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Abstract This paper is concerned with inference of panel data varying-coefficient par-
tially linear models with a one-way error structure. The model is a natural extension of the
well-known panel data linear model (due to Baltagi 1995) to the setting of semiparamet-
ric regressions. The authors propose a weighted profile least squares estimator (WPLSE)
and a weighted local polynomial estimator (WLPE) for the parametric and nonparametric
components, respectively. It is shown that the WPLSE is asymptotically more efficient
than the usual profile least squares estimator (PLSE), and that the WLPE is also asymp-
totically more efficient than the usual local polynomial estimator (LPE). The latter is an
interesting result. According to Ruckstuhl, Welsh and Carroll (2000) and Lin and Car-
roll (2000), ignoring the correlation structure entirely and “pretending” that the data are
really independent will result in more efficient estimators when estimating nonparametric
regression with longitudinal or panel data. The result in this paper shows that this is not
true when the design points of the nonparametric component have a closeness property
within groups. The asymptotic properties of the proposed weighted estimators are derived.
In addition, a block bootstrap test is proposed for the goodness of fit of models, which can
accommodate the correlations within groups. Some simulation studies are conducted to
illustrate the finite sample performances of the proposed procedures.

Keywords Semiparametric, Panel data, Local polynomial, Weighted estimation,
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1 Introduction

Panel data arise frequently in biological and economic applications. Various parametric

models and statistical tools have been developed for panel data analysis (see, for instance, [1,

15] and the references therein. It is true that parametric models are very useful for analyz-

ing panel data and for providing a parsimonious description of the relationship between the

response variable and its covariates. However, they are often subject to the risk of introduc-

ing modeling bias. To relax the assumptions on parametric forms, Ruckstuhl, Welsh and [12]

proposed a nonparametric panel data regression model, which allows one to explore possible

hidden structures in the data and to reduce modeling bias of the traditional parametric meth-

ods. Such nonparametric models, however, have several shortcomings including the curse of

Manuscript received April 22, 2008. Revised May 15, 2009. Published online February 2, 2010.
∗School of Finance and Statistics, East China Normal University, Shanghai 200241, China.

∗∗Department of Statistics, Shanghai University of Finance and Economics, Shanghai 200433, China.
∗∗∗Corresponding Author. School of Management, Fudan University, Shanghai 200433, China.

E-mail: qfxu@fudan.edu.cn
∗∗∗∗Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.

∗∗∗∗∗Project supported by the Leading Academic Discipline Program, 211 Project for Shanghai University
of Finance and Economics (the 3rd phase) (No. B803) and the Shanghai Leading Academic Discipline
Project (No. B210).



248 B. Zhou, J. H. You, Q. F. Xu and G. M. Chen

dimensionality, difficulty of interpretation, and lack of extrapolation capability. To overcome

these shortcomings, semiparametric panel data regression models have been considered recently

which embody a compromise between a general nonparametric specification and a fully para-

metric specification. In this paper, we focus on a panel data varying-coefficient partially linear

model defined as

Yij = XT
ijβ + ZT

ijα(Uij) + εij , i = 1, · · · , k, j = 1, · · · , n0, (1.1)

with a one-way error structure

εij = µi + νij , i = 1, · · · , k, j = 1, · · · , n0. (1.2)

In (1.1), Yi1, · · · , Yin0
represent repeated response measurements from individual i, Xij =

(Xij1, · · · , Xijp)
T, Zij = (Zij1, · · · , Zijq)

Tand Uij are referred to as the design points, β

is an unknown p-dimensional vector of regression coefficients for the parametric component,

α( · ) = (α1( · ), · · · , αq( · ))T are unknown functions to model the nonlinear and nonparametric

components, and T denotes the transpose of a vector or matrix. In (1.2), µi and νij are i.i.d.

random variables with mean zero and variances σ2
µ and σ2

ν , respectively. Moreover, µi and νij

are independent. With the one-way error structure (1.2), the observations Yi1, · · · , Yin0
from

the same individual i share a common variable µi and thus are allowed to be dependent.

Obviously, model (1.1)–(1.2) includes many usual parametric, semiparametric and nonpara-

metric regression models. When α( · ) = (α1( · ), · · · , αq( · ))T ≡ (a1, · · · , aq)
T, model (1.1)–

(1.2) reduces to the traditional panel data linear model (see [1]), where a1, · · · , aq are unknown

constants. When q = 1 and Zij = 1, model (1.1)–(1.2) becomes the panel data partially linear

model. Zeger and Diggle [19] used this model to study CDE cell number in HIV seroconverters.

Other applications can be found in [8]. From the form of model (1.1), we can see that it permits

the interaction between the covariates U and Z in such a way that a different level of covariate

U is associated with a different linear model. This allows one to examine the extent to which

the effect of covariate Z varies over different levels of the covariate U , making model (1.1)–(1.2)

more flexible than the panel data partially linear model. When n0 = 1, which corresponds

to independent errors, model (1.1) reduces to the non-panel varying-coefficient partially linear

model, which has been widely studied in the literature (see, for example, [9, 20]). When p = 0,

model (1.1)–(1.2) becomes the panel data varying-coefficient regression, which has been studied

by Fan and Zhang [5], Huang, Wu and Zhou [7] among others. Moreover, the nonparametric

panel data regression model in [12] is a special case of model (1.1)–(1.2) as well.

In this paper, we study the inference for the panel data varying-coefficient partially linear

model (1.1)–(1.2). We propose a weighted profile least squares estimator (WPLSE) of the

parametric component and a weighted local polynomial estimator (WLPE) of the nonparametric

component when random effects are present. We show that the WPLSE is asymptotically

more efficient than the usual profile least squares estimator (PLSE), and that WLPE is also

asymptotically more efficient than the usual local polynomial estimator (LPE). The latter is an

interesting finding. Ruckstuhl, Welsh and Carroll [12] and Lin and Carroll [10] found that when

estimating nonparametric regression with longitudinal or panel data, ignoring the correlation

structure entirely and “pretending” that the data are really independent will result in more

efficient estimators. Our finding shows that this is not always true. When the design points

of the nonparametric component have a closeness property within groups, the WLPE has the

same asymptotic bias as the LPE but smaller asymptotic covariance matrix. Here the closeness

property means that max
1≤i≤k

∣∣ max
1≤j≤n0

Uij − min
1≤j≤n0

Uij

∣∣ = O(k−1 log k). The following are two

examples in which the closeness property is satisfied.
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Example 1.1 Uij ’s are generated as Uij = F−1
( (i−1)k+j

kn0−1

)
, i = 1, · · · , k, j = 1, · · · , n0,

where F ( · ) is a distribution function on U which has a Lipschitz continuous density p( · ) =
∂F ( · )

∂u
satisfying 0 < inf

U
p( · ) ≤ sup

U
p( · ) <∞, where U is the bounded support of U . According

to [11], it holds that

O
{ log(kn0)

kn0

}
≤ inf

1≤i≤k
inf

2≤j≤n0

|Uij − Uij−1| ≤ sup
1≤i≤k

sup
2≤j≤n0

|Uij − Uij−1| = O
{ log(kn0)

kn0

}
.

Example 1.2 Covariate U is measured repeatedly, that is, Ui1 = Ui2 = · · · = Uin0
for

i = 1, · · · , k.

An important issue in fitting model (1.1)–(1.2) is whether there exist parametric structures

for αj( · ), j = 1, · · · , q. This amounts to testing if αj( · )’s are with a certain parametric form.

A test is proposed based on the comparison of the residual sum of squares under the null and

alternative models, and a block bootstrap method is used to find the null distribution of the

test statistic. This block bootstrap test can accommodate the one-way error structure. Our

simulation shows that the resulting testing procedure is indeed powerful and the bootstrap

method does give the right null distribution.

The rest of the paper is organized as follows. The unweighted profile least squares and

local polynomial estimations of the parametric and nonparametric components are presented

in Section 2. A deleting block cross-validation method for bandwidth selection is proposed in

Section 3. Estimations of the error variances are discussed in Section 4. A weighted profile least

squares estimator of the parametric component and a weighted local polynomial estimator of the

nonparametric component are proposed in Section 5. A block bootstrap test for the goodness

of fit of model (1.1)–(1.2) is developed in Section 6. Some simulation studies are conducted in

Section 7. Some remarks are given in Section 8. Proofs of the main results are relegated to the

Appendix.

2 Unweighted Profile Least Squares and Local Linear Estimation

Throughout this paper, we assume large k and small n0. This is typical for labor or consumer

panel data (see [11]). We also assume that the design points Xij and Zij are random and Uij

are fixed as in [6, 16] etc. Extending our results to the case of both (Xij ,Zij) and Uij being

fixed or random is conceptually straightforward.

If we neglect the error structure, we can construct a profile least squares estimator (PLSE)

of the parametric component β. Assume that {XT
ij ,Z

T
ij , Uij , Yij ; i = 1, · · · , k, j = 1, · · · , n0}

satisfy model (1.1). For any given β, model (1.1) can be written as

Yij − XT
ijβ = ZT

ijα(Uij) + εij , i = 1, · · · , k, j = 1, · · · , n0, (2.1)

which is a version of the usual varying-coefficient regression model. Among the various pro-

cedures available, we use a local linear regression technique to estimate the varying coefficient

functions {αs( · ), s = 1, · · · , q} in (2.1). For u in a small neighborhood of u0, we approximate

αs(u) locally by a linear function

αs(u) ≈ αs(u0) + α′
s(u0)(u− u0) ≡ as + bs(u− u0), s = 1, · · · , q,

where α′
s(u) = ∂αs(u)

∂u
. This leads to the following weighted local least squares problem: find



250 B. Zhou, J. H. You, Q. F. Xu and G. M. Chen

{(as, bs), s = 1, · · · , q} to minimize

k∑

i=1

n0∑

j=1

[
(Yij − XT

ijβ) −
q∑

s=1

{as + bs(Uij − u0)}Zijs

]2
Kh(Uij − u0), (2.2)

where K( · ) is a kernel function, h is a bandwidth and Kh( · ) =
K( ·

h
)

h
. The solution to problem

(2.2) is given by

(α̂1(u), · · · , α̂q(u), b̂1(u), · · · , b̂q(u))T = (DT
u ωuDu)−1DT

u ωu(Y − Xβ),

where

Y =




Y11

...
Y1n0

...
Ykn0



, X =




XT
11
...

XT
1n0

...
XT

kn0



, Du =




ZT
11 (U11 − u)ZT

11
...

...
ZT

1n0
(U1n0

− u)ZT
1n0

...
...

