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1 Introduction

The study of properties of second-order self-adjoint differential operators often depends on
Gaussian bounds for the corresponding heat kernels (gradient estimates or not), that is, the
kernel of the semigroup generated by these operators. In the past few years, kinds of estimates
for the heat kernels were obtained, see [3, 5, 7–9, 13–16, 18].

In the study of the long (or small) time behavior (e.g., gradient estimates, ergodicity, etc.) of
simple linear parabolic evolution equations, one often uses lower bounds on the Ricci curvature
associated to the generator of the heat kernel (see, for example, [1, 12, 18] and the references
therein). But this method fails in general hypoelliptic evolution equations, since the Ricci (Γ2-)
curvature in even the simplest example of the Heisenberg group can not be bounded below
as explained, e.g., in [2, 11]. Nevertheless, in the Heisenberg group (type, or nonisotropic)
case, many properties of the elliptic case remain true. In this paper, we focus on the gradient
estimates for the heat kernels in higher dimensional Heisenberg groups.

Let us recall first some basic facts.

The elliptic case Let M be a complete Riemannian manifold of dimension n and let
L := Δ + ∇h, where Δ is the Laplace-Beltrami operator. For t ≥ 0, denote by Pt the heat
semigroup generated by L (that is formally Pt = exp(tL)), and let H(t, x, y) be the heat kernel.

In [8], Engoulatov obtained the following gradient estimates for the heat kernels on Rie-
mannian manifolds.

Theorem 1.1 Let M be a complete Riemannian manifold of dimension n with Ricci cur-
vature bounded from below, and Ric(M) ≥ −ρ, ρ ≥ 0.
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( i ) Suppose a non-collapsing condition is satisfied on M , namely, there exist t0 > 0 and
ν0 > 0, such that for any x ∈ M , the volume of the geodesic ball of radius t0 centered at x is not
too small, i.e. Vol(Bx(t0)) ≥ ν0. Then there exist two constants C(ρ, n, ν0, t0) and C(t0) > 0,
such that

|∇ log H(t, x, y)| ≤ C(ρ, n, ν0, t0)
(d(x, y)

t
+

1√
t

)
uniformly on (0, C(t0)] × M × M , where d(x, y) is the Riemannian distance between x and y.

(ii) Suppose that M has a diameter bounded by D. Then there exists a constant C(ρ, n),
such that

|∇ log H(t, x, y)| ≤ C(ρ, n)
(D

t
+

1√
t

+ ρ
√

t
)

uniformly on (0,∞) × M × M .

Heisenbeg group case The Heisenberg group can be seen as the Euclidean space R3 with
a group structure ◦, which is defined, for �x = (x, y, z) and �y = (x′, y′, z′) ∈ R3, by

�x ◦ �y =
(
x + x′, y + y′, z + z′ +

1
2
(xy′ − x′y)

)
.

The left invariant vector fields which are given by

X(f) = lim
ε→0

f(�x ◦ (ε, 0, 0)) − f(�x)
ε

=
(
∂x − y

2
∂z

)
f,

Y (f) = lim
ε→0

f(�x ◦ (0, ε, 0)) − f(�x)
ε

=
(
∂y +

x

2
∂z

)
f,

Z(f) = lim
ε→0

f(�x ◦ (0, 0, ε)) − f(�x)
ε

= ∂zf.

The sublaplace is defined by
ΔH = X2 + Y 2.

Let Pt be the associated semigroup generated by ΔH, and pt(�x, �y) be the heat kernel of Pt.
Though the Γ2 curvature can not be bounded below, explained in [2, 11]. Recently, Li has
shown the following sharp gradient estimates for the heat kernel in the Heisenberg group (see
[13]).

Theorem 1.2 There exists a constant C > 0 such that for t > 0 and g = (x, y, z) ∈ H,

|∇ log pt(g)| ≤ Cd(g)
t

, (1.1)

where d(g) denotes the Carnot-Carathéodory distance between the origin o = (0, 0, 0) and g,
and ∇f := (Xf, Y f), |∇f |2 := (Xf)2 + (Y f)2.

Note that in [13–15], Li obtained the precisely upper and lower bounds for the heat kernel
pt in the Heisenberg (type) group. And the expansion for the heat kernels, Li inequality (i.e.
|∇Ptf | ≤ CPt|∇f | for some C > 0), were also obtained. In the present paper, we will use
another method to proof the sharp gradient estimates for the heat kernels. This method relies
on the positive property of the Bakry-Émery curvature and some basic facts on groups (see
[3, 4]). Our method is more applicable in variant models than the one in [13–15].

