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1 Introduction

The wave equation with memory of the following form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

utt − Δu+
∫ t

0

β(t− s)div{a(x) � u}ds+ f(u) + b(x)h(ut) = 0,

u(t, x) = 0, on ∂D,
u(0) = u0,

ut(0) = u1, (x, t) ∈ D × [0, T ]

(1.1)

describes the model of materials consisting of an elastic part (without memory) and a viscoelas-
tic part (memory) with u(t, x) giving the position of material particle x at time t. The term β

is the relaxation function, f denotes the body force and h is the damping term. The properties
of the solution to (1.1) has been studied by many authors. For the case that the damping term
is zero, Dafermos [10] proved that the solution of the viscoelastic system decays to zero as time
goes to infinity. Unfortunately, the explicit rate was not obtained. Rivera [14] obtained the
uniform rates of decay for the solution of a linear viscoelastic system with memory, based on
second-order estimates. For the partially viscoelastic case, Rivera and Salvatierra [13] showed
that the energy of the solution decays exponentially when β decays exponentially. On the other
hand, Cavalcanti and Oquendo [6] studied the nonlinear equation with a nonlinear and local-
ized frictional damping and proved the exponential and polynomial decay rates of the energy.
Recently, Alalau-Boussouira et al [1] developed a unified method for the decay estimates of the
energy of the general second order integro-differential equations.

In fact, the driving force may be affected by the environment randomly. In view of this, we
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consider the following stochastic wave equation with memory:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

utt − Δu + 2αut +
∫ t

0

β(t− s)Δu ds+ f(u) = ∂tW (t, x),

u(t, x) = 0, on ∂D,
u(0) = u0,

ut(0) = u1

(1.2)

for (x, t) ∈ D × [0, T ], where Δ denotes the Laplace operator on D with Dirichlet boundary
condition, α ≥ 0 is a constant, and W is an infinite dimensional Wiener process which may be
treated as the random force. D ⊂ R

d is a bounded open domain with some smooth boundary
∂D for d ≥ 3, and T > 0 is a constant.

Before solving the equation above, we first mention some important studies on the general
stochastic wave equations. Using estimates on the energy function, Chow [7] proved the exis-
tence of a global solution to stochastic wave equations with a polynomial nonlinearity. With
the similar method, Chow [8, 9] studied further properties of the solution such as asymptotic
stability and invariant measure. On the other hand, Barbu et al [2] obtained the existence
and uniqueness of the invariant measure of the solution without the computation of the en-
ergy. Moreover, using the energy inequality, Bo et al [3] proposed sufficient conditions that the
solutions of a class of stochastic wave equations blow up with a positive probability or in L2

sense. However, for the current equation (1.2), the memory part makes it difficult to estimate
the energy by using these methods. Hence, we solve it in another way. We use the definition
of solutions in [4] and extend them to the stochastic cases. Then we first prove the existence
and uniqueness of a local mild solution. Following from the arguments for the decay estimate
on the energy function in [1, 6, 13, 14], we prove the global existence of the solution.

The remaining part of this article is organized as follows. Definitions of the solution to
Equation (1.2) are given in Section 2. In Section 3, we show the local existence and uniqueness
of the mild solution. In Section 4, the decay estimate of the energy function is obtained and
the global existence of the solution is proved.

2 Preliminaries

According to the arguments in [12] and [4], we solve equation (1.1) as an integro-differential
equation. More precisely, consider the following integral-differential equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

utt +Au+
∫ t

0

B(t− s)u ds+ f(u) + h(ut) = 0,

u(t) = 0, on ∂D,
u(0) = u0,

ut(0) = u1

(2.1)

with u ∈ L1([0, T ];X), where X is a real Hilbert space, A and B satisfy the conditions in [4],
i.e., A and B( · ) are linear unbounded self-adjoint operators with domains D(A) and D(B( · ))
respectively, satisfying that

(A1) D(A) ⊂ D(B(t)) for any t ≥ 0 and D(A) is dense in X .
(A2) 〈Ay, y〉 ≥ a0‖y‖2 for any y ∈ D(A) and some constant a0 > 0.
(A3) B( · )y ∈ W 1,1

loc (0,+∞;X) for any y ∈ D(A).
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(A4) B(t) commutes with A, that is

B(t)D(A2) ⊂ D(A) and AB(t)y = B(t)Ay, y ∈ D(A2), t ≥ 0.