ZT
kn0

(Ukn0
− u)ZT

kn0




and

ωu = diag(Kh(U11 − u), · · · ,Kh(U1n0
− u), · · · ,Kh(Ukn0

− u)).

Substituting (α̂1(u), · · · , α̂q(u))
T into (2.1) as an estimate of α(u), we obtain

Ŷij = X̂T
ijβ + ε⋆

ij , i = 1, · · · , k, j = 1, · · · , n0, (2.3)

where Ŷ=(Ŷ11, · · · , Ŷ1n0
, · · · , Ŷkn0

)T =(Ikn0
−S)Y, X̂=(X̂11, · · · , X̂1n0

, · · · , X̂kn0
)T =(Ikn0

−
S)X, ε⋆ = (ε⋆

11, · · · , ε⋆
1n0

, · · · , ε⋆
kn0

)T = (Ikn0
− S)ε, with ε = (ε11, · · · , ε1n0

, · · · , εkn0
)T,

S =




(ZT
11 0T

q )(DT
U11

ωU11
DU11

)−1DT
U11

ωU11

...
(ZT

1n0
0T

q )(DT
U1n0

ωU1n0
DU1n0

)−1DT
U1n0

ωU1n0

...
(ZT

kn0
0T

q )(DT
Ukn0

ωUkn0
DUkn0

)−1DT
Ukn0

ωUkn0




and 0q is a q × 1 vector of zeros.

If we take ε⋆
ij as the residual errors, then (2.3) is a version of the ordinary linear regression

model. Applying the least squares method to (2.3) results in the following (unweighted) profile

least squares estimator (PLSE) of β:

β̂k =
( k∑

i=1

n0∑

j=1

X̂ijX̂
T
ij

)−1 k∑

i=1

n0∑

j=1

X̂ij Ŷij . (2.4)

Correspondingly, α( · ) is estimated by a local linear estimator (LLE)

α̂k(u) = (Iq,0q×q)[α̂1(u), · · · , α̂q(u), b̂1(u), · · · , b̂q(u)]T

= (Iq,0q×q)(D
T
u ωuDu)−1DT

u ωu(Y − Xβ̂k),

where 0q×q is a q × q matrix of zeros.

In order to derive the asymptotic properties of β̂k, α̂k( · ) = (α̂1( · ), · · · , α̂q( · ))T and other

estimators proposed in the following sections, we make the following assumptions. These as-

sumptions are quite mild and can be easily satisfied. They are also used by Fan and Huang [4]

except Assumption 2.1(ii).
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Assumption 2.1 (i) Uij’s are generated from a distribution with bounded support U and

density function p( · ) that is Lipschitz continuous and satisfies 0 < inf
u∈U

p(u) ≤ sup
u∈U

p(u) <∞.

(ii) Uij’s satisfy a closeness property within groups, namely,

max
1≤i≤k

∣∣∣ max
1≤j≤n0

Uij − min
1≤j≤n0

Uij

∣∣∣ = O(k−1 log k).

Assumption 2.2 Zi = (Zi1, · · · ,Zin0
)T and Xi = (Xi1, · · · ,Xin0

)T (i = 1, · · · , k) are

i.i.d. random matrices and E(ZT
1 Z1) is non-singular.

Assumption 2.3 There is an s > 2 such that E‖X1‖2s < ∞ and E‖Z1‖2s < ∞ and

k2δ−1h→ ∞ as k → ∞ for some δ < 2 − s−1.

Assumption 2.4 {αs( · ), s = 1, · · · , q} have continuous second derivatives on U . Let

α′( · ) = (α′
1( · ), · · · , α′

q( · ))T, and α′′( · ) = (α′′
1 ( · ), · · · , α′′

q ( · ))T.

Assumption 2.5 The kernel function K( · ) is a density function with compact support and

the bandwidth h satisfies k
1

2 h8 → 0 and kh2

(log k)2 → ∞ as k → ∞.

Theorem 2.1 Suppose that Assumptions 2.1(i) and 2.2 to 2.5 hold. Then we have

√
k(β̂k − β) →D N(0,Σ−1

1 Σ2Σ
−1
1 ), as k → ∞,

where →D denotes convergence in distribution,

Σ1 = E(XT
1 X1) − E(XT

1 Z1)(E(ZT
1 Z1))

−1E(ZT
1 X1),

Σ2 = E[{XT
1 − E(XT

1 Z1)(E(ZT
1 Z1))

−1ZT
1 } · (σ2

µιn0
ιT
n0

+ σ2
νIn0

)

· {XT
1 − E(XT

1 Z1)(E(ZT
1 Z1))

−1ZT
1 }T],

where ιn0
is an n0×1 vector of 1’s, and σ2

µ and σ2
ν are the variances of µi and νij , respectively.

Theorem 2.2 Suppose that Assumptions 2.1(i) and 2.2 to 2.5 hold. Then we have

√
kn0h

{
α̂k(u0) − α(u0) −

h2

2

(µ0
2)

2 − µ0
1µ

0
3

µ0
2 − (µ0

1)
2

α′′(u0)
}
→D N(0,Σ3), as k → ∞,

provided p(u0) 6= 0, where

Σ3 =
(c20ν

0
0 + 2c0c1ν

0
1 + c21ν

0
2 )n0

p(u0)
(E(ZT

1 Z1))
−1E{ZT

1 (σ2
µιn0

ιTn0
+ σ2

νIn0
)Z1}(E(ZT

1 Z1))
−1,

c0 =
µ0

2

µ0
2 − (µ0

1)
2
, c1 =

−µ0
1

µ0
2 − (µ0

1)
2
, µ0

j =

∫ ∞

−∞

ujK(u)du, ν0
j =

∫ ∞

−∞

ujK2(u)du.

Theorem 2.3 Suppose that Assumptions 2.1(i) and 2.2 to 2.5 hold. Then we have

sup
u∈U

‖α̂k(u) − α(u)‖ = Op

{
h2 +

( log k

kh

) 1

2

}
.

Since β̂k and α̂k( · ) do not take the correlation within groups into account, they may not

be asymptotically efficient. However, according to Theorems 2.1 and 2.2 they are consistent

estimators of β and α( · ). Therefore, based on β̂k and α̂k( · ) we can estimate the residuals in

(1.1) and use them to test the one-way error structure (1.2), to fit the error structure of (1.2),

and to construct asymptotically more efficient estimators. In the following sections, we discuss

these issues.



252 B. Zhou, J. H. You, Q. F. Xu and G. M. Chen

3 A Leave-One-Subject Cross-Validation Criterion

The PLSE and LLE depend on the choice of the bandwidth. We note that there exist

correlations within groups. Therefore, we propose to use the leave-one-subject cross-validation

technique to determine an appropriate value of the bandwidth. Let α̂h,−i( · ) and β̂h,−i be the

local linear and profile least squares estimates, omitting the ith subject. Define the delete block

squares cross-validation function by

CV (h) = (kn0)
−1

k∑

i=1

n0∑

j=1

(Yij − XT
ij β̂h,−i − ZT

ijα̂h,−i(Uij))
2. (3.1)

Depending on the bandwidth h, CV (h) is used as an overall measure of the effectiveness of the

estimation scheme. The leave-one-subject cross-validation bandwidth selector is the one that

minimizes (3.1), namely

ĥCV = argmin
h
CV (h).

4 Estimating the Error Structure

The variances σ2
µ and σ2

ν describe the noise level. Apart from the intrinsic interest as

parameters of the model, estimating them is essential in the construction of efficient estimators

of the regression coefficients, confidence regions, model-based tests, model selection procedures,

signal-to-noise ratio and so on. Since E(εij1εij2) = σ2
µ when j1 6= j2 and E(ε2ij) = σ2

µ + σ2
ν , we

estimate σ2
µ and σ2

ν by

σ̂2
µ =

1

kn0(n0 − 1)

k∑

i=1

n0∑

j1=1

∑

j2 6=j1

ε̂ij1 ε̂ij2 and σ̂ 2
ν =

1

kn0

k∑

i=1

n0∑

j=1

ε̂ 2
ij − σ̂2

µ, (4.1)

respectively, where ε̂ij = Yij − XT
ijβ̂k − ZT

ijα̂k(Uij), i = 1, · · · , k and j = 1, · · · , n0.

The theorem below provides the asymptotic normality of the estimators σ̂ 2
µ and σ̂ 2

ν .

Theorem 4.1 Suppose that Assumptions 2.1(i) and 2.2 to 2.5 hold. Then it holds that

k
1

2 (σ̂ 2
µ − σ2

µ) →D N
(
0,Var(µ2

1) +
4σ2

µσ
2
ν

n0
+

2σ4
ν

n0(n0 − 1)

)
, as k → ∞ (4.2)

and

(kn0)
1

2 (σ̂ 2
ν − σ2

ν) →D N
(
0,Var(ν2

11) +
2σ4

ν

n0 − 1

)
, as k → ∞. (4.3)

In order to use Theorem 4.1 to make statistical inferences, we need consistent estimators of

the asymptotic variances of σ̂ 2
µ and σ̂ 2

ν .

Define

µ̂ 4 =
1

kn0(n0 − 1)

k∑

i=1

n0∑

j1=1

∑

j2 6=j1

ε̂ 2
ij1
ε̂ 2

ij2
and ν̂ 4 =

1

kn0

k∑

i=1

n0∑

j=1

ε̂ 4
ij − µ̂ 4.

The following theorem gives consistent estimators of the asymptotic variances of k
1

2 (σ̂ 2
µ − σ2

µ)

and (kn0)
1

2 (σ̂ 2
ν − σ2

ν).
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Theorem 4.2 Suppose that Assumptions 2.1(i) and 2.2 to 2.5 hold. Then we have

µ̂ 4 − σ̂ 4
µ +

[ 2

n0(n0 − 1)
− 1
]
σ̂ 4

ν +
( 4

n0
− 2
)
σ̂ 2

µσ̂
2
ν →p Var(µ2

1) +
4σ2

µσ
2
ν

n0
+

2σ4
ν

n0(n0 − 1)
(4.4)

and

ν̂ 4 − 4σ̂ 2
ν σ̂

2
µ +

2σ̂ 4
ν

n0 − 1
→p Var(ν2

11) +
2σ4

ν

n0 − 1
, (4.5)

as k → ∞.

Combining Theorem 4.2 with Theorem 4.1, we get the following corollary, which can be

used to construct tests and confidence regions for σ2
µ and σ2

ν .

