t, ξ) := I + N (1)(t, ξ), where B(0) := B, F (0) := diag B(0),

N (1)
qr :=

B
(0)
qr

τq − τr

, q 6= r and N (1)
qq := 0, τk = λk, k = 1, 2, are the characteristic roots,

B(1) := (Dt − D + B)(I + N (1)) − (I + N (1))(Dt − D + F (0)).

According to the properties of symbols, we have N (1) ∈ S1{−2σ,−1, 1} and F (0) ∈ S1{0, 0, 1}.
As for B(1), we obtain the following relation:

B(1) = B + [N (1), D ] − F (0) + DtN
(1) + BN (1) − N (1)F (0).

The construction principle implies that the sum of the first three terms vanishes, hence B(1) ∈
S0{−2σ,−1, 2}. Finally, let

R1 := N−1
1 B(1) = N−1

1 ((Dt − D + B)(I + N (1)) − (I + N (1))(Dt − D + F (0))).

This definition means R1 = N−1
1 B(1) ∈ S0{−2σ,−1, 2}. Actually, due to the definition of

symbols, N (1) ∈ S1{−2σ,−1, 1} indicates |N (1)
qr | 6 C

N
. Consequently, a sufficiently large N

assures ‖N1 − I‖ < 1
2 in ZH(N, T0), which implies the invertibility of N1. As a result, we have

the following system after the second step of diagonalization:

(Dt − D + B)N1 = N1(Dt − D + F (0) + R1), where R1 ∈ S0{−2σ,−1, 2}.

Now we consider the system

(Dt − D + F (0) + R1)V2 = 0.
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After coordination, we have

DtV2 := D1V2 + B1V2 − R1V2

=

(
− θ(t)θ′(t)

2i(θ2(t)−4) + i
2θ(t)|ξ|2σ 0

0 − θ(t)θ′(t)
2i(θ2(t)−4) + i

2θ(t)|ξ|2σ

)
V2

+




− θ′(t)

2i
√

θ2(t)−4
+ i

2

√
θ2(t) − 4|ξ|2σ 0

0 θ′(t)

2i
√

θ2(t)−4
− i

2

√
θ2(t) − 4|ξ|2σ



V2 − R1V2.

The fundamental solution E2(t, s, ξ) for DtV2 = D1V2 is of the form:






E2(t, s, ξ)
(11) = exp

(
− 1

2

∫ t

s

θ(τ)|ξ|2σdτ + log
(θ2(s) − 4

θ2(t) − 4

) 1
4
)
,

E2(t, s, ξ)
(22) = exp

(
− 1

2

∫ t

s

θ(τ)|ξ|2σdτ + log
(θ2(s) − 4

θ2(t) − 4

) 1
4
)
,

E2(t, s, ξ)
(12) = E1(t, s, ξ)

(21) = 0.

It is clear that

‖E2(t, s, ξ)‖ .

√
θ(s)

θ(t)
exp

(
− 1

2

∫ t

s

θ(τ)|ξ|2σdτ
)
,

and for the remainder term, we have

exp
(∫ t

s

‖B1 − R1‖dτ
)

. exp
(1

2

∫ t

s

√
θ2(τ) − 4 |ξ|2σdτ

)
exp

(∫ t

s

θ′(τ)

2
√

θ2(τ) − 4
dτ
)

.

√
θ(t)

θ(s)
exp

(1

2

∫ t

s

√
θ2(τ) − 4 |ξ|2σdτ

)
.

These lead to the following estimate for large time:

‖V(t, ξ)‖ . exp
(1

2

∫ t

s

√
θ2(τ) − 4|ξ|2σdτ − 1

2

∫ t

s

θ(τ)|ξ|2σdτ
)
‖V(s, ξ)‖. (4.4)

Summarizing (4.1), (4.3) and (4.4), we have the following lemma.

Lemma 4.1 For the strictly increasing structural dissipation of the Cauchy problem (1.1),

we have

‖V(t, ξ)‖ . exp
(1

2

∫ t

Tc

√
θ2(τ) − 4 |ξ|2σdτ − 1

2

∫ t

Tc

θ(τ)|ξ|2σdτ
)
‖V(Tc, ξ)‖. (4.5)

For sufficiently large t, we notice the fact that 1
2 (
√

θ2(t) − 4 − θ(t)) ≤ θ−1(t). The energy

estimate (1.4) follows immediately.

5 Concluding Remarks

For the over-damping and under-damping coefficients, many problems still remain open (see

[1]). In the viscous damped systems, it is also very interesting to tackle the self-adjoint positive

definite operator with compact resolvent by the application of spectral theory (see [2]). As
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for the engineering applications of this kind of models, in 1986, the discovery of a family of

cuprate-perovskite ceramic materials known as high-temperature superconductors, with critical

temperatures in excess of 90 kelvin, spurred renewed interest and research in superconductiv-

ity for several reasons. Nowadays, new materials with even higher critical temperature have

been discovered and more commercial applications are feasible, for instance, mag-lev trains in

Shanghai, etc. For further information in this aspect, please refer to [6].
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