Here, f becomes the operator defined by f(u(t))(x) = f(u(t, x)), and the similar change is
made on h.

Definition 2.1 A family of bounded linear operators {S(t)}t≥0 in X is called a resolvent
for equation (2.1) with f = 0 and h = 0, if the following conditions are satisfied:

(S1) S(0) = I and S(t) is strong continuous on [0,∞). That is, for all x ∈ X, S( · )x is
continuous on [0,∞).

(S2) S(t) commutes A, which means that S(t)D(A) ⊂ D(A) and AS(t)y = S(t)Ay for all
y ∈ D(A) and t ≥ 0.

(S3) For any y ∈ D(A), S( · )y is twice continuously differentiable in X on [0,∞) and
Ṡ(0) = 0.

(S4) For any y ∈ D(A) and t ≥ 0, the resolvent equation is

S̈(t)y +AS(t)y +
∫ t

0

B(t− r)S(r)y dr = 0. (2.2)

It is easy to check that when A = −Δ and B(t) = β(t)Δ, with Δ being the Laplace operator
on D with Dirichlet boundary condition and β( · ) being continuous differentiable function on
t, A and B satisfy the conditions (A1)–(A4).

Let 〈 · , · 〉 be the inner product and ‖ · ‖ be the norm on the Hilbert space L2(D), and we
have the following theorem, which is a consequence of Theorem 2 in [4].

Theorem 2.1 Assume that A = −Δ and B(t) = β(t)Δ, with Δ being the Laplace opera-
tor on D with Dirichlet boundary condition and β( · ) being continuous differentiable function
on t, f = 0 and h = 0. Then there exists a unique resolvent {S(t)}t≥0 for equation (2.1).
Furthermore, the resolvent satisfies the following properties:

( i ) The operators S(t) are self-adjoint.
( ii ) S(t) commutes with

√
A , that is S(t)D(

√
A ) ⊂ D(

√
A ) and

√
AS(t)x = S(t)

√
Ax

for all x ∈ D(
√
A ) and t ≥ 0.

(iii) For any x ∈ L2(D), the function t → ∫ t

0
S(r)xdr belongs to C([0,∞);D(

√
A )) and

for any T > 0, there exists a constant CT such that

‖S(t)x‖ +
∥∥∥√A∫ t

0

S(r)xdr
∥∥∥ ≤ CT ‖x‖ for any t ∈ [0, T ]. (2.3)

(iv) For any x ∈ D(
√
A ), the function t → ∫ t

0
S(r)xdr belongs to C([0,∞);D(

√
A )) and

for any T > 0,

∥∥∥A∫ t

0

S(r)xdr
∥∥∥ ≤ CT ‖

√
Ax‖, t ∈ [0, T ], (2.4)

‖Ṡx‖ ≤ CT (‖x‖ + ‖
√
Ax‖), t ∈ [0, T ], (2.5)

Ṡx+A

∫ t

0

S(r)xdr +B ∗ 1 ∗ S(t)x = 0, t ≥ 0, (2.6)

where ∗ stands for the convolution of two functions.
( v ) For any x ∈ D(

√
A ) the function Ṡ( · )x belongs to C([0,∞);D(

√
A )).
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With the resolvent, we can define the solutions of the stochastic wave equation (1.2). We
rewrite the equation as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt +Au +
∫ t

0

B(t− s)u ds+ f(u) + 2αut =
d
dt
W (t),

u(t, x) = 0, on ∂D,
u(0) = u0,

ut(0) = u1,

(2.7)

where A = −Δ, B(t) = β(t)Δ, and W is a Q-Wiener process in X on some probability space
(Ω, P,F) with the variance operator Q satisfying TrQ < ∞ and {Ft, t ≥ 0} as its natural
filtration satisfying the usual conditions. (Here, we use form d

dtW (t) instead of Ẇ (t) to denote
the white noise in time since we will use the Itô formula with respect to the infinite dimensional
Wiener process.) Moreover, we can assume that Q has the following form