Corollary 4.1 Suppose that Assumptions 2.1(i) and 2.2 to 2.5 hold. Then we have

k
1

2 (σ̂ 2
µ − σ2

µ)
√
µ̂ 4 − σ̂ 4

µ + σ̂ 4
ν [ 2

n0(n0−1) − 1] + σ̂ 2
µσ̂

2
ν( 4

n0
− 2)

→D N(0, 1), as k → ∞

and

(kn0)
1

2 (σ̂ 2
ν − σ2

ν)√
ν̂ 4 − 4σ̂ 2

ν σ̂
2
µ +

2bσ 4
ν

n0−1

→D N(0, 1), as k → ∞.

5 Weighted Profile Least Squares and Local Linear Estimations

The unweighted profile least squares estimator β̂k and local linear estimator α̂k( · ) are

not asymptotically efficient since they do not take into account the error structure. In order

to construct more efficient estimators, we first derive the inverse of the covariance matrix of

ε = (ε11, · · · , ε1n0
, · · · , εkn0

). According to (1.2), we have

Ω = E(εεT) = Ik ⊗ (σ2
µιn0

ιTn0
+ σ2

νIkn0
), (5.1)

where ⊗ denotes Kronecker product. Let ̟ be the inverse of σ2
µιn0

ιTn0
+ σ2

νIkn0
, i.e.,

̟ = η −2 ιn0
ιTn0

n0
+ σ−2

ν En0
, (5.2)

where η 2 = n0σ
2
µ + σ2

ν and En0
= In0

− ιn0
ι
T

n0

n0

. It is easy to see that the inverse of Ω is

Ω−1 = Ik ⊗ ̟. (5.3)

Then a consistent estimator of Ω−1 is given by

Ω̂−1 = Ik ⊗
(
η̂ −2 ιn0

ιTn0

n0
+ σ̂ −2

ν En0

)
,

with η̂ 2 = n0σ̂
2
µ + σ̂ 2

ν . From (1.1) and the procedure of constructing the PLSE β̂k in Section

2, we propose a weighted profile least squares estimator (WPLSE) of β as

β̂
w

k = (X̂wTΩ̂−1X̂w)−1X̂wTΩ̂−1Ŷw,
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where X̂w = (Ikn0
− Sw)X, Ŷw = (Ikn0

− Sw)Y and

Sw =




(ZT
11 0T

q )(DT
U11

ωU11
Ω̂−1DU11

)−1DT
U11

ωU11
Ω̂−1

...

(ZT
1n0

0T
q )(DT

U1n0

ωU1n0
Ω̂−1DU1n0

)−1DT
U1n0

ωU1n0
Ω̂−1

...

(ZT
kn0

0T
q )(DT

Ukn0

ωUkn0
Ω̂−1DUkn0

)−1DT
Ukn0

ωUkn0
Ω̂−1




.

Correspondingly, the nonparametric component α( · ) is estimated by

α̂
w
k (u) = (Iq,0q×q)[α̂

w
1 (u), · · · , α̂w

q (u), b̂w1 (u), · · · , b̂wq (u)]T

= (Iq,0q×q)(D
T
u ωuΩ̂

−1Du)−1DT
u ωuΩ̂

−1(Y − Xβ̂
w

k ).

Remark 5.1 From its definition, we see that β̂
w

k is not a simple weighted estimator from

the transformed model (2.3). Besides, by adding Ω̂−1 into the construction, the form of X̂ is

also changed into X̂w.

Theorem 5.1 Suppose that Assumptions 2.1(i) and 2.2 to 2.5 hold. Then we have

√
k(β̂

w

k − β) →D N(0,Σ−1
4 ), as k → ∞,

where

Σ4 = E(XT
1 ̟X1) − E(XT

1 ̟Z1)(E(ZT
1 ̟Z1))

−1E(ZT
1 ̟X1).

Remark 5.2 Let Z = (Z11, · · · ,Z1n0
, · · · ,Zkn0

)T. For any n0×n0 positive definite matrix

Σ, there is

(
XT(Ik ⊗ Σ−1)X XT(Ik ⊗ Σ−1)Z
ZT(Ik ⊗ Σ−1)X ZT(Ik ⊗ Σ−1)Z

)−1

≤
(
XTX XTZ

ZTX ZTZ

)−1(
XT(Ik ⊗ Σ)X XT(Ik ⊗ Σ)Z
ZT(Ik ⊗ Σ)X ZT(Ik ⊗ Σ)Z

)(
XTX XTZ

ZTX ZTZ

)−1

a.s.

From

A−1 =

(
A11 A12

A21 A22

)−1

=

(
A−1

11.2 −A−1
11.2A12A

−1
22

−A−1
22 A21A

−1
11.2 A−1

22 + A−1
22 A21A

−1
11.2A12A

−1
22

)
,

where A11.2 = A11 − A12A
−1
22 A21, we have

{XT(Ik ⊗ Σ−1)X − XT(Ik ⊗ Σ−1)Z[ZT(Ik ⊗ Σ−1)Z]−1ZT(Ik ⊗ Σ)X}−1

≤ [XTX − XTZ(ZTZ)−1ZTX]−1[XT − XTZ(ZTZ)−1Z]

· (Ik ⊗ Σ)[XT − XTZ(ZTZ)−1Z]T[XTX− XTZ(ZTZ)−1ZTX]−1.

This implies Σ−1
1 Σ2Σ

−1
1 ≥ Σ−1

4 . Therefore, β̂
w

k is asymptotically more efficient than β̂k in the

sense of having a smaller asymptotic covariance matrix. In fact, Carroll, Ruppert and Welsh [3]

showed that Σ−1
4 is the semiparametric information bound. Hence, the weighted profile least

squares estimator β̂
w

k is semiparametrically efficient.
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Theorem 5.2 Suppose that Assumptions 2.1 to 2.5 hold. Then we have

√
kn0h

{
α̂

w
k (u0) − α(u0) −

h2

2

(µ0
2)

2 − µ0
1µ

0
3

µ0
2 − (µ0

1)
2

α′′(u0)
}
→D N(0,Σ5), as k → ∞,

where Σ5 =
{
(c20ν

0
0 + 2c0c1ν

0
1 + c21ν

0
2 ) n0

p(u0)

}
{E(ZT

1 ̟Z1)}−1, µ0
1, µ

0
2, µ

0
3, ν

0
0 , ν

0
1 , ν

0
2 , c0, c1 are de-

fined in Theorem 2.2.

Theorem 5.3 Suppose that Assumptions 2.1 to 2.5 hold. Then we have

sup
u∈U

‖α̂w
k (u) − α(u)‖ = Op

{
h2 +

( log k

kh

) 1

2

}
.

Remark 5.3 From the definition of ̟ and

{E(ZT
1 ̟Z1)}−1 ≤ {E(ZT

1 Z1)}−1E(ZT
1 ̟−1Z1){E(ZT

1 Z1)}−1,

we have Σ5 ≤ Σ3. Therefore, the weighted local linear estimator α̂
w
k is asymptotically more

efficient than the local linear estimator α̂k. This is an interesting result. According to [10,

12], ignoring the correlation structure entirely and “pretending” that the data are really inde-

pendent will result in more efficient estimators when estimating nonparametric regression with

longitudinal or panel data. This observation was termed “working independence”. However, we

find this not true when the design points of the nonparametric component have the closeness

property within groups.

To estimate Σ4 and Σ5 consistently, let ̟̂ = η̂ −2 ιn0
ι
T

n0

n0

+ σ̂ −2
ν En0

and define

Σ̂4 =
1

k

k∑

i=1

X̂T
i ̟̂X̂i −

1

k

k∑

i=1

X̂T
i ̟̂Ẑi

(1

k

k∑

i=1

ẐT
i ̟̂Ẑi

)−1(1

k

k∑

i=1

X̂T
i ̟̂Ẑi

)T

and

Σ̂5 =
(c20ν

0
0 + 2c0c1ν

0
1 + c21ν

0
2)

p(u0)

( 1

kn0

k∑

i=1

ZT
i ̟̂Zi

)−1

.

Theorem 5.4 Suppose that Assumptions 2.1 and 2.4 hold. Then we have Σ̂4 →p Σ4 and

Σ̂5 →p Σ5 as k → ∞.

6 A Block Bootstrap Goodness of Fit Test

To test whether model (1.2) holds with a specified parametric form such as panel data linear

regression models, we conduct a goodness of fit test based on the comparison of the residual

sum of squares (RSS) from both parametric and semiparametric fittings.

Consider the null hypothesis

H0 : αj(u) = aj(u,θ), j = 1, · · · , q, (6.1)

where aj( · ,θ) is a given family of functions indexed by an unknown parameter vector θ. Let

θ̂k be an estimator of θ. The residual sum of squares under the null hypothesis is

RSS0 = (kn0)
−1

k∑

i=1

n0∑

j=1

(Yij − XT
ijβ̂k − ZT

ija(Uij , θ̂k))2,
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where a(Uij , θ̂k) = (a1(Uij , θ̂k), · · · , aq(Uij , θ̂k))T, and the residual sum of squares correspond-

ing to model (1.1) is

RSS1 = (kn0)
−1

k∑

i=1

n0∑

j=1

(Yij − XT
ijβ̂k − ZT

ijα̂k(Uij))
2.

We define our statistic to be

Dk =
RSS0 − RSS1

RSS1
=

RSS0

RSS1
− 1 (6.2)

and reject the null hypothesis (6.1) for large values of Dk. The following theorem supports our

test.

Theorem 6.1 Suppose that Assumptions 2.1(i) and 2.2 to 2.4 hold. Then under H0, Dk →
0 in probability as k → ∞. Otherwise, if inf

θ

[
∫
U
‖α(u) − a(u,θ)‖2du]

1

2 > 0, then there exists a

δ > 0 such that, with probability tending to one, Dk > δ.

Since there exist correlations within groups, the usual nonparametric bootstrap approach

(see [2]) can not be used to evaluate p-values of the test. We here propose to use the block

bootstrap approach to evaluate p-values of the test which can accommodate the correlations

within groups.

(1) By fitting the panel data varying-coefficient partially linear model we estimate the

residuals {εi}k
i=1 by {ε̂i}k

i=1 where εi = (εi1, · · · , εin0
)T, ε̂i = (ε̂i1, · · · , ε̂in0

)T and

ε̂ij = Yij − XT
ij β̂k − ZT

ijα̂k(Uij), i = 1, · · · , k, j = 1, · · · , n0.

(2) Generate bootstrap residuals {ε⋆
i }k

i=1 from the empirical distribution of the centered

residuals {ε̂i − ε̂}k
i=1 where ε̂ = k−1

k∑
i=1

ε̂i. Define

Y ⋆
ij = XT

ijβ̂k + ZT
ijα̂k(Uij) + ε⋆

ij for i = 1, · · · , k and j = 1, · · · , n0,

where ε⋆
ij is the jth entry of ε⋆

i .

