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Abstract The age of infection approach introduced by Kermack and Mckendrick in 1927
gives a unified way of describing and analyzing a variety of epidemic models, including
models with multiple stages, treatment, and heterogeneous mixing. The author gives
a description of the main results for such models, emphasizing the use of the final size
relation to estimate the size of the epidemic.
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1 Introduction

An epidemic, acting on a short time scale, is an outbreak of a disease that infects a substan-
tial portion of the population in a region before it disappears, usually leaving many members
untouched. Often these attacks recur with intervals of several years between outbreaks, possi-
bly diminishing in severity as populations develop some immunity. Epidemics have had major
effects on the course of history.

One of the striking early results of mathematical epidemiology (see [18]) was the formulation
of a simple model that predicted behaviour very similar to this. The Kermack-McKendrick
model is a compartmental model based on relatively simple assumptions on the rates of flow
between different classes of members of the population.

The purpose of this note is to give a unified description of the properties of compartmental
epidemic models. Since the results have appeared elsewhere, we give an outline without in-
cluding details of proofs. The models we describe do not include any demographic effects, in
keeping with the idea of epidemics on a short time scale.

2 The Age of Infection Epidemic Model

The general epidemic model described by Kermack and McKendrick [18] included a depen-
dence of infectivity on the time since becoming infected (age of infection). We let S(t) denote
the number of susceptibles at time t and let ϕ(t) be the total infectivity at time t, defined as
the sum of products of the number of infected members with each infection age and the mean
infectivity for that infection age. We also let ϕ0(t) be the total infectivity at time t of those
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members of the population who were infected at the start of the epidemic, t = 0. We assume
that on the average members of the population make a constant number a of contacts in unit
time. We let B(τ) be the fraction of infected members remaining infected at infection age τ

and let π(τ) with 0 ≤ π(τ) ≤ 1 be the mean infectivity at infection age τ . Then we let

A(τ) = π(τ)B(τ),

the mean infectivity of members of the population with infection age τ . We assume that there
are no disease deaths, so that the total population size is a constant N .

The age of infection epidemic model is

S′ = −βSϕ

ϕ(t) = ϕ0(t) +
∫ t

0

βS(t − τ)ϕ(t − τ)A(τ)dτ (2.1)

= ϕ0(t) +
∫ t

0

[−S′(t − τ)]A(τ)dτ.

The basic reproduction number is

R0 = βN

∫ ∞

0

A(τ)dτ.

Integration of

−S′(t)
S(t)

= βϕ0(t) + β

∫ t

0

[−S′(t − τ)]A(τ)dτ

with respect to t from 0 to ∞ as in [3] gives the final size relation

ln
S0

S∞
= R0

[
1 − S∞

N

]
− β

∫ ∞

0

[(N − S0)A(t) − ϕ0(t)]dt.

If all initial infectives have infection age zero at t = 0, ϕ0(t) = [N − S0]A(t), and∫ ∞

0

[ϕ0(t) − (N − S0)A(t)]dt = 0.

Then (2.2) takes the form

ln
S0

S∞
= R0

(
1 − S∞

N

)
, (2.2)

and this is the commonly used form of the final size relation. Note that the final size of the
epidemic, the number of members of the population who are infected over the course of the
epidemic, is N − S∞. This is often described in terms of the attack ratio

(
1 − S∞

N

)
.

If there are initial infectives with infection age greater than zero, the initial term satisfies∫ ∞

0

[(N − S0)A(t) − ϕ0(t)]dt ≥ 0.

The final size relation is sometimes presented in the form

ln
S0

S∞
= R0

(
1 − S∞

S0

)
, (2.3)
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with an initial term which is assumed small and omitted (see for example [1, 5, 15]).
It is not difficult to prove that there is a unique solution of the final size relation (2.2), and

if R0 > 1 this solution satisfies

S∞ <
S0

R0
.

The special case I(t) = ϕ(t), A(τ) = e−ατ gives the model

S′ = −βSI,

I ′ = βSI − αI,
(2.4)

which is the simplest example of an epidemic model, and has often been used to fit epidemic
data. It is sometimes called the Kermack-McKendrick model, ignoring the fact that the original
Kermack-McKendrick model was actually the much more general (2.1).