Qei = λiei, i = 1, 2, · · · ,

where {λi} are eigenvalues of Q satisfying
∞∑

i=1

λi < ∞ and {ei} are the corresponding eigen-

functions which form an orthonormal base of X . In this case,

W (t) =
∞∑

i=1

√
λi Bi(t)ei,

where {Bi(t)} is a sequence of independent copies of standard Brownian motions in one dimen-
sion. Let H be the set of L0

2 = L2(Q
1
2X,X)-valued processes with the norm

‖Ψ(t)‖H =
[
E

∫ t

0

‖Ψ(s)‖2
L0

2
ds

] 1
2

=
[
E

∫ t

0

Tr((Ψ(s)Q
1
2 )(Ψ(s)Q

1
2 )∗) ds

] 1
2
<∞,

where (Ψ(s)Q
1
2 )∗ denotes the adjoint operator of Ψ(s)Q

1
2 . Let {tk}n

k=1 be a partition on [0, T ]
such that 0 = t0 < t1 < · · · < tn = T . For a process Ψ ∈ H, define the stochastic integral with
respect to the Q-Wiener process as

∫ t

0

Ψ(s) dW (s) = lim
n→∞

n−1∑
k=0

Ψ(tk)(W (tk+1 ∧ t) −W (tk ∧ t)),

where the sequence converges in H-sense. It is not difficult to check that the integral process∫ t

0 Ψ(s) dW (s) is a martingale for any Ψ ∈ H, and the quadratic variation process is given by

〈〈∫ t

0

Ψ(s) dW (s)
〉〉

=
∫ t

0

Tr((Ψ(s)Q
1
2 )(Ψ(s)Q

1
2 )∗) ds.

In particular, if we take Ψ ≡ 1, then the equation above becomes

〈〈W (t)〉〉 =
∫ t

0

Tr((Q
1
2 )(Q

1
2 )∗) ds = tTrQ.

For more details about the infinite dimension Wiener process and the stochastic integral, we
refer to [11].
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Definition 2.2 Let f ∈ C([0, T ] × L2(D);L2(D)).
( i ) We say that u is a strong solution to (1.2) if u is {Ft}t≥0-adapted that belongs to

C2([0, T ] × Ω;X) ∩C([0, T ] × Ω;D(A)) and satisfies (1.2).
( ii ) An {Ft}t≥0-adapted X valued stochastic process u is said to be a weak solution to (1.2)

if u ∈ C1([0, T ]×Ω;X)∩C([0, T ]×Ω;D(
√
A )), and for any ψ ∈ D(

√
A ), the following equation

holds:

d
dt

〈ut, ψ〉 + 〈
√
Au(t),

√
Aψ〉 −

〈 ∫ t

0

β(t− s)
√
Au(s) ds,

√
Aψ

〉

= −2α〈ut, ψ〉 − 〈f, ψ〉 +
〈
ψ,

d
dt
W (t)

〉
. (2.8)

(iii) An {Ft}t≥0-adapted X valued stochastic process u is said to be a mild solution to (1.2)
if u ∈ C1([0, T ]× Ω;X) ∩ C([0, T ] × Ω;D(

√
A )) and the following equation holds:

u(t) = S(t)u0 +
∫ t

0

S(r)u1 dr − 2α
∫ t

0

1 ∗ S(t− r)ur dr

−
∫ t

0

1 ∗ S(t− r)f(r, u(r)) dr +
∫ t

0

1 ∗ S(t− r) dW (r)

= S(t)u0 + 2α
∫ t

0

S(r)u0 dr +
∫ t

0

S(r)u1 dr − 2α
∫ t

0

S(t− r)u(r) dr

−
∫ t

0

1 ∗ S(t− r)f(u(r)) dr +
∫ t

0

1 ∗ S(t− r) dW (r), (2.9)

where S is the resolve operator of (2.1) with f = 0 and g = 0.