(3) Calculate the bootstrap test statistic D⋆
k based on the sample {Uij ,Xij ,Zij , Y

⋆
ij} and

(6.2).

(4) Reject the null hypothesis H0 at level α when Dk is greater than the upper-α percentage

point of the conditional distribution of D⋆
k given {Uij ,Xij ,Zij , Yij}.

The p-value of the test is simply the relative frequency of the event {D⋆
k ≥ Dk} in the

replications of the bootstrap sampling. For the sake of simplicity, we use the same bandwidth

in calculating D⋆
k as that in Dk. Note that we bootstrap the centralized residuals from the

semiparametric fit instead of the parametric fit, because the semiparametric estimate of the

residuals is always consistent, no matter which of the null or the alternative hypothesis is true.

7 Some Simulation Studies

In this section, we carry out some simulation studies to demonstrate the finite sample

performances of the estimators and tests proposed in the previous sections.

The data are generated from the following panel data varying coefficient partially linear

model:

yij = xij1β1 + xij2β2 + zijα(uij) + εij , εij = µi + νij , i = 1, · · · , k, j = 1, · · · , n0,
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where xij1 ∼ i.i.d. N(2, 1), xij2 ∼ i.i.d. N(2, 1), uij = (i−1)n0+j−0.5
kn0

, β1 = 1.5, β2 = 2,

µi ∼ i.i.d. N(0, σ2
µ) and νi ∼ i.i.d. N(0, σ2

ν). Moreover, we take α(u) = 2 sin(2πu), 2 sin(4πu),

n0 = 2, 4 and (σ2
µ, σ

2
ν) = (2.25, 0.25), (2.25, 1), respectively.

In each case, the number of simulated realizations is 10, 000. We use Gaussian kernel, and

select bandwidth by the leave-one-subject cross-validation criterion proposed in Section 3.

7.1 The finite sample performance of the weighted estimation

Samples of size kn0 = 200, 400 and 600 are drawn repeatedly. We calculate the sample

means and standard deviations (SD) of the PLSE and WPLSE for the parametric components

β1 and β2, and of the estimators of the error variances σ2
µ and σ2

ν . We also calculate the sample

means and SDs of the benchmark estimator of β1 and β2, which is defined as

β̃
w

k = (X̃wTΩ−1X̃w)−1X̃wTΩ−1Ỹw, (7.1)

where X̃w and Ỹw have the same definitions as X̂w and Ŷw except that Ω̂ is replaced by

Ω. Moreover, we report the relative efficiencies (RE) of the PLSE and WPLSE defined as the

ratio of the mean square error (MSE) of the estimator in question to that of the benchmark

estimator. Some representative results are listed in Table 1 and Table 2. We see that

(1) The PLSE, WPLSE and the estimators for the error variances are asymptotically

unbiased.

(2) The WPLSE has smaller standard deviation than that of the PLSE. This is consistent

with our theoretical results.

(3) The relative efficiency of the WPLSE is very close to 1. As for the PLSE, since it

ignores the error structure, its relative efficiency is not close to 1. In some cases, the MSE of

the PLSE is more than twice as large as that of the WPLSE.

(4) In general, increasing k and/or n0 improves the performance of the WPLSE, but this

is not true for the PLSE.

In addition, we also demonstrate the finite sample performances of the estimators of the

nonparametric components. An estimator α̃( · ) of α( · ) is assessed via the square root of

average squared errors (SRASE) defined by

SRASE =
[
(kn0)

−1
k∑

i=1

n0∑

j=1

{α̃(uij) − α(uij)}2
] 1

2

.

Some representative results are listed in Table 3, in which R1 is for the SRASE of the unweighted

local polynomial estimator, R2 for the SRASE of the weighted local polynomial estimator with

estimated weights, and R3 for the SRASE of the weighted local polynomial estimator with the

known weights. From Table 3, we see that the WLPE outperforms the LPE.

7.2 The power of the block bootstrap goodness of fit test

To study the power of the proposed bootstrap test, we consider the following null hypothesis:

H0 : α(uij) = θ for all i = 1, · · · , k, j = 1, · · · , n0,

namely a linear regression model, against the alternative

H1 : α(uij) 6= θ for at least one pair of i and j.
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Table 1 Finite sample performance of the estimators of the
parametric components and error variances with n0 = 2bβ1k

bβ2k
bβw
1k

bβw
2k

eβ1k
eβ2k bσ 2

µ bσ 2

ν

α(u) = 2 sin(2πu) σ2

µ = 2.25, σ2

ν = 0.25

k = 100 Mean 1.4993 1.9989 1.5021 1.9973 1.5025 1.9976 1.9921 0.3184

SD 0.0838 0.0866 0.0503 0.0496 0.0510 0.0500 0.3070 0.0549

RE 1.6429 1.7318 0.9862 0.9920 – – – –

k = 200 Mean 1.4995 2.0000 1.4981 2.0007 1.4980 2.0007 2.1275 0.2892

SD 0.0626 0.0629 0.0328 0.0319 0.0329 0.0320 0.2293 0.0334

RE 1.9025 1.9656 0.9969 0.9969 – – – –

k = 300 Mean 1.4959 1.9994 1.5037 2.0025 1.5041 2.0031 2.2303 0.2820

SD 0.0434 0.0480 0.0242 0.0253 0.0244 0.0250 0.1908 0.0274

RE 1.7782 1.9193 0.9917 1.0119 – – – –

σ2

µ = 2.25, σ2

ν = 1.0

k = 100 Mean 1.4883 2.0085 1.4901 2.0041 1.4896 2.0041 1.9970 1.0153

SD 0.0999 0.1006 0.0779 0.0795 0.0777 0.0796 0.3710 0.1446

RE 1.2857 1.2645 1.0024 0.9987 – – – –

k = 200 Mean 1.5022 1.9905 1.4938 1.9951 1.4937 1.9956 2.1429 1.0305

SD 0.0645 0.0693 0.0520 0.0502 0.0522 0.0504 0.2585 0.1016

RE 1.2348 1.3763 0.9961 0.9961 – – – –

k = 300 Mean 1.5049 1.9903 1.4984 1.9949 1.4982 1.9950 2.1735 1.0111

SD 0.0610 0.0632 0.0458 0.0468 0.0460 0.0467 0.2323 0.0904

RE 1.3265 1.3546 0.9956 1.0022 – – – –

α(u) = 2 sin(4πu) σ2

µ = 2.25, σ2

ν = 0.25

k = 100 Mean 1.5106 2.0030 1.5031 2.0002 1.5020 1.9993 2.0129 0.3519

SD 0.0960 0.0886 0.0548 0.0520 0.0553 0.0531 0.3235 0.0727

RE 1.7379 1.6687 0.9911 0.9793 – – – –

k = 200 Mean 1.5007 1.9999 1.4964 2.0001 1.4962 1.9996 2.1430 0.3274

SD 0.0628 0.0621 0.0331 0.0343 0.0336 0.0350 0.2554 0.0476

RE 1.8683 1.7743 0.9851 0.9800 – – – –

k = 300 Mean 1.4997 2.0011 1.5007 1.9998 1.5006 1.9996 2.1090 0.2917

SD 0.0502 0.0491 0.0290 0.0277 0.0295 0.0275 0.1952 0.0252

RE 1.7017 1.7855 0.9831 1.0073 – – – –

σ2

µ = 2.25, σ2

ν = 1.0

k = 100 Mean 1.4864 2.0004 1.4869 2.0007 1.4870 2.0011 1.8170 1.0147

SD 0.1020 0.1050 0.0847 0.0843 0.0857 0.0844 0.3625 0.1552

RE 1.1900 1.2441 0.9884 0.9988 – – – –

k = 200 Mean 1.5000 1.9990 1.5002 2.0001 1.5006 1.9996 2.0106 1.0256

SD 0.0718 0.0733 0.0540 0.0572 0.0537 0.0573 0.2591 0.1039

RE 1.3370 1.2792 1.0056 0.9983 – – – –

k = 300 Mean 1.5141 1.9861 1.5102 1.9920 1.5104 1.9920 2.0933 1.0204

SD 0.0471 0.0491 0.0395 0.0357 0.0395 0.0358 0.1672 0.0946

RE 1.1942 1.3744 0.9999 0.9972 – – – –

Note Mean, SD and RE denote the sample mean, standard deviation and relative efficiency,

respectively. bβsk, bβw
sk and eβw

sk are the PLSE, WPLSE and benchmark estimators of βs, respectively,

where s = 1 and 2.
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Table 2 Finite sample performance of the estimators of the
parametric components and error variances with n0 = 4bβ1k