In the following, we will study two high dimensional Heisenberg groups — non-isotropic
Heisenberg group G, and Heisenberg type group Hn,m. We derive the sharp gradient estimates
for the associated heat kernels (see Propositions 2.2 and 3.1).
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2 Non-isotropic Heisenberg Group

We study the (2n + 1)-dimensional Heisenberg group G (here we use the same symbol as in
[5, Subsection 3.4]), normalized as follows. We equip R2n × R with the group law

(x, z) ◦ (x′, z′) =
(
x + x′, z + z′ + 2

n∑
j=1

aj [x2jx
′
2j−1 − x2j−1x

′
2j ]
)
, x, x′ ∈ R

2n, z, z′ ∈ R,

where
0 < a1 ≤ a2 ≤ · · · ≤ al ≤ al+1 = · · · = an.

If ai is equal to each other (a1 = an), it reduces to the isotropic model. In the isotropic model,
the optimal gradient estimates for the heat kernels were obtained by Li [14, 15]. In the non-
isotropic case (a1 	= an), although the method used there is not applicable, we will derive the
sharp gradient estimate for the heat kernel in this context.

2.1 Some basic facts

The left invariant vector fields in G are

X2j−1 = ∂2j−1 + 2ajx2j∂z , X2j = ∂2j − 2ajx2j−1∂z, Z = ∂z ,

where ∂i = ∂xi . We have the following properties:
( i ) For 1 ≤ j ≤ n, [X2j−1, X2j ] = −4ajZ, [X2j−1, Z] = [X2j , Z] = 0;
(ii) For 1 ≤ i, j ≤ n, i 	= j, [X2i−1, X2j−1] = [X2i−1, X2j ] = [X2i, X2j−1] = [X2i, X2j ] = 0.
The sublaplace is defined by

Δ =
2n∑

j=1

X2
j .

Denote the semigroup Pt = etΔ. The heat kernel pt(x, z) (density of the semigroup Pt) is given
by

pt(x, z) =
1

2(4πt)n+1

∫ ∞

−∞
e−

f(x,z,τ)
4t V (τ) dτ,

where

f(x, z, τ) = −i τz +
n∑

j=1

ajτ coth(ajτ)r2
j , V (τ) =

n∏
j=1

ajτ

sinh(ajτ)
,

where i =
√−1 , r2

j = x2
2j−1 + x2

2j (see [5]). We have the time scaling property pt(x, z) =
t−n−1p1( x√

t
, z

t ). So it is enough to get the estimates for p1.
Set x = (x̃, x̂) and x̂ = (x2l+1, x2l, · · · , x2n), then the Carnot-Carathéodory distance d(x, z)

from (x, z) to the origin (0, 0) is

d2(x, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

(2ajθc)2r2
j

2 sin2(2ajθc)
, if x̂ 	= 0,

n∑
j=1

(2ajθc)2r2
j

2 sin2(2ajθc)
, if |z| <

n∑
j=1

ajμ
(ajπ

an

)
r2
j , and x̃ 	= 0, x̂ = 0,

π

an

(
|z| +

n∑
j=1

aj cot
(ajπ

an

))
r2
j , if |z| ≥

n∑
j=1

ajμ
(ajπ

an

)
r2
j , and x̃ 	= 0, x̂ = 0,
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where μ(φ) = φ
sin2 φ

− cotφ and θc is the unique solution of |z| =
n∑

j=1

ajμ(2ajθ)r2
j in the

interval [0, π
2an

) (see [5, Theorems 3.18, 3.24 and 3.52]). In the first two cases, we clearly have

d(x, z) ≥ |x|
(
|x|2 :=

2n∑
j=1

x2
j

)
. In the third case, since d(x, z) 
 |x| + |z| 12 (see [5, Theorem

3.52]). (Because d(x, z) is continuous in this case and d(x, z)(|x| + |z| 12 )−1 is homogeneous of
degree 0.) In all, we have

d(x, z) ≥ c|x| (2.1)

for some positive constant c.
Denote

Γ(f, g) =
1
2
(Δ(fg) − gΔf − fΔg), Γ2(f, f) :=

1
2
(ΔΓ(f, f) − 2Γ(f, Δf)).

Through calculation, we have

Γ(f, g) =
2n∑
i=1

(Xif)(Xig),

Γ2(f, f) =
2n∑

i,j=1

(XjXif)2 + 8
n∑

k=1

ak(X2k−1f(X2kZf)− X2kf(X2k−1Zf)).