3 The Beginning of a Disease Outbreak

The Kermack–McKendrick compartmental epidemic model assumes that the sizes of the
compartments are large enough that the mixing of members is homogeneous, or at least that
there is homogeneous mixing in each subgroup if the population is stratified by activity levels.
However, at the beginning of a disease outbreak, there is a very small number of infective
individuals. The transmission of infection is a stochastic event depending on the pattern of
contacts between members of the population. A description should take this pattern into
account.

Our approach is to give a stochastic branching process description of the beginning of a
disease outbreak to be applied so long as the number of infectives remains small, distinguishing
a (minor) disease outbreak confined to this stage from a (major) epidemic which occurs if the
number of infectives begins to grow at an exponential rate. Once an epidemic has started, we
may switch to a deterministic compartmental model, arguing that in a major epidemic contacts
would tend to be more homogeneously distributed.

We describe the network of contacts between individuals by a graph with members of the
population represented by vertices and with contacts between individuals represented by edges.
The study of graphs originated with the abstract theory of Erdös and Rényi [8–10], and has be-
come important more recently in many areas, including social contacts and computer networks,
as well as the spread of communicable diseases.

An edge is a contact between vertices that can transmit infection. The number of edges of a
graph at a vertex is called the degree of the vertex. The degree distribution of a graph is {pk},
where pk is the fraction of vertices having degree k. The degree distribution is fundamental in
the description of the spread of disease.

We think of a small number of infectives in a population of susceptibles large enough that
in the initial stage we may neglect the decrease in the size of the susceptible population. Our
development begins along the lines of that in [5] and then develops along the lines in [21, 23].
We assume that the infectives make contacts independently of one another and let pk denote
the probability that the number of contacts by a randomly chosen individual is exactly k,
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with
∞∑

k=0

pk = 1. In other words, {pk} is the degree distribution of the vertices of the graph

corresponding to the population network.
For convenience, we define the generating function

G0(z) =
∞∑

k=0

pkzk.

Since
∞∑

k=0

pk = 1, this power series converges for 0 ≤ z ≤ 1, and may be differentiated term by

term. Thus

pk =
G

(k)
0 (0)
k!

, k = 0, 1, 2, · · · .

It is easy to verify that the generating function has the properties

G0(0) = p0, G0(1) = 1, G′
0(z) > 0, G′′

0(z) > 0.

The mean degree, which we denote by 〈k〉, is

〈k〉 =
∞∑

k=1

kpk = G′
0(1).

This is also the mean number of neighbors of a randomly chosen vertex, and is also denoted by
z1.

When a disease is introduced into a network, we think of it as starting at a vertex (patient
zero) who transmits infection to every individual to whom this individual is connected, that
is, along every edge of the graph from the vertex corresponding to this individual. We assume
that this initial vertex has been infected by a contact outside the population (component of the
network) being studied. For transmission of disease after this initial contact we need to use the
excess degree of a vertex. If we follow an edge to a vertex, the excess degree of this vertex is
one less than the degree. We use the excess degree because infection can not be transmitted
back along the edge whence it came. The probability of reaching a vertex of degree k, or excess
degree (k − 1), by following a random edge is proportional to k, and thus the probability that
a vertex at the end of a random edge has excess degree (k − 1) is a constant multiple of kpk

with the constant chosen to make the sum over k of the probabilities equal to 1. Then the
probability that a vertex has excess degree (k − 1) is

qk−1 =
kpk

〈k〉 .

This leads to a generating function G1(z) for the excess degree

G1(z) =
∞∑

k=1

qk−1z
k−1 =

∞∑
k=1

kpk

〈k〉 zk−1 =
1
〈k〉G

′
0(z),

and the mean excess degree, which we denote by 〈ke〉, is

〈ke〉 =
1
〈k〉

∞∑
k=1

k(k − 1)pk =
1
〈k〉

∞∑
k=1

k2pk − 1
〈k〉

∞∑
k=1

kpk =
〈k2〉
〈k〉 − 1 = G′

1(1).
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We let R0 = G′
1(1) be the mean excess degree. This is the mean number of secondary cases

infected by patient zero and is the basic reproduction number as usually defined; the threshold
for an epidemic is determined by R0. We may also express the basic reproduction number in
terms of the mean number of neighbors and second neighbors of an arbitrarily chosen vertex.
The mean number of second neighbors of a randomly chosen vertex, denoted by z2, is

∞∑
k=1

k(k − 1)pk = 〈k2〉 − 〈k〉,

and thus we have

R0 =
z2

z1
.