bβ2k
bβw
1k

bβw
2k

eβ1k
eβ2k bσ 2

µ bσ 2

ν

α(u) = 2 sin(2πu) σ2

µ = 2.25, σ2

ν = 0.25

k = 50 Mean 1.5051 1.9964 1.4996 2.0030 1.4995 2.0030 1.9882 0.3183

SD 0.0981 0.0964 0.0443 0.0485 0.0445 0.0496 0.4364 0.0467

RE 2.2039 1.9445 0.9947 0.9783 – – – –

k = 100 Mean 1.4893 2.0023 1.4964 1.9983 1.4963 1.9982 2.0994 0.2896

SD 0.0634 0.0603 0.0324 0.0302 0.0322 0.0304 0.3039 0.0294

RE 1.9744 1.9802 1.0071 0.9925 – – – –

k = 150 Mean 1.5016 1.9938 1.4995 1.9998 1.4996 2.0000 2.1225 0.2853

SD 0.0545 0.0570 0.0256 0.0245 0.0257 0.0245 0.2372 0.0238

RE 2.1234 2.3252 0.9980 0.9996 – – – –

σ2

µ = 2.25, σ2

ν = 1.0

k = 50 Mean 1.5012 1.9951 1.4957 1.9985 1.4948 1.9983 1.9586 1.0268

SD 0.1052 0.1120 0.0719 0.0790 0.0724 0.0789 0.4904 0.1248

RE 1.4518 1.4197 0.9925 1.0018 – – – –

k = 100 Mean 1.5029 1.9988 1.5015 2.0013 1.5017 2.0014 2.1111 1.0174

SD 0.0782 0.0681 0.0524 0.0438 0.0525 0.0440 0.3394 0.0857

RE 1.4892 1.5483 0.9987 0.9947 – – – –

k = 150 Mean 1.4968 2.0006 1.5002 2.0088 1.4999 2.0089 2.1140 1.0297

SD 0.0523 0.0531 0.0370 0.0371 0.0371 0.0372 0.2526 0.0668

RE 1.4105 1.4234 0.9985 0.9969 – – – –

α(u) = 2 sin(4πu) σ2

µ = 2.25, σ2

ν = 0.25

k = 50 Mean 1.5080 1.9930 1.4998 1.9980 1.4994 1.9980 1.9360 0.3533

SD 0.1103 0.0944 0.0524 0.0486 0.0523 0.0493 0.4435 0.0649

RE 2.1113 1.9158 1.0022 0.9859 – – – –

k = 100 Mean 1.5022 1.9959 1.5018 1.9959 1.5018 1.9959 2.0399 0.3092

SD 0.0664 0.0625 0.0337 0.0319 0.0339 0.0319 0.3133 0.0328

RE 1.9613 1.9572 0.9964 0.9987 – – – –

k = 150 Mean 1.4846 2.0082 1.4989 1.9985 1.4992 1.9986 2.0839 0.2904

SD 0.0511 0.0525 0.0283 0.0295 0.0283 0.0293 0.2477 0.0257

RE 1.8156 1.7966 1.0002 1.0098 – – – –

σ2

µ = 2.25, σ2

ν = 1.0

k = 50 Mean 1.5025 2.0010 1.5018 1.9981 1.5022 1.9979 1.9264 1.0503

SD 0.1102 0.1018 0.0710 0.0706 0.0716 0.0708 0.4132 0.1176

RE 1.5402 1.4377 0.9924 0.9964 – – – –

k = 100 Mean 1.4979 2.0003 1.4992 2.0001 1.4992 2.0002 2.0699 1.0357

SD 0.0747 0.0758 0.0520 0.0483 0.0522 0.0481 0.3270 0.0856

RE 1.4304 1.5777 0.9957 1.0056 – – – –

k = 150 Mean 1.5284 1.9920 1.5068 2.0026 1.5070 2.0030 2.1862 1.0229

SD 0.0539 0.0663 0.0344 0.0440 0.0346 0.0440 0.2847 0.0529

RE 1.5819 1.5059 0.9951 0.9992 – – – –

Note Mean, SD and RE denote the sample mean, standard deviation and relative efficiency,

respectively. bβsk, bβw
sk and eβw

sk are the PLSE, WPLSE and benchmark estimators of βs, respectively,

where s = 1 and 2.
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Table 3 Finite sample performances of the estimators
of the nonparametric components

σ2

µ σ2

ν k n0 α(u) Mean(R1) SD(R1) Mean(R2) SD(R2) Mean(R3) SD(R3)

2.25 0.25 200 2 2 sin(2πu) 0.0536 0.0239 0.0130 0.0061 0.0130 0.0061

2.25 1.00 200 2 2 sin(2πu) 0.0746 0.0378 0.0411 0.0251 0.0414 0.0251

2.25 0.25 200 2 2 sin(4πu) 0.0930 0.0338 0.0248 0.0088 0.0248 0.0086

2.25 1.00 200 2 2 sin(4πu) 0.1097 0.0367 0.0685 0.0250 0.0683 0.0249

2.25 0.25 100 4 2 sin(2πu) 0.0720 0.0381 0.0105 0.0045 0.0105 0.0045

2.25 1.00 100 4 2 sin(2πu) 0.0886 0.0528 0.0332 0.0150 0.0334 0.0158

2.25 0.25 100 4 2 sin(4πu) 0.0804 0.0283 0.0231 0.0080 0.0231 0.0079

2.25 1.00 100 4 2 sin(4πu) 0.1063 0.0555 0.0513 0.0207 0.0515 0.0207

Note R1, R2 and R3 denote the SRASE of the LLE, WLLE with estimated weights and WLLE

with known weights, respectively.

Table 4 The size and power of bootstrap goodness of test of models

c 0 0 0 0.35 0.50 0.65

level of significance 5% 10% 20% 5% 5% 5%

σ2

µ σ2

ν k n0 size power

2.25 1.00 200 2 5.8% 8.7% 23.3% 59.7% 87.1% 96.7%

2.25 1.00 100 4 5.2% 10.2% 21.8% 66.6% 92.5% 100%

Specifically, we evaluate power under a sequence of alternative models indexed by c,

H1 : α(uij) = α0 + c(α0(uij) − α0) for all i = 1, · · · , k, j = 1, · · · , n0,

where α0(uij) = 2 sin(2πuij) and α0 = (kn0)
−1

k∑
i=1

n0∑
j=1

α0(uij). For each realization, we repeat

bootstrap sampling 500 samples. The results are listed in Table 4. From Table 4, we can see

that the proposed bootstrap test behaves well under the null hypothesis and is powerful under

the alternative hypotheses.

8 Concluding Remarks

Semiparametric regression modeling has become a mainstay recently due to its flexibility.

This paper studies the test and estimation problems of a semiparametric panel data varying

coefficient partially linear model with one-way error structure. For the parametric component

we have proposed a weighted profile least squares estimator (WPLSE) and shown that it is

asymptotically more efficient than the usual profile least squares estimator (PLSE). For the

nonparametric component, we have proposed a weighted local polynomial estimator (WLPE)

and shown that the WLPE is also asymptotically more efficient than the usual local polynomial

estimator (LPE). This is an interesting result which is a complement of the finding by Ruckstuhl,

Welsh and Carroll [12] and Lin and Carroll [10]. The asymptotic properties of these weighted

estimators have been established. In addition, we have proposed a block bootstrap test for the

goodness of fit of models. These results can be used to make asymptotically valid statistical

inferences.

We focused on the case of equal error variance. In practice, however, the error variances

may differ substantially. For example, heteroscedasticity in the disturbance term has been
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observed in gasoline demand across Organization for Economic Co-Operation and Development

(OECD) countries. Interesting topics for future study include extending our results to look after

heteroscedasticity.

Appendix Proofs of the Main Results

In order to prove the main results, we first introduce several lemmas.

Lemma A.1 Suppose that Assumptions 2.1(i), 2.2 to 2.4 hold. Then, as k → ∞ we have

sup
u∈U

∥∥∥
1

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

[
Kh(Uij1 − u)

(Uij1 − u

h

)s

Zij1Z
T
ij2

− p(u)E(Zij1Z
T
ij2

)µ0
s

]∥∥∥ = O(ck) a.s.

and

sup
u∈U

∥∥∥
1

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

Kh(Uij1 − u)
(Uij1 − u

h

)s

Zij1εij2

∥∥∥ = O
[( log k

kh

) 1

2

]
a.s.,

where s = 0, 1, 2, 4, ck = h2 +
(

log k
kh

) 1

2 .

Lemma A.2 Suppose that Assumptions 2.1(i), 2.2 to 2.4 hold. Then, as k → ∞, we have

1

n0k

k∑

i1=1

n0∑

j1=1

k∑

i2 6=i1

n0∑

j2=1

Kh(Ui2j2 − Ui1j1)d
T
2q,s1

(DT
Ui1j1

ωUi1j1
DUi1j1

)−1

·d2q,s2
ζ′i1j1s1

ζ′i2j2s2
= o(k−

1

2 ) a.s., (A.1)

where 1 ≤ s1, s2 ≤ q, d2q,s is a 2q-vector with the sth entry being 1 and other entries being 0,

ζijs = Zijsεij and ζ′ijs = ζijsI
{|ζijs |≤i

1

4 }
− E(ζijsI

{|ζijs |≤i
1

4 }
|Zijs).

Lemma A.3 Let e1, · · · , ek be independent random variables with mean zero and finite

variance, and sup
1≤i≤k

E|ei|r ≤ c < ∞ (r > 2). Assume {a(k)
ij , i, j = 1, · · · , k} to be a sequence

of positive numbers such that sup
1≤i,j≤k

|a(k)
ij | ≤ k−p1 for some 0 ≤ p1 ≤ 1 and

k∑
i=1

|a(k)
ij | = O(kp2 )

for p2 ≥ max(0, 2
r
− p1). Then

max
1≤j≤k

∣∣∣
k∑

i=1

a
(k)
ij ei

∣∣∣ = O(k−s log k) for s =
1

2
(p1 − p2) a.s. (A.2)

Lemma A.4 Let {ξi}k
i=1 be independent random variables with zero means and finite

absolute moments of order s ≥ 2. Then

E
∣∣∣

k∑

i=1

ξi

∣∣∣
s

≤ csk
s−2

2

k∑

i=1

E|ξi|s,

where cs is a constant.

The proofs of Lemmas A.1–A.3 are similar to those of Lemma A2 in [17], Lemma 4.3 in [21]

and Lemma 1 in [13], respectively. We here omit the details. Lemma A.4 can be found in [14].
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Lemma A.5 Suppose that Assumptions 2.1 to 2.4 hold. Then we have

1

k
X̂TX̂ →p Σ1 and

1

k
X̃wTΩ−1X̃w →p Σ4, as k → ∞, (A.3)

where Σ1 and Σ4 are defined in Theorems 2.1 and 5.1, respectively, X̃w = (Ikn0
− S̃w)X, S̃w

has the same definition as Sw in Section 5 except that Ω̂ is replaced by Ω.

Proof By applying Lemma A.1 and the form of Ω−1, it is easy to show that Lemma A.5

holds. We here omit the details.

Denote α̃
w
k (u) = (Iq ,0q×q)(D

T
u ωuΩ

−1Du)−1DT
u ωuΩ

−1(Y − Xβ̃
w

k ) with β̃
w

k as (7.1). For

β̃
w

k and α̃
w
k (u) = (α̃w

1 (u), · · · , α̃w
q (u))T, we have the following results.

Lemma A.6 Suppose that Assumptions 2.1 to 2.5 hold. Then we have

√
k(β̃

w

k − β) →D N(0,Σ−1
4 ), as k → ∞ (A.4)

and

√
kn0h

{
α̃

w
k (u0) − α(u0) −

h2

2

(µ0
2)

2 − µ0
1µ

0
3

µ0
2 − (µ0

1)
2

α′′(u0)
}
→D N(0,Σ5), as k → ∞, (A.5)

where Σ4 and Σ5 are defined in Section 5.

Proof Here, we write Φ = (E(ZT
1 ̟Z1))

−1 and ̟ = (σj1j2)n0

j1,j2=1 for convenience. Ac-

cording to the definition of β̃
w

k , it can be verified that

β̃
w

k − β = (X̃wTΩ−1X̃w)−1{X̃wTΩ−1(Ikn0
− S̃w)M + X̃wTΩ−1(Ikn0

− S̃w)ε},

where M = (ZT
11α(U11), · · · ,ZT

1n0
α(U1n0

), · · · ,ZT
kn0

α(Ukn0
))T, and ε is defined in Section 5.