The mixed term
n∑

k=1

ak(X2k−1f(X2kZf)−X2kf(X2k−1Zf)) prevents the existence of any con-

stant ρ such that the curvature dimensional condition CD(ρ,∞) holds. Thus the method used
in the elliptic context is not applicable.

For any radial function f = f(r1, r2, · · · , rn, z), the sublaplace Δ has the following form

Δf =
n∑

i,j=1

fijΓ(ri, rj) + fzzΓ(z, z) +
n∑

i=1

fizΓ(ri, z) +
n∑

i=1

fiΔri + fzΔz

=
n∑

i=1

fii + 4
n∑

i=1

a2
i r

2
i fzz +

n∑
i=1

1
ri

fi

:= Lf,

where L is defined by

L =
n∑

i=1

∂ii + 4
n∑

i=1

a2
i r

2
i ∂zz +

n∑
i=1

1
ri

∂i.

Hence, for radial functions f = f(r1, r2, · · · , rn, z) and g = g(r1, r2, · · · , rn, z),

Γ(f, g) :=
1
2
(Δ(fg) − fΔg − gΔf)

=
1
2
(L(fg) − fLg − gLf)

= ΓL(f, g)

=
n∑

i=1

(figi + 4a2
i r

2
i fzgz).
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Moreover, through calculation, we have

Γ2(f, f) :=
1
2
(ΔΓ(f, f) − 2Γ(f, Δf))

=
1
2
(LΓL(f, f) − 2ΓL(f,Lf))

= ΓL
2 (f, f)

=
n∑

i=1

f2
ii +

(
4a2

i r
2
i fzz − fz

ri

)2

+ 8a2
i (fz + rifzi)2

+
∑
i�=j

f2
ij + 4a2

i r
2
i f2

jz + 4a2
jr

2
j f2

iz + 16a2
i a

2
jr

2
i r2

j f2
zz

≥ 0. (2.2)

Note that the heat kernel pt depends only on r1, r2, · · · , rn, z. So, in particular, we have

Γ2(pt, pt) ≥ 0, ∀ t ≥ 0.

2.2 Gradient estimates for the heat kernels

Let us firstly state the Li-Yau type inequality in the non-isotropic Heisenberg group G.

Proposition 2.1 There exist positive constants C1, C2, C3 such that for any positive func-
tion f : G → R+, if u = log Ptf , we have

∂tu ≥ C1Γ(u) + C2t|Zu|2 − C3

t
. (2.3)

Proof Following [3], for fixed t > 0, let us = Pt−sf , gs = log us, and

Φ1(s) = Ps(usΓ(gs)), Φ2(s) = Ps(us(Zgs)2).

It follows that

Φ′
1(s) = 2Ps(usΓ2(gs, gs)), Φ′

2(s) = 2Ps(usΓ(Zgs)).

Note that

Γ2(f, f) =
2n∑

i,j=1

(XjXif)2 + 8
n∑

k=1

ak((X2k−1f)(X2kZf) − (X2kf)(X2k−1Zf))

(∗)
≥ 1

2n
(Δf)2 + 8

n∑
k=1

a2
k(Zf)2 + 8

n∑
k=1

ak((X2k−1f)(X2kZf) − (X2kf)(X2k−1Zf))

≥ 1
2n

(Δf)2 + 8
n∑

k=1

a2
k(Zf)2 − 4

n∑
k=1

ak

( 1
λ
|∇kf |2 + λ|∇k(Zf)|2

)
≥ 1

2n
(Δf)2 + 8

n∑
k=1

a2
k(Zf)2 − 4an

( 1
λ

Γ(f) + λΓ(Zf)
)
,

where λ > 0 and |∇k(f)|2 := (X2k−1f)2 + (X2kf)2. Here we use the assumption that for
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1 ≤ k ≤ n, 0 < ak ≤ an, and inequality (∗) follows from

2n∑
i,j=1

(XjXif)2 =
2n∑
i=1

(X2
i f)2 +

∑
1≤i<j≤2n

((XjXif)2 + (XjXif)2)

≥ 1
2n

(Δf)2 +
1
2

∑
1≤i<j≤2n

(XiXjf − XjXif)2

=
1
2n

(Δf)2 + 8
n∑

k=1

a2
k(Zf)2.

Here we use the basic property (i) and (ii) in Subsection 2.1. Since for any γ ∈ R,

(Δus)2 ≥ 2γΔus − γ2, Δgs =
Δus

us
− Γ(gs),

it yields

Φ′
1(s) ≥ −

(2γ

n
+

8an

λ

)
Φ1(s) + 16

n∑
k=1

a2
kΦ2(s) − 4λanΦ′

2(s) +
2γ

n
ΔPtf − γ2

n
Ptf.