Remark 2.1 By the definitions above and Theorem 2.1, we have the following facts.
( i ) The stochastic integral in (2.9) is well-defined.
( ii ) A strong solution of (1.2) is also a weak solution and a mild solution.
(iii) If u is a mild solution to (1.2) satisfying u0 ∈ D(A) and u1 ∈ D(

√
A ), then u is a

strong solution.
(iv) A weak solution may be not equivalent to a mild solution, because the resolve G may

be not a semigroup. When the operator B in (2.7) equals 0, (2.7) degenerates to the general
stochastic wave equation and the mild solution is equivalent to the weak solution then.

Here, we focus on the mild solution to equation (1.2) and give the existence and uniqueness,
as well as the decay estimate of the energy.

3 Existence and Uniqueness of Local Solution

In this section, we give the main theorem below that states the existence and uniqueness of
the mild solution. The drift coefficient f is assumed to be non-Lipschitzian which was proposed
in [6]. Hence, we could not conclude the global solution directly. In another way, the proof
is split into two steps. First, the local solution is obtained in a completed metric space in
this section. Then, following the estimation on the energy function in next section, the global
existence is proved.

Theorem 3.1 Let f satisfy the following hypotheses.
( i ) For any x ∈ R, there exists a constant C > 0 such that

|f(x)| ≤ C(1 + |x|ρ−1)|x|. (3.1)



334 T. T. Wei and Y. M. Jiang

( ii ) For any x, y ∈ R,

|f(x) − f(y)| ≤ C(1 + |x|ρ−1 + |y|ρ−1)|x− y|. (3.2)

(iii) For any x ∈ R,

f(x)x ≥ 0, (ρ+ 1)F (x) ≤ f(x)x, F (x) :=
∫ x

0

f(y) dy (3.3)

for some positive constant ρ ≥ 1, and (d − 2)ρ ≤ d. Assume u0 ∈ D(
√
A ), u1 ∈ L2(D),

β(t) = e−σt such that
∫ ∞
0
β(t) dt < 1. Then there exists a unique mild solution u to equation

(1.2) which belongs to C([0, T ]× Ω, D(
√
A )).

Proof We first solve the truncated equation with f satisfying the global Lipschitz condition.
For every n ≥ 1, define Πn : [0,∞) → [0, 1] as a C1 function such that

Πn(x) =

{
1, if x ≤ n,

0, if x > n+ 1
(3.4)

satisfies that |Πn| ≤ 1 and |Π′
n| ≤ 2. We will prove the existence and uniqueness of the solution

to the following stochastic integral equation

un(t) = S(t)u0 + 2α
∫ t

0

S(r)u0 dr +
∫ t

0

S(r)u1 dr − 2α
∫ t

0

S(t− r)un(r) dr

−
∫ t

0

1 ∗ S(t− r)Πn(‖un(r)‖)f(un(r)) dr +
∫ t

0

1 ∗ S(t− r) dW (r). (3.5)

Set

u(0)
n = S(t)u0, (3.6)

u(k)
n = S(t)u0 + 2α

∫ t

0

S(r)u0 dr +
∫ t

0

S(r)u1 dr − 2α
∫ t

0

S(t− r)u(k−1)
n (r) dr

−
∫ t

0

1 ∗ S(t− r)Πn(‖un(r)(k−1)‖)f(un(r)(k−1)) dr +
∫ t

0

1 ∗ S(t− r) dW (r). (3.7)

Denote
Λ :=

{
v ∈ C([0, T ] × Ω;D(

√
A )); sup

0≤t≤T
E‖

√
Av(t)‖ <∞

}
equipped with the distance generated by C([0, T ] × Ω;D(

√
A )), i.e.,

d(v1, v2) = sup
0≤s≤T

E‖
√
Av1(s) −

√
Av2(s)‖.