Since X̃wTΩ−1(Ikn0
− S̃w)M = [X+(X̃w−X)]TΩ−1(Ikn0

− S̃w)M, the sth entry of this matrix

can be written as

k∑

i=1

n0∑

j1=1

n0∑

j2=1

σj1j2{Xij1sZ
T
ij2

− E(dT
p,sX

T
1 ̟Z1)ΦZij1Z

T
ij2

}

· {α(Uij2 ) − (Iq,0q×q)(D
T
Uij2

ωUij2
Ω−1DUij2

)−1DT
Uij2

ωUij2
Ω−1M}

+
k∑

i=1

n0∑

j1=1

n0∑

j2=1

σj1j2{X̃w
ij1s −Xij1s + ZT

ij1
ΦE(ZT

1 ̟X1dp,s)}

· {ZT
ij2

α(Uij2 ) − (ZT
ij2
,0T

q )(DT
Uij2

ωUij2
Ω−1DUij2

)−1DT
Uij2

ωUij2
Ω−1M} = I1 + I2,

where X̃w
ij1s is the sth entry of X̃w

ij1
.

Since
n0∑

j1=1

n0∑
j2=1

σj1j2{Xij1sZ
T
ij2

−E(dT
p,sX

T
1 ̟Z1)ΦZij1Z

T
ij2

}’s are i.i.d. random vectors with

mean zero and finite covariance matrix and

max
1≤i≤k

max
1≤j2≤n0

‖α(Uij2 ) − (Iq,0q×q)(D
T
Uij2

ωUij2
Ω−1DUij2

)−1DT
Uij2

ωUij2
Ω−1M‖ = Op(ck),

it holds that I1 = op(k
1

2 ). Further,

X̂ij1s −Xij1s + ZT
ij1

(E(Z1j1Z
T
2j2

))−1E(Zij2Xij1s)
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= Op

{( log k

kh

) 1

2

}
{Xij1s − ZT

ij1
ΦE(ZT

1 ̟X1dp,s)}

and

ZT
ij2

α(Uij2 ) − (ZT
ij2
,0)(DT

Uij2
ωUij2

Ω−1DUij2
)−1DT

Uij2
ωUij2

Ω−1M = Op(ck) · ZT
ij2

α(Uij2 ).

This implies I2 = op(k
1

2 ) as well. So we have

X̃wTΩ−1(Ikn0
− S̃w)M = op(k

1

2 ). (A.6)

Moreover, the sth entry of X̃wTΩ−1(Ikn0
− S̃w)ε can be written as

k∑

i=1

n0∑

j1=1

n0∑

j2=1

σj1j2{Xij1s − ZT
ij1

ΦE(ZT
1 ̟X1dp,s)}εij2

−
k∑

i=1

n0∑

j1=1

n0∑

j2=1

σj1j2{Xij1sZ
T
ij2

− ZT
ij1

ΦE(ZT
1 ̟X1dp,s)Z

T
ij2

}

· (Iq,0q×q)(D
T
Uij2

ωUij2
Ω−1DUij2

)−1DT
Uij2

ωUij2
Ω−1ε

+

k∑

i=1

n0∑

j1=1

n0∑

j2=1

σj1j2{X̃w
ij1s −Xij1s + ZT

ij1
ΦE(ZT

1 ̟X1dp,s)}εij2

−
k∑

i=1

n0∑

j1=1

n0∑

j2=1

σj1j2{X̃w
ij1s −Xij1s + ZT

ij1
ΦE(ZT

1 ̟X1dp,s)}

· (ZT
ij2
,0)(DT

Uij2
ωUij2

Ω−1DUij2
)−1DT

Uij2
ωUij2

Ω−1ε = K1 + K2 + K3 + K4.

We first show that K2 = op(k
1

2 ). Denote

ζij1j2s = Xij1sZij2 − ZT
ij1

ΦE(ZT
1 ̟X1ds)Zij2

and

ξij2 = (Iq,0q×q)(D
T
Uij2

ωUij2
Ω−1DUij2

)−1DT
Uij2

ωUij2
Ω−1ε.

Then we have

−K2 =

k∑

i=1

n0∑

j1=1

n0∑

j2=1

q∑

s1=1

σj1j2ζij1j2ss1
ξij2s1

=

k∑

i=1

n0∑

j2=1

q∑

s1=1

ξij2s1

n0∑

j1=1

σj1j2ζij1j2ss1
,

where ζij1j2ss1
and ξij2s1

are the s1th entry of ζij1j2s and ξij2 , respectively. It is easy to see

max
1≤s1≤q

max
1≤i≤k

max
1≤j2≤n0

|ξij2s1
| = Op

{ log k

(kh)
1

2

}
.

For i = 1, · · · , k, j2 = 1, · · · , n0 and s1 = 1, · · · , q, put ϑij2s1
= ξij2s1

n0∑
j1=1

σj1j2ζij1j2ss1
,

( n0∑

j1=1

σj1j2ζij1j2ss1

)′
=

n0∑

j1=1

σj1j2ζij1j2ss1
I{∣∣ n0P

j1=1

σj1j2ζij1j2ss1

∣∣≤δ2i
1

2

}
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and ( n0∑

j1=1

σj1j2ζij1j2ss1

)′′
=

n0∑

j1=1

σj1j2ζij1j2ss1
I{∣∣ n0P

j1=1

σj1j2ζij1j2ss1

∣∣>δ2i
1

2

}

for any δ > 0, where IB denotes the indicator function B. Then

ϑij2s1
= ξij2s1

( n0∑

j1=1

σj1j2ζij1j2ss1

)′
+ ξij2s1

( n0∑

j1=1

σj1j2ζij1j2ss1

)′′
.

Since max
1≤i≤k

max
1≤j2≤n0

max
1≤s1≤q

E
∣∣∣

n0∑
j1=1

σj1j2ζij1j2ss1

∣∣∣
2

< ∞, by the three-series theorem we obtain

k∑
i=1

n0∑
j2=1

∣∣∣
( n0∑

j1=1

σj1j2ζij1j2ss1

)′′∣∣∣ <∞, and consequently,

k−
1

2

∣∣∣
k∑

i=1

n0∑

j2=1

( n0∑

j1=1

σj1j2ζij1j2ss1

)′′∣∣∣ = o(1) a.s.

For i = 1, · · · , k, j2 = 1, · · · , n0 and s1 = 1, · · · , q, let ϑ′ij2s1
= ξij2s1

( n0∑
j1=1

σj1j2ζij1j2ss1

)′
. Note

that {ϑ′11s1
, · · · , ϑ′1n0s1

}, · · · , {ϑ′k1s1
, · · · , ϑ′kn0s1

} are independent of the given ε. It is easy to

show that E(ϑij2s1
|ε) = 0,

max
1≤i≤k

max
1≤j2≤n0

max
1≤s1≤q

|ϑij2s1
| ≤ max

1≤i≤k
max

1≤j2≤n0

max
1≤s1≤q

|ξij2s1
|δ2k 1

2

and E(ϑ2
ij2s1

|ε) = ξ2ij2s1
E
{( n0∑

j1=1

σj1j2ζij1j2ss1

)2}
. By the Bernstein inequality, we have

P
{ ⋃

k≥m

1√
k

∣∣∣
k∑

i=1

n0∑

j2=1

q∑

s1=1

ϑ′ij2s1

∣∣∣ ≥ δ
}
≤
∑

k≥m

E
[ 1√

k

k∑

i=1

n0∑

j2=1

q∑

s1=1

P{|ϑ′ij2s1
| ≥ δ|ε}

]

≤ 2
∑

k≥m

k∑

i=1

n0∑

j2=1

q∑

s1=1

E
[
exp

{
− 1

2δ2k
1

2 ζk

}]

≤ 2
∑

k≥m

k−2 → 0, as m→ ∞.

By combining Borel-Cantelli lemma, it holds that
∣∣∣k− 1

2

k∑
i=1

n0∑
j2=1

q∑
s1=1

ϑ′ij2s1

∣∣∣ → 0 a.s. So K2 =

op(k
1

2 ). By the same argument we can show K3 = op(k
1

2 ). Moreover, by applying Lemma A.1,

it is easy to see that K4 = op(k
1

2 ). Therefore, we have

X̃wTΩ−1(Ikn0
− S̃w)ε =

k∑

i=1

n0∑

j1=1

n0∑

j2=1

σj1j2{Xij1 − E(XT
1 ̟Z1)ΦZij1}εij2 + op(k

1

2 ). (A.7)

For any nonzero vector Λ = (λ1, · · · , λp)
T, we have

1√
k
ΛT

k∑

i=1

n0∑

j1=1

n0∑

j2=1

σj1j2{Xij1 − E(XT
1 ̟Z1)ΦZij1}εij2 =

1√
k

p∑

s=1

λs

k∑

i=1

ψis,
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where ψis =
n0∑

j1=1

n0∑
j2=1

σj1j2{Xij1s −ZT
ij1

ΦE(ZT
1 ̟X1dp,s)}εij2 . Note that for i = 1, · · · , k, ψis’s

are independent random variables with mean zero. It is easy to check that {ψis}k
i=1 satisfy the

Linderberg condition. Moreover,

Var
{ 1√

k
ΛTX̃wTΩ−1(Ikn0

− S̃w)ε
}
→ ΛTΣ4Λ, as k → ∞. (A.8)

Therefore, combining Lemma A.5 and (A.6)–(A.8), we see that (A.4) holds.

Now, we begin to prove the result for α̃
w
k (u). Let αw

k (u) = (αw
1 (u), · · · , αw

q (u))T, b
w

k (u) =

(b
w

1 (u), · · · , bwq (u))T and

((αw
k (u))T, (b

w

k (u))T)T = (DT
u ωuΩ

−1Du)−1DT
u ωuΩ

−1(Y − Xβ).

By the root-k consistency of β̃
w

k , it is easy to show αw
k (u)− α̃

w
k (u) = o(h2). Therefore, in order

to complete the proof, we just need to show

√
kn0h

{
αw

k (u0) − α(u0) −
h2

2

(µ0
2)

2 − µ0
1µ

0
3

µ0
2 − (µ0

1)
2

α′′(u0)
}
→D N(0,Σ5), as k → ∞.

We write 1
kn0

DT
u0

ωu0
Ω−1Du0

=
(

Ψ1 Ψ2

Ψ3 Ψ4

)
. According to Assumption 2.5 on kernel function

K( · ), Assumption 2.1 on the mechanism of generating Uij , and Lemma A.1, we have the

following results. First,

Ψ1 =
1

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

Zij1Z
T
ij2
σj1j2Kh(Uij1 − u0) =

p(u0)

n0
Φ−1 +Op

{( log k

kh

) 1

2

}
,

where Φ−1 =
n0∑

j1=1

n0∑
j2=1

E(Z1j1Z
T
1j2

)σj1j2 according to the definition of Φ. Then

Ψ2 =
1

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

Zij1Z
T
ij2
σj1j2Kh(Uij1 − u0)(Uij2 − u0)

=
h

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

Zij1Z
T
ij2
σj1j2Kh(Uij1 − u0)

(Uij1 − u0

h

)

+
h

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

Zij1Z
T
ij2
σj1j2Kh(Uij1 − u0)

(Uij2 − Uij1

h

)
= J1 + J2.