The first main result for this description of a disease outbreak is that if R0 < 1 the prob-
ability that the infection will die out is 1 but on the other hand, if R0 > 1 there is a solution
z∞ < 1 of

G1(z) = z

and there is a probability 1 − G0(z∞) > 0 that the infection will persist, and will lead to
a major epidemic. However, there is a positive probability G0(z∞) that the infection will
increase initially but will produce only a minor outbreak and will die out before triggering a
major epidemic. This distinction between a minor outbreak and a major epidemic, and the
result that if R0 > 1 there may be only a minor outbreak and not a major epidemic are aspects
of stochastic models not reflected in deterministic models. In distinguishing between a minor
outbreak and a major epidemic, implicitly we are thinking of a population of infinite size and
a major epidemic is a disease outbreak that spreads to a non-zero fraction of this population.

If contacts between members of the population are random, corresponding to the assumption
of mass action in the transmission of disease, then the probabilities pk are given by the Poisson
distribution

pk =
e−cck

k!

with c = R0.

It has been observed that in many situations there is a small number of long range con-
nections in the graph, allowing rapid spread of infection. There is a high degree of clustering
(some vertices with many edges) and there are short path lengths. Such a situation may arise
if a disease is spread to a distant location by an air traveller. This type of network is called
a small world network. Long range connections in a network can increase the likelihood of an
epidemic dramatically.

The commonly observed situation that most infectives do not pass on infection but there
are a few “superspreading events” (see [25]) corresponds to a probability distribution that is
quite different from a Poisson distribution, and could give a quite different probability that an
epidemic will occur. Examples demonstrate that the probability of a major epidemic depends
strongly on the nature of the contact network. Simulations suggest that for a given value of the
basic reproduction number the Poisson distribution is the one with the maximum probability
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of a major epidemic. We will not explore network models further here, but we point out that
this is an actively developing field of science. Some basic references are [21–23, 26].

4 Models with Disease Deaths

The assumption in the model (2.4) of a rate of contacts per infective which is proportional
to population size N , called mass action incidence or bilinear incidence, was used in all the
early epidemic models. However, it is quite unrealistic, except possibly in the early stages of
an epidemic in a population of moderate size. It is more realistic to assume a contact rate
which is a non-increasing function of total population size. For example, a situation in which
the number of contacts per infective in unit time is constant, called standard incidence, is a
more accurate description for sexually transmitted diseases. If there are no disease deaths, so
that the total population size remains constant, such a distinction is unnecessary.

We generalize the model (2.4) by making the assumption that an average member of the
population makes C(N) contacts in unit time with C′(N) ≥ 0 (see [7]), and we define

β(N) =
C(N)

N
.

It is reasonable to assume β′(N) ≤ 0 to express the idea of saturation in the number of
contacts. Then mass action incidence corresponds to the choice C(N) = βN , and standard
incidence corresponds to the choice C(N) = λ. The assumptions C(N) = Nβ(N), C′(N) ≥ 0
imply

β(N) + Nβ′(N) ≥ 0. (4.1)

Some epidemic models (see [7]) have used a Michaelis-Menten type of interaction of the form

C(N) =
aN

1 + bN
.

Another form based on a mechanistic derivation for pair formation (see [14]) leads to an ex-
pression of the form

C(N) =
aN

1 + bN +
√

1 + 2bN
.

Data for diseases transmitted by contact in cities of moderate size (see [20]) suggests that data
fits the assumption of a form

C(N) = λNa

with a = 0.05 quite well. All of these forms satisfy the conditions C′(N) ≥ 0, β′(N) ≤ 0.

Because the total population size is now present in the model, we must include an equation
for total population size in the model. This forces us to make a distinction between members
of the population who die of the disease and members of the population who recover with
immunity against reinfection. We assume that a fraction f of the αI members leaving the
infective class at time t recover and the remaining fraction (1 − f) die of disease. We use S, I
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and N as variables, with N = S + I + R. We now obtain a three-dimensional model

S′ = −β(N)SI,

I ′ = β(N)SI − αI, (4.2)

N ′ = −(1 − f)αI.