Then (Λ, d) is a complete metric space. We will show that {u(k)
n } is a Cauchy sequence in Λ for

each n and the limit exists and is a solution to (3.5). Note that A = −Δ is nonnegative definite
and uniformly elliptic. By the Sobolev inequality, there exists a constant η > 0 such that

‖v‖ ≤ η‖
√
Av‖

for any v ∈ D(
√
A ). From Theorem 2.1,

E‖
√
A (u(1)

n (t) − u(0)
n (t))‖ ≤ CT

[
‖u1‖ + 2Eα‖u(0)

n ‖ + Cn

∫ t

0

E‖u(0)
n ‖ dr +

(
t

∞∑
i=0

λi

) 1
2
]

≤ Cn,T

[
‖
√
Au0‖ + ‖u1‖ +

(
T

∞∑
i=0

λi

) 1
2
]
<∞. (3.8)
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According to (2.3) in Theorem 2.1, we have for any v1, v2 ∈ Λ that∥∥∥√A[ ∫ t

0

1 ∗ S(t− r)(Πn(‖
√
Av1(r)‖)f(v1(r)) − Πn(‖

√
Av2(r)‖)f(v2(r))) dr

]∥∥∥
≤

∥∥∥√A[ ∫ t

0

1 ∗ S(t− r)Πn(‖
√
Av2(r)‖)(f(v1(r)) − f(v2(r))) dr

]∥∥∥
+

∥∥∥√A[ ∫ t

0

1 ∗ S(t− r)(Πn(‖
√
Av1(r)‖) − Πn(‖

√
Av2(r)‖))f(v1(r)) dr

]∥∥∥
≤

∥∥∥ ∫ t

0

Πn(‖
√
Av2(r)‖)(f(v1(r)) − f(v2(r))) dr

∥∥∥
+

∥∥∥ ∫ t

0

(Πn(‖
√
Av1(r)‖) − Πn(‖

√
Av2(r)‖))f(v1(r)) dr

∥∥∥.
From the argument in [5, p. 785] and the definition of Πn, we have∥∥∥ ∫ t

0

Πn(‖
√
Av2(r)‖)(f(v1(r)) − f(v2(r))) dr

∥∥∥ ≤ C(1 + (n+ 1)ρ−1)
∫ t

0

‖v1(r) − v2(r)‖ dr

≤ Cn

∫ t

0

‖
√
A (v1(r) − v2(r))‖ dr

and ∥∥∥ ∫ t

0

(Πn(‖
√
Av1(r)‖) − Πn(‖

√
Av2(r)‖))f(v1(r)) dr

∥∥∥
≤ C(n+ 1 + (n+ 1)ρ)

∫ t

0

|‖v1(r)‖ − ‖v2(r)‖| dr

≤ Cn

∫ t

0

‖v1(r) − v2(r)‖ dr

≤ Cn

∫ t

0

‖
√
A (v1(r) − v2(r))‖ dr,

where we use the mean value theorem to get

|Πn(‖
√
Av1(r)‖) − Πn(‖

√
Av2(r)‖)| ≤ |Π′

n| |‖v1(r)‖ − ‖v2(r)‖|
≤ 2|‖v1(r)‖ − ‖v2(r)‖|.

Combining the three inequalities above, we conclude∥∥∥√A[ ∫ t

0

1 ∗ S(t− r)(Πn(‖
√
Av1(r)‖)f(v1(r)) − Πn(‖

√
Av2(r)‖)f(v2(r))) dr

]∥∥∥
≤ Cn

∫ t

0

‖
√
A (v1(r) − v2(r))‖ dr. (3.9)

Then

E‖
√
A (u(k+1)

n (t) − u(k)
n (t))‖ ≤ αE

∥∥∥√A∫ t

0

S(t− r)(u(k)
n (r) − u(k−1)

n (r)) dr
∥∥∥

+ E
∫ t

0

‖
√
A 1 ∗ S(t− r)(Πn(‖

√
Au(k)

n (r)‖)f(u(k)
n (r))

− Πn(‖
√
Au(k−1)

n (r)‖)f(u(k−1)
n (r)))‖ dr

≤ CT,n

∫ t

0