Obviously, by Lemma A.1,

J1 =
hp(u0)

n0
µ0

1Φ
−1 +Op

{( log k

kh

) 1

2

}
and J2 = O

( 1

kh

)
+Op

( log k

kh2

)
= op(1).

This implies

Ψ2 =
hp(u0)

n0
µ0

1Φ
−1 + op(1).

By the same argument, we can show

Ψ3 =
1

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

Zij1Z
T
ij2
σj1j2Kh(Uij1 − u0)(Uij1 − u0) =

hp(u0)

n0
µ0

1Φ
−1 + op(1).



266 B. Zhou, J. H. You, Q. F. Xu and G. M. Chen

Further,

Ψ4 =
1

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

Zij1Z
T
ij2
σj1j2Kh(Uij1 − u0)(Uij1 − u0)(Uij2 − u0)

=
h2

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

Zij1Z
T
ij2
σj1j2Kh(Uij1 − u0)

(Uij1 − u0

h

)2

+
h2

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

Zij1Z
T
ij2
σj1j2Kh(Uij1 − u0)

(Uij1 − u0

h

)(Uij2 − Uij1

h

)
= J3 + J4.

By the same reason as before, we can show

J3 →p

h2p(u0)

n0
µ0

2Φ
−1, as k → ∞ and J4 = O

( 1

kh

)
+Op

( log k

kh2

)
.

So it holds that

1

kn0
DT

u0
ωu0

Ω−1Du0
→p

p(u0)

n0

(
1 hµ0

1

hµ0
1 h2µ0

2

)
⊗ Φ−1, as k → ∞. (A.9)

Since the coefficient functions αj(u)’s are conducted in the neighborhood of |Uij − u0| < h,

by Taylor’s expansion,

ZT
ijα(Uij) = ZT

ijα(u0) + (Uij − u0)Z
T
ijα

′(u0) +
h2

2

(Uij − u0

h

)2

ZT
ijα

′′(u0) + op(h
2).

This implies

1

kn0
DT

u0
ωu0

Ω−1M =
1

kn0
DT

u0
ωu0

Ω−1Du0

(
α(u0)

α′(u0)

)
+

1

2

(
A1

A2

)
α′′(u0) + op(h

2), (A.10)

where

A1 =
1

kn0

k∑

i=1

n0∑

j1=1

Kh(Uij1 − u0)

n0∑

j2=1

σj1j2Zij1Z
T
ij2

(Uij2 − u0)
2

=
h2

kn0

k∑

i=1

n0∑

j1=1

Kh(Uij1 − u0)

n0∑

j2=1

σj1j2Zij1Z
T
ij2

[(Uij1 − u0

h

)2

+
{(Uij2 − u0

h

)2

−
(Uij1 − u0

h

)2}]
= J3 + J5

and

A2 =
1

kn0

k∑

i=1

n0∑

j1=1

Kh(Uij1 − u0)(Uij1 − u0)

n0∑

j2=1

σj1j2Zij1Z
T
ij2

(Uij2 − u0)
2.

It is easy to see

J5 = Op(k
−1h−2) = op(1).

This implies that as k → ∞,

A1 →p

h2p(u0)

n0
µ0

2Φ
−1 and A2 →p

h3p(u0)

n0
µ0

3Φ
−1. (A.11)
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Therefore, by (A.9)–(A.11) we have

(
αw(u0)

b
w
(u0)

)
=
( 1

kn0
DT

u0
ωu0

Ω−1Du0

)−1( 1

kn0
DT

u0
ωu0

Ω−1
)
(M + ε)

=

(
α(u0)

α′′(u0)

)
+

1

2

[(
1 hµ0

1

hµ0
1 h2µ0

2

)−1(
h2µ0

2

h3µ0
3

)
⊗ Iq

]
α′′(u0)

+

[
n0

p(u0)

(
1 hµ0

1

hµ0
1 h2µ0

2

)−1

⊗ Φ

]
T⋆

k + op(h
2), (A.12)

where

T∗
k =

(
T∗

k,0

T∗
k,1

)
=

1

kn0
DT

u0
ωu0

Ω−1ε

=
1

kn0




k∑
i=1

n0∑
j1=1

Zij1Kh(Uij1 − u0)
n0∑

j2=1

σj1j2εij2

k∑
i=1

n0∑
j1=1

Zij1Kh(Uij1 − u0)(Uij1 − u0)
n0∑

j2=1

σj1j2εij2


 .

From (A.12), we know

αw
k (u0) − α(u0) =

n0

p(u0)

µ0
2ΦT⋆

k,0 − µ0
1h

−1ΦT⋆
k,1

µ0
2 − (µ0

1)
2

+
h2

2

(µ0
2)

2 − µ0
1µ

0
3

µ0
2 − (µ0

1)
2

α′′(u0) + op(h
2),

the second term of which is the asymptotic bias of αw
k (u0), obviously. Let

Qk =
1

kn0

k∑

i=1

n0∑

j1=1

{
c0 + c1

(Uij1 − u0

h

)}
Zij1Kh(Uij1 − u0)

n0∑

j2=1

σj1j2εij2 ,

where c0 =
µ0

2

µ0

2
−(µ0

1
)2

and c1 = − µ0

1

µ0

2
−(µ0

1
)2

. It follows that

√
kn0h

{
αw

k (u0) − α(u0) −
h2

2

(µ0
2)

2 − µ0
1µ

0
3

µ0
2 − (µ0

1)
2

α′′(u0)
}

=
n0

p(u0)
Φ
√
kn0hQk + op(1).

Denote P = {Z11(
U11−u0

h
), · · · ,Z1n0

(
U1n0

−u0

h
), · · · ,Zkn0

(
Ukn0

−u0

h
)}. The covariance matrix of√

kn0hQk is

Cov(
√
kn0hQk) =

hc20
kn0

E{ZTωu0
(Ik ⊗ ̟)ωu0

Z} +
hc21
kn0

E{Pωu0
(Ik ⊗ ̟)ωu0

PT}

+
2hc1c0
kn0

E{Pωu0
(Ik ⊗ ̟)ωu0

Z}

=
p(u0)

n0
(c20ν

0
0 + 2c0c1ν

0
1 + c21ν

0
2)Φ−1 + o(1).

For any nonzero q-vector Λ, let

ai =
√
h

n0∑

j1=1

{
c0 + c1

(Uij1 − u0

h

)}
ΛTZij1Kh(Uij1 − u0)

n0∑

j2=1

σj1j2εij2
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and B2
k =

k∑
i=1

Ea2
i . Then

B2
k = kp(u0)(c

2
0ν

0
0 + 2c0c1ν

0
1 + c21ν

0
2)ΛTΦ−1Λ + o(k).

Simple calculation shows

k∑

i=1

E|ai|3 ≤ O(1)
k∑

i=1

h
3

2

n0∑

j1=1

[
|c0| + |c1| ·

∣∣∣
Uij1 − u0

h

∣∣∣
]
K3

h(Uij1 − u0) = O(h−
1

2 ).

It follows that lim
k→∞

B−3
k

k∑
i=1

E|a3
i | = 0. By the central limit theorem the proof of (A.5) is

complete.

We are now ready to prove the main results. The proofs of Theorems 2.1 and 2.2 are similar

to Lemma A.5. We here omit the details. By applying the
√
k-consistency of β̂k, the proof of

Theorem 2.3 is the same as that of Theorem 3.1 in [17].

Proof of Theorem 4.1 According to the definition of σ̂ 2
µ, it can be written as

σ̂ 2
µ =

1

kn0(n0 − 1)

k∑

i=1

n0∑

j1=1

∑

j2 6=j1

εij1εij2 +
1

kn0(n0 − 1)

k∑

i=1

n0∑

j1=1

∑

j2 6=j1

XT
ij1

(β − β̂k)XT
ij2

(β − β̂k)

+
1

kn0(n0 − 1)

k∑

i=1

n0∑

j1=1

∑

j2 6=j1

ZT
ij1

(α(Uij1) − α̂k(Uij1))Z
T
ij2

(α(Uij2 ) − α̂k(Uij2 ))

+
2

kn0(n0 − 1)

k∑

i=1

n0∑

j1=1

∑

j2 6=j1

XT
ij1

(β − β̂k)εij2

+
2

kn0(n0 − 1)

k∑

i=1

n0∑

j1=1

∑

j2 6=j1

ZT
ij1

(α(Uij1) − α̂k(Uij1))εij2

+
2

kn0(n0 − 1)

k∑

i=1

n0∑

j1=1

∑

j2 6=j1

XT
ij1

(β − β̂k)ZT
ij2

(α(Uij2 ) − α̂k(Uij2)).

By combining the root-k consistency of β̂k and sup
u∈U

‖α(u) − α̂k(u)‖ = Op{h2 + ( log k
kh

)
1

2 }, it is

easy to show that

√
k(σ̂ 2

µ − σ2
µ) =

1√
k

k∑

i=1

{
(µ2

i − σ2
µ) +

2

n0

n0∑

j=1

µiνij +
1

n0(n0 − 1)

n0∑

j1=1

∑

j2 6=j1

νij1νij2

}
+ op(1)

=
1√
k

k∑

i=1

ai + op(1).

It is easy to show that

Ea2
i = Var(µ2

1) +
4

n0
σ2

µσ
2
ν +

2

n0(n0 − 1)
σ4

ν .

Hence B2
k =

k∑
i=1

Ea2
i = ck for some positive constant c. From Lemma A.4, E|µ1|4+δ2 <∞ and
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E|ν11|4+δ2 <∞, simple calculations show

E|µ2
i − σ2

µ|2+
δ2
2 ≤ c, E

∣∣∣
2

n0

n0∑

j=1

µiνij

∣∣∣
2+

δ2
2

< c and E
∣∣∣

1

n0(n0 − 1)

n0∑

j1=1

∑

j2 6=j1

νij1νij2

∣∣∣
2+

δ2
2

< c

for some positive constant δ2. Therefore,
k∑

i=1

Ea
2+

δ2
2

i = O(k). It follows that

1

B
2+

δ2
2

k

k∑

i=1

Ea
2+

δ2
2

i = O(k−
δ2
2 ) → 0, as k → ∞.