Since N is now a decreasing function, we define N(0) = N0 = S0 + I0. We also have the
equation R′ = −fαI, but we need not include it in the model since R is determined when S, I

and N are known. We should note that if f = 1 the total population size remains equal to
the constant N , and the model (4.2) reduces to the simpler model (2.4) with β replaced by the
constant β(N0).

For the model (4.2), the basic reproduction number is given by

R0 =
N0β(N0)

α
,

and there is a final size inequality

ln
S0

S∞
=

∫ ∞

0

β(N(t))I(t)dt ≥ β(N0)
∫ ∞

0

I(t)dt = R0

[
1 − S∞

N0

]
.

If the disease death rate is small, the final size inequality is an approximate equality. In the
remainder of these notes, we will always assume that there are no disease deaths and thus the
total population size is constant. This will allow us to assume throughout that β is a constant.

5 Example: The SEIR Model

The age of infection model includes models with multiple infective and treatment stages.
For example, consider the standard SEIR epidemic model but with individuals in E having
infectivity reduced by a factor ε. The model can be described by the system

S′ = −βS(I + εE),

E′ = βS(I + εE) − κE, (5.1)

I ′ = κE − αI,

with initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, N(0) = N = S0 + E0 + I0.

The initial condition assumption is that there are no removed members at the start of the
epidemic. Since we are assuming that there are no disease deaths, the total population size
N(t) is a constant N .

The basic reproduction number may be calculated directly, and

R0 = βN
( 1

α
+

ε

κ

)
.
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The model can be viewed as an age of infection model with

ϕ = εE + I.

It is not difficult to calculate

A(τ) = εe−κτ +
κ

κ − α
[e−ατ − e−κτ ],

and it is easy to calculate ∫ ∞

0

A(τ)dτ =
1
α

+
ε

κ
.

This gives the same value for R0 as was calculated directly.

6 Staged Progression Models

In epidemic models there is often a sequence of stages of different lengths and infectivities,
known as staged progression models (see [17]), where individuals pass from one stage to the next.
The simplest example is an SEIR model with an exposed stage, possibly with some infectivity,
before the development of symptoms. To describe such a model, we suppose that there is a finite
sequence of n infected stages I1(t), · · · , In(t), with relative infectivity parameters ε1, · · · , εn,
and infectivity distributions P1(τ), · · · , Pn(τ). It should be noted that Pi(τ) represents the
fraction of members who were infected initially τ time units earlier who are in the stage Ii.

The total infectivity at time t is the sum of the infectivities of each infected compartment,

ϕ(t) =
n∑

i=1

εiIi(t).

The general age-of-infection model with a sequence of infected stages is

S′(t) = −βS(t)ϕ(t),

ϕ(t) =
∫ ∞

0

[−S′(t − τ)]
n∑

i=1

εiAi(τ) dτ.

Then

R0 = βN

n∑
i=1

εi

∫ ∞

0

Ai(τ)dτ.

In order to calculate R0, we need to find∫ ∞

0

Ai(τ) dτ.

It is known (see [28]) that the reproduction number is

R0 = βN

n∑
i=1

εi

∫ ∞

0

Pi(τ) dτ.

This implies the following result.
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Theorem 6.1 The basic reproduction number R0 depends only on the mean period in each
infective stage, regardless of its distribution. General epidemic models without treatment behave
the same as models with exponentially distributed periods.

There is no difficulty in extending the approach of this section to models, in which at the
end of a stage individuals may proceed to one of two stages, such as the influenza model of [1, 2].
In this model, there is a latent period after which a fraction p of latent individuals L proceeds
to an infective stage I, while the remaining fraction (1− p) proceeds to an asymptomatic stage
A, with infectivity reduced by a factor δ and a different period 1

η .

With exponentially distributed latent, infective and asymptomatic periods, the model is

S′ = −βS[I + δA],

L′ = βS[I + δA] − κL,

I ′ = pκL − αI,

A′ = (1 − p)κL − ηA

(6.1)

and

R0 = βN
[ p

α
+

δ(1 − p)
η

]
.

According to Theorem 6.1, for a model with the same mean infective and asymptomatic periods
the basic reproduction number has the same value.

The model (6.1) is an example of a differential infectivity model. In such models, also used
in the study of HIV/AIDS (see [16, 17]), individuals enter a specific group when they become
infected and stay in that group over the course of the infection. Different groups may have
different parameter values. For example, for influenza infective and asymptomatic members
may have different infectivities and different periods of stay in the respective stages. Theorem
6.1 is applicable to such models, and shows that the basic reproduction number depends on the
mean stay in each compartment, not on the specific form of the distribution.