Let a, b be two positive functions defined on [0, t), with b decreasing. We have

(a(s)Φ1(s) + b(s)Φ2(s))′ ≥
(
a′ − 8ana

λ
− 2aγ

n

)
Φ1(s) +

(
16

n∑
k=1

a2
ka + b′

)
Φ2(s)

+ (b − 4λana)Φ′
2(s) +

2γa

n
ΔPtf − γ2a

n
Ptf.

Choose

a = − b′

16
n∑

k=1

a2
k

, λ = −
4

n∑
k=1

a2
kb

anb′
, γ =

nb′′

2b′
+

na2
nb′

n∑
k=1

a2
kb

,

such that the coefficients of Φ1(s), Φ2(s) and Φ′
2(s) in the right-hand side reduce to zero. Then

choose b(s) = (t− s)α for some α > 2. Integrating the above differential inequality from 0 to t,
the desired result follows.

As a consequence, we have the following Harnack inequality. There exist positive constants
A1 and A2, such that for t2 > t1 > 0 and g1, g2 ∈ G,

pt1(g1)
pt2(g2)

≤
( t2

t1

)A1

eA2
d2(g1,g2)

t2−t1 (2.4)

(see [16]).

Proposition 2.2 There exists a constant C > 0 such that for t > 0 and g = (x, z) ∈ G,

√
Γ(log pt)(g) ≤ Cd(g)

t
, (2.5)

where d(g) denotes the Carnot-Carathéodory distance between 0 and g.
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Proof Following [4], for 0 < s < t, let Φ(s) = Ps(pt−s log pt−s). We have

Φ′(s) = Ps(pt−sΓ(log pt−s)), Φ′′(s) = 2Ps(pt−sΓ2(log pt−s)).

By the fact that Γ2(pt, pt) ≥ 0 (here we use the positive property of Γ2 on the radial functions),
we have that for all t ≥ 0, Φ′′ is positive, whence Φ′ is non-deceasing. Thus∫ t

2

0

Φ′(s) ds ≥ t

2
Φ′(0).

That is
ptΓ(log pt) ≤ 2

t
(P t

2
(p t

2
log p t

2
) − pt log pt).

The right-hand side can be bounded by applying the above Harnack inequality (2.4) and the
basic fact p t

2
(g) ≤ p t

2
(0) for all g = (x, z) ∈ G. We have

√
Γ(log pt)(g) ≤ C

(d(g)
t

+
1√
t

)
.

In particular, √
Γ(log p1)(g) ≤ C(d(g) + 1).

If d(g) ≥ 1, it is trivial to get the desired result. If d(g) ≤ 1, by (2.1), we have |x| ≤ 1
c ,

g = (x, z).
As in [14], denote

W1,j =
∫

R

ajτ cosh(ajτ)
sinh(ajτ)

·
n∏

k=1

akτ

sinh(akτ)
dτ, W2,j =

∫
R

ajτ ·
n∏

k=1

akτ

sinh(akτ)
dτ.

We have

Γ(p1) ≤ C

n∑
j=1

r2
j (|W1,j | + |W2,j |)2,

where C depends on the dimension n. From the expression of W1,j and W2,j , we can easily
obtain that |Wi,j |i=1,2, j=1,··· ,n are bounded. So Γ(p1) ≤ C1|x|2 ≤ C2d(g) for some positive
constants C1 and C2. By the classic estimates on the heat kernel, p1 
 1, on |d(g)| ≤ 1 (see,
for example, [18, Theorems IV 4.2 and IV 4.3]). Thus

Γ(log p1)(g) ≤ Cd(g).

Therefore, we complete the proof by the time scaling property.

3 Heisenberg-Type Group Hn,m

Heisenberg type group Hn,m is a nature generalization of Heisenberg group H. Let us firstly
recall the definition of Heisenberg type groups. It can be seen as Rn+m with a multiplying law
◦ (refer to [6, 10, 15] and references therein). The multiplier ◦ is defined by

(x, t) ◦ (ξ, τ) =

(
xj + ξj ,

tj + τj + 1
2 〈x, U (j)ξ〉,

j = 1, · · · , n,

j = 1, · · · , m,

)
, x, ξ ∈ R

n, t, τ ∈ R
m,
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where the matrices U (1), · · · , U (m) have the following properties:

(1) U (j) is an n × n anti-symmetric and orthogonal matrix (skew matrix) for every j =
1, 2, · · · , n;

(2) U (i)U (j) + U (j)U (i) = 0 for every i, j ∈ {1, · · · , m} with i 	= j,

and m, n satisfy m < ρ(n) = 8p+2q, where n = (2a+1)24p+q for a, p ∈ N and 0 ≤ q < 3. Note
that n is even, and clearly we have n ≥ ρ(n) ≥ m + 1. The left invariant vector fields are

Xj =
∂

∂xj
+

1
2

m∑
k=1

n∑
i=1

xiU
(k)
i,j

∂

∂tk
. (3.1)

By using the anti-symmetric of U (j), we obtain

[Xi, Xj] =
m∑

k=1

U
(k)
i,j

∂

∂tk
:= Zij for every i, j ∈ {1, · · · , n}.

Also, we have

Zij + Zji = 0.

This yields the commutative relations

[Xi, Zjk] = 0 for every i, j, k ∈ {i, · · · , n}.

Note that for the case n = 2 and m = 1, it reduces to the Heisenberg groups case. Let us
introduce the canonical sub-Laplacian operator in the Heisenberg-type groups

Δ :=
n∑

j=1

X2
j = Δx +

1
4
|x|2Δt +

m∑
k=1

〈x, U (k)∇x〉 ∂

∂tk
,

where the U (k) are as (3.1). Here, we use the notation Δx =
n∑

j=1

( ∂
∂xj

)2, Δt =
m∑

k=1

( ∂
∂tk

)2 and

∇x = ( ∂
∂x1

, · · · , ∂
∂xn

)T. In this model, for the Carnot-Carathéodory distance d(g) between 0
and g = (x, t) ∈ Hn,m, we have d(g) ≥ |x|.

Moreover, for any radial function f(r, t), r2 :=
n∑

i=1

x2
i , as done in the non-isotropic case, Δ

has the following form

Δf = Δxf +
1
4
|x|2Δtf =

∂2f

∂r2
+

n − 1
r

∂f

∂r
+

1
4
r2Δtf. (3.2)

Hence for any radial functions f = f(r, t) and g = g(r, t), we have

Γ(f, g) =
∂f

∂r

∂g

∂r
+

1
4
r2∇tf∇tg (3.3)
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and

Γ2(f, f) =
(∂2f

∂r2

)2

+
n − 1

4
|∇tf |2 +

1
2

∣∣∣∇tf + r∇t
∂f

∂r

∣∣∣2 +
r4

16

( m∑
i,j=1

∂2f

∂ti∂tj

)2

− r

2
∂f

∂r
Δtf +

n − 1
r2

(∂f

∂r

)2

≥
(∂2f

∂r2

)2

+
n − 1

4
|∇tf |2 +

1
2

∣∣∣∇tf + r∇t
∂f

∂r

∣∣∣2 +
r4

16m
(Δtf)2

− r

2
∂f

∂r
Δtf +

n − 1
r2

(∂f

∂r

)2

=
(∂2f

∂r2

)2

+
n − 1

4
|∇tf |2 +

1
2

∣∣∣∇tf + r∇t
∂f

∂r

∣∣∣2
+
( r2

4
√

m
Δtf −

√
m

r

∂f

∂r

)2

+
n − 1 − m

r2

(∂f

∂r

)2

≥ 0,

where the last inequality follows from the fact that n ≥ 1 + m.
Let ps be the heat kernel of the semi-group Ps starting from the origin o. Then we have the

following form (see [15, 17]):

ps(x, t) = (2π)−m(4π)−
n
2

∫
Rm

( |λ|
sinh s|λ|

)n
2

exp
(
− t · λ i − |x|2|λ|

4
coth s|λ|

)
dλ

= (2π)−m(4π)−
n
2 s−

n
2 −m

∫
Rm

( |λ|
sinh |λ|

)n
2

exp
1
s

(
− t · λ i − |x|2|λ|

4
coth |λ|

)
dλ. (3.4)

As done above, we can also get the Li-Yau type inequality holds in the Heisenberg type
group Hn,m, hence the Harnack type inequality follows. Also, we have the following sharp
gradient estimates for the heat kernel. This proposition was obtained by Li [15] by a different
method.

Proposition 3.1 There exists a constant C > 0 such that for t > 0 and g = (x, t) ∈ Hn,m,

√
Γ(log pt)(g) ≤ Cd(g)

t
, (3.5)

where d(g) denotes the Carnot-Carathéodory distance between 0 and g.
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