Thus the first result of Theorem 4.1 follows the central limit theorem.

By the same argument, we can show that (4.3) holds.

Proof of Theorem 4.2 The proof of Theorem 4.2 is trivial. We here omit the details.

Proof of Theorem 5.1 According to the definition of β̂
w

k , β̃
w

k and the fact a1a2 − b1b2 =

(a1 − b1)(a2 − b2) + (a1 − b1)b2 + b1(a2 − b2), we have

β̂
w

k − β = β̃
w

k − β + {(X̂wTΩ̂−1X̂w)−1 − (X̃wTΩ−1X̃w)−1}
· {(X̂wTΩ̂−1(Ikn0

− Sw) − X̃wTΩ−1(Ikn0
− S̃w)}M

+ {(X̂wTΩ̂−1X̂w)−1 − (X̃wTΩ−1X̃w)−1}X̃wTΩ−1(Ikn0
− S̃w)M

+ (X̃wTΩ−1X̃w)−1{X̂wTΩ̂−1(Ikn0
− Sw) − X̃wTΩ−1(Ikn0

− S̃w)}M
+ {(X̂wTΩ̂−1X̂w)−1 − (X̃wTΩ−1X̃w)−1}
· {(X̂wTΩ̂−1(Ikn0

− Sw) − X̃wTΩ−1(Ikn0
− S̃w)}ε

+ {(X̂wTΩ̂−1X̂w)−1 − (X̃wTΩ−1X̃w)−1}X̃wTΩ−1(Ikn0
− S̃w)ε

+ (X̃wTΩ−1X̃w)−1{X̂wTΩ̂−1(Ikn0
− Sw) − X̃wTΩ−1(Ikn0

− S̃w)}ε,

where β̃
w

k is defined in (7.1), M and ε is defined in the proof of Lemma A.6, and Sw is defined in

Section 2. Therefore, in order to prove Theorem 5.1, combining Lemma A.5 and the following

fact

(A + aB)−1 = A−1 − aA−1BA−1 +O(a2), as a→ 0,

we only need to show

1

kn0
(X̂wTΩ̂−1X̂w − X̃wTΩ−1X̃w) = Op(k

− 1

2 ), (A.13)

1

kn0
{X̂wPTΩ̂−1(Ikn0

− Sw) − X̃wTΩ−1(Ikn0
− S̃w)}M = op(k

− 1

2 ), (A.14)

1

kn0
{X̂wTΩ̂−1(Ikn0

− Sw) − X̃wTΩ−1(Ikn0
− S̃w)}ε = op(k

− 1

2 ), (A.15)

kn0(X̃
wTΩ−1X̃w)−1 = Op(1) (A.16)

and

1

kn0
X̃wTΩ−1(Ikn0

− S̃w)M = op(k
− 1

2 ),
1

kn0
X̃wTΩ−1(Ikn0

− S̃w)ε = Op(k
− 1

2 ). (A.17)
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The (s1, s2)th entry of the matrix in the left-hand side of (A.6) is

1

kn0

{
(η̂ −2 + σ̂ −2

ν )

k∑

i=1

n0∑

j1=1

n0∑

j2=1

X̂w
ij1s1

X̂w
ij2s2

− (η −2 + σ−2
ν )

k∑

i=1

n0∑

j1=1

n0∑

j2=1

X̃w
ij1s1

X̃w
ij2s2

}

+
1

kn0

(
σ̂ −2

ν

k∑

i=1

n0∑

j=1

X̂w
ijs1

X̂w
ijs2

− σ−2
ν

k∑

i=1

n0∑

j=1

X̃w
ijs1

X̃w
ijs2

)
= J1 + J2,

where X̂w
ijs and X̃w

ijs are the sth entry of X̂w
ij and X̃w

ij , respectively. It is easy to see that

J2 =
1

kn0
σ̂ −2

ν

k∑

i=1

n0∑

j=1

(X̂w
ijs1

− X̃w
ijs1

)(X̂w
ijs2

− X̃w
ijs2

) +
1

kn0
σ̂ −2

ν

k∑

i=1

n0∑

j=1

(X̂w
ijs1

− X̃w
ijs1

)X̃w
ijs2

+
1

kn0
σ̂ −2

ν

k∑

i=1

n0∑

j=1

X̃w
ijs1

(X̂w
ijs2

− X̃w
ijs2

) +
1

kn0
(σ̂ −2

ν − σ−2
ν )

k∑

i=1

n0∑

j=1

X̃w
ijs1

X̃w
ijs2

= J21 + J22 + J23 + J24.

Denote

Â1 = (DT
Uij

ωUij
Ω̂−1DUij

)−1, Â2 = DT
Uij

ωUij
Ω̂−1Xdp,s,

A1 = (DT
Uij

ωUij
Ω−1DUij

)−1, A2 = DT
Uij

ωUij
Ω−1Xdp,s.

By the root-k consistency of σ̂ 2
µ and σ̂ 2

ν , we can show

max
1≤i≤k

max
1≤j≤n0

k‖Â1 − A1‖ = Op(k
− 1

2 ), max
1≤i≤k

max
1≤j≤n0

k−1‖Â2 − A2‖ = Op(k
− 1

2 ),

max
1≤i≤k

max
1≤j≤n0

kA1 = Op(1), max
1≤i≤k

max
1≤j≤n0

k−1A2 = Op(1).

Thus,

J22 =
1

kn0

k∑

i=1

n0∑

j=1

[(ZT
ij0

T
q )(Â1Â2 − A1A2)]X̃

w
ijs2

≤ max
1≤i≤k

max
1≤j≤n0

(‖Â1 − A1‖ · ‖Â2 − A2‖ + ‖Â1 − A1‖ · ‖A2‖ + ‖A1‖ · ‖Â2 − A2‖)

· 1

kn0

k∑

i=1

n0∑

j=1

(ZT
ijZij + X̃wT

ij X̃w
ij) = Op(k

− 1

2 ).

By the same argument we can show that J21 = Op(k
− 1

2 ) and J23 = Op(k
− 1

2 ). Moreover,

combining the root-k consistency of σ̂ 2
ν and Lemma A.5 we can show that J24 = Op(k

− 1

2 ).

This implies that J2 = Op(k
− 1

2 ). Following the same line, we can obtain J1 = Op(k
− 1

2 ). Thus,

(A.13) holds.

According to the proof of (A.4) and the root-k consistency of σ̂ 2
µ and σ̂ 2

ν , we have

1

kn0
X̃wTΩ−1(Ikn0

− S̃w)M = op(k
− 1

2 ),
1

kn0
X̂wTΩ̂−1(Ikn0

− Sw)M = op(k
− 1

2 )

and

1

kn0
X̃wTΩ−1S̃wε = op(k

− 1

2 ),
1

kn0
X̂wTΩ̂−1Swε = op(k

− 1

2 ),
1

kn0
X̃wTΩ−1ε = Op(k

− 1

2 ).
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This implies that (A.14) and (A.17) hold. In order to prove (A.15), it is sufficient to show

1

kn0
X̂wTΩ̂−1ε − 1

kn0
X̃wTΩ−1ε = op(k

− 1

2 ). (A.18)

Note that the sth entry of (A.18) is

1

kn0

k∑

i=1

n0∑

j1=1

n0∑

j2=1

{(η̂ −2 + σ̂ −2
ν )X̂w

ij1s − (η −2 + σ−2
ν )X̃w

ij1s}(µi + νij2)

+
1

kn0

k∑

i=1

n0∑

j=1

(σ̂ −2
ν X̂w

ijs − σ−2
ν X̃w

ijs)(µi + νij) = J3 + J4

and

J4 = (σ̂ −2
ν −σ−2

ν )
1

kn0

k∑

i=1

n0∑

j=1

X̂w
ijs(µi+νij)+σ̂

−2
ν

1

kn0

k∑

i=1

n0∑

j=1

(X̃w
ijs−X̂w

ijs)(µi+νij) = J41 + J42.

By the root-k consistency of σ̂ −2
ν and the proof of Lemma A.6 we have J41 = Op(k

−1) =

op(k
− 1

2 ). Moreover, it is easy to see that

J42 =
1

kn0

k∑

i=1

n0∑

j=1

(ZT
ij ,0

T
q )Â1Â2(µi + νij) −

1

kn0

k∑

i=1

n0∑

j=1

(ZT
ij ,0

T
q )A1A2(µi + νij) = op(k

− 1

2 ).

So (A.15) holds.

At last, Lemma A.5 implies that (A.16) holds. Thus, the proof is complete.

Proof of Theorem 5.2 According to the root-k consistency of β̂k, σ̂ 2
µ and σ̂ 2

ν and (A.5)

in Lemma A.6, it is easy to complete the proof.

Proof of Theorem 5.3 Applying the
√
k-consistency of β̂

w

k , the proof of Theorem 5.3 is

the same as that of Theorem 3.1 in [17].

Proof of Theorem 5.4 According to the root-k consistency of σ̂ 2
µ and σ̂ 2

ν and Lemma

A.5 we can complete the proof.

Proof of Theorem 6.1 It is easy to see that

RSS0 − RSS1 = (kn0)
−1

k∑

i=1

n0∑

j=1

[XT
ij(β − β̂k) + ZT

ija(Uij ,θ) − ZT
ija(Uij , θ̂k)]2

− (kn0)
−1

k∑

i=1

n0∑

j=1

[XT
ij(β − β̂k) + ZT

ija(Uij ,θ) − ZT
ijα̂k(Uij)]

2

+ 2(kn0)
−1

k∑

i=1

n0∑

j=1

[XT
ij(β − β̂k) + ZT

ija(Uij ,θ) − ZT
ija(Uij , θ̂k)]Tεij

− 2(kn0)
−1

k∑

i=1

n0∑

j=1

[XT
ij(β − β̂k) + ZT

ija(Uij ,θ) − ZT
ijα̂k(Uij)]

Tεij

= J1 − J2 + J3 − J4.
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Under the null hypothesis, applying the consistency of β̂k, θ̂k and α̂k( · ), it is easy to show

that Js →p 0 as k → ∞ for s = 1, 2, 3 and 4. This implies that under the null hypothesis

RSS0−RSS1 →p 0. Therefore, in order to complete the proof of the first result, we just need to

show that RSS1 is bounded away from zero and infinity. According to the proof of Theorems

4.1 and 4.2, we can show

RSS1 = (kn0)
−1

k∑

i=1

n0∑

j=1

ε2ij + op(1) →p σ
2
µ + σ2

ν .

Thus, the proof of the first result is complete. The proof of the second result is the same and

we omit the details here.
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