In the next section, we examine treatment models that include the rate at which members
are removed during a stage and transferred to a treatment stage. Such models differ from staged
progression models in that members are removed from a compartment during their stay in the
compartment rather than proceeding at the end of their stay in the compartment.

7 Example: A Treatment Model

Consider an SIR model in which a fraction γ per unit time of infectives are selected for
treatment, and the treatment reduces infectivity by a fraction δ. Suppose that the rate of
removal from infective class is η. The SITR model, where T is the treatment class, is given by

S′ = −βS[I + δT ],

I ′ = βS[I + δT ]− (α + γ)I, (7.1)

T ′ = γI − ηT.



298 F. Brauer

In order to calculate the basic reproduction number, we may argue that an infective in a
totally susceptible population causes βN new infections in unit time, and the mean time spent
in the infective compartment is 1

α+γ . In addition, a fraction γ
α+γ of infectives is treated. While

in the treatment stage the number of new infections caused in unit time is δβN , and the mean
time in the treatment class is 1

η . Thus R0 is

R0 =
βN

α + γ

[
1 +

δγ

η

]
. (7.2)

While both the models (6.1) and (7.1) contain bifurcations, there is an important difference.
In (6.1) the splitting between the compartments I and A comes at the end of the stay in the
compartment L, while in (7.1), some individuals are removed from the compartment I during
their stay and are sent to the compartment T , while others remain in the compartment I until
the end of their stay and then proceed to the compartment R.

We now extend the model (7.1) to an age of infection model with general infective and
treatment stage distributions. Assume that the distribution of infective periods is given by
P (τ), and the distribution of periods in treatment is given by Q(τ). Then the SITR model
becomes

S′(t) = −β(N)S(t)[I(t) + δT (t)],

I(t) = I0(t) +
∫ t

0

[−S′(t − τ)]e−γτP (τ) dτ, (7.3)

T (t) =
∫ t

0

γI(t − σ)Q(σ) dσ.

Then
ϕ(t) = I(t) + δT (t).

We see from the second equation of (7.3) that the contribution to R0 from I(t) is

βN

∫ ∞

0

e−γτP (τ) dτ.

To find the contribution from T (t), we need to write the equation in the form

T (t) =
∫ t

0

[−S′(t − τ)]Y (τ) dτ,

so that the contribution from T (t) would be

δβN

∫ ∞

0

Y (τ) dτ

and we would obtain

R0 = βN
[ ∫ ∞

0

e−γτP (τ) dτ + δ

∫ ∞

0

Y (τ) dτ
]
.

We rewrite T (t) to find Y (τ). Using (7.3), we obtain

T (t) =
∫ t

0

γI(t − σ)Q(σ) dσ =
∫ t

0

[−S′(t − τ)]B(τ) dτ



Compartmental Epidemic Models 299

with
B(τ) = γ

∫ τ

0

e−γ(τ−σ)P (τ − σ)Q(σ) dσ.

Now, we have ∫ ∞

0

B(τ) dτ = γ

∫ ∞

0

∫ τ

0

e−γ(τ−σ)P (τ − σ)Q(σ) dσ dτ

= γ

∫ ∞

0

∫ ∞

σ

e−γ(τ−σ)P (τ − σ) dτ Q(σ) dσ

= γ

∫ ∞

0

∫ ∞

0

e−γωP (ω) dω Q(v) dv

= γ

∫ ∞

0

e−γωP (ω) dω

∫ ∞

0

Q(σ) dσ. (7.4)

Thus,

R0 = βN

∫ ∞

0

[A(τ) + δB(τ)] dτ

= βN
[ ∫ ∞

0

e−γτP (τ) dτ + δγ

∫ ∞

0

e−γτP (τ) dτ

∫ ∞

0

Q(τ) dτ
]

= βN

∫ ∞

0

e−γτP (τ) dτ
[
1 + δγ

∫ ∞

0

Q(τ) dτ
]
. (7.5)

With exponentially distributed infective and treatment periods, P (τ) = e−ατ , Q(τ) = e−ητ ,
(7.5) gives

R0 = βN

∫ ∞

0

e−(α+γ)τ dτ
[
1 + δγ

∫ ∞

0

e−ητ dτ
]

=
βN

α + γ

[
1 +

δγ

η

]
,

the same result as (7.2).
An arbitrary choice of treatment period distribution with mean 1

η does not affect the quantity
R0, but different infective period distributions may have a significant effect. For example, let
us take γ = 1 and assume that the mean infective period is 1. Then, with an exponential
distribution, P (τ) = e−τ , we have∫ ∞

0

e−τP (τ) dτ =
∫ ∞

0

e−2τ dτ =
1
2
.

With an infective period of fixed length 1, we have∫ ∞

0

e−τP (τ) dτ =
∫ 1

0

e−τ dτ = (1 − e−1) = 0.632.

Thus a model with an infective period of fixed length would lead to a basic reproduction number
more than 25% higher than a model with an exponentially distributed infective period that has
the same mean.

8 Multi-stage Treatment Models

Epidemic models may have multiple infective stages and multiple treatment stages. For ex-
ample, the SARS model of [13] has treatment (quarantine) of exposed members and treatment
(isolation) of infective members.
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We consider a model with n infective stages I1, I2, · · · , In and n treatment stages T1, T2, · · · , Tn.
A fraction γi of members of Ii is transferred to Ti in unit time. Treated individuals pass from
Ti to Ti+1. We assume distributions Pi in Ii and Qi in Ti, and we assume relative infectivity
parameters εi in the infective stages and δi in the treatment stages. Then

S′(t) = −βS(t)ϕ(t)

with

ϕ(t) =
2∑

i=1

[εiIi + δiTi].

Then the basic reproduction number for an age-of-infection model with n infective and
treatment stages is given by [28] as

R0 = βN

n∑
i=1

[ ∫ ∞

0

εiAi(τ) dτ + δi

∫ ∞

0

Bi(τ) dτ
]
, (8.1)

with ∫ ∞

0

Ai(τ) dτ =
∫ ∞

0

e−γiτPi(τ) dτ
[
1 −

∫ ∞

0

γi−1e−γi−1τPi−1(τ) dτ
]
, (8.2)

∫ ∞

0

Bi(τ) dτ =
∫ ∞

0

Qi(τ) dτ
[ ∫ ∞

0

γiAi(τ) dτ +
∫ ∞

0

γi−1Ai−1(τ) dτ
]
, (8.3)

and taking γ0 = 0.

The contributions to R0 of treatment stages depend only on the mean periods of the stages,
not on the form of the distribution. The contributions of infective stages, beginning with
the first stage from which members are removed for treatment, depend on the form of the
distributions as well as the mean periods of these stages.

There is good reason to believe that infective periods are usually not exponentially distrib-
uted (see [11, 12, 19, 27]). It has been suggested that gamma distributions may be substantially
better approximations. Thus the formulae (8.1)–(8.3) are essential for calculating reproduction
numbers.

We have established the following result.

Theorem 8.1 For the general age-of-infection treatment model, the basic reproduction
number is given by (8.1) with the integrals given recursively by (8.2) and (8.3).

This result simplifies the calculation of the basic reproduction number for an age-of-infection
treatment model considerably as it eliminates the need to explicitly calculate the age-of-infection
kernel A(τ).

9 A Multi-group Age of Infection Model

The models we have been considering up to now assume homogeneous mixing of members
of the population. It is more realistic to include some heterogeneity, and we describe this
by dividing the population into two subgroups with different contact rates. Our description
generalizes easily to any finite number of subgroups and even to a continuous distribution of
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subgroups (see [4]), but we restrict ourselves to two subgroups for simplicity and clarity. We
divide the population into two subpopulations, having sizes N1(t), N2(t) respectively at time
t, each divided into susceptibles, infectives, and removed members indicated by subscripts.
Division into subgroups could be by any kind of heterogeneity. We assume that there is no
permanent movement between groups and that there are no disease deaths, so that Ni(t) is a
constant function Ni of t for i = 1, 2.

In this section, we assume that the number of contacts per member in unit time is a constant
a rather than a constant βN in order to simplify the notation for mixing. Suppose that each
group i member makes ai contacts sufficient to transmit infection in unit time. Assume that
the fraction of contacts made by a member of group i that is with a member of group j is pij .

Then

p11 + p12 = p21 + p22 = 1.

The total number of contacts made in unit time by members of group 1 with members of group
2 is a1p12N1, and because this must equal the total number of contacts by members of group
2 with members of group 1, there is a balance relation

a1p12N1 = a2p21N2.

It is convenient to use the notations

g(∞) = lim
t→∞ g(t), ĝ =

∫ ∞

0

g(t)dt

for any non-negative function g defined on 0 ≤ t < ∞.

A two-group age of infection model with general mixing would be

S′
1(t) = −a1S1

[
p11

ϕ1(t)
N1

+ p12
ϕ2(t)
N2

]
,

ϕ1(t) = ϕ
(0)
1 (t) +

∫ t

0

[−S′
1(t − τ)]A1(τ)dτ,

S′
2(t) = −a2S2

[
p21

ϕ1(t)
N1

+ p22
ϕ2(t)
N2

]
,

ϕ2(t) = ϕ
(0)
2 (t) +

∫ t

0

[−S′
2(t − τ)]A2(τ)dτ,

(9.1)

where ϕi(t) is the infectivity in group i at time t, ϕ
(0)
i (t) is the infectivity at time t of members

of group i who were infected at time 0, and Ai(τ) is the average infectivity of members of group
i with infection age τ .

The infectivity of an infected member of group 2 with infection age τ towards a susceptible
member of group 1 is

a1p12A2(τ).

One type of mixing between groups is proportionate mixing, that is, the number of contacts
between groups is proportional to the relative activity levels. In other words, mixing is random
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but constrained by the activity levels (see [24]). With proportionate mixing pij is independent
of i and we may write

pij = pj , p1 + p2 = 1.

The assumption of proportionate mixing implies that the next generation operator, in the sense
of [5, 6], is separable and the basic reproduction number is

R0 = p1a1Â1 + p2a2Â2.

If the mixing is not proportionate, the next generation operator is not separable and the calcu-
lation of R0 is much more difficult. However, it is still possible to obtain a system of final size
relations.

Integration of the equation for S′
i(t)

Si(t)
in (9.1) gives

ln
Si(0)
Si(∞)

= ai

∫ ∞

0

2∑
j=1

pij
ϕj(t)
Nj

dt + ai

∫ ∞

0

2∑
j=1

pij

∫ t

0
[−S′

j(t − τ)]Aj(τ)dτ

Nj
dt. (9.2)

If all initial infectives have infection age zero at time t = 0,

ϕ
(0)
j (t) = Aj(t)[Nj − Sj(0)],

and we may rewrite (9.2) as the final size system

ln
Si(0)
Si(∞)

= ai

2∑
j=1

pij

[
1 − Sj(∞)

Nj

]
Âj . (9.3)

If there are initial infectives with positive infection age, the final size system contains an
initial term and takes the form

ln
Si(0)
Si(∞)

= ai

2∑
j=1

pij

[
1 − Sj(∞)

Nj

]
Âj − Γi (9.4)

with

Γi = ai

2∑
j=1

pij

Nj

∫ ∞

0

[Aj(t)(Nj − Sj(0) − ϕ
(0)
j (t)]dt ≥ 0.

The system of equations (9.4) has a unique solution (S1(∞), S2(∞)).
The final size relation takes a simpler form if the mixing is proportionate. With proportion-

ate mixing, since pij is independent of i,

1
ai

ln
Si(0)
Si(∞)

=
1
aj

ln
Sj(0)
Sj(∞)

.

This enables us to write S2(∞) on the right-hand side of the final size relation in terms of
S1(∞), and gives the final size system as an equation for S1(∞).

It is not difficult to extend the results of this section to models with any finite number of
groups.



Compartmental Epidemic Models 303

10 Conclusions

The age of infection epidemic model of Kermack and McKendrick [18] contains compartmental
models including staged progression, differential infectivity, and treatment. The final size re-
lation, linking the reproduction number and the epidemic final size gives a convenient way of
calculating the epidemic size without the necessity of solving the model analytically. It gives an
exact solution if there are no disease deaths and a close approximation if the disease death rate
is small. The extension to multi-group models provides a simple way to include heterogeneity
in an epidemic model without the computational difficulties of more detailed network models,
and may lead the way to models more accurate than simple compartmental models but less
complicated than full network models.
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[8] Erdös, P. and Rényi, A., On random graphs, Publicationes Mathematicae, 6, 1959, 290–297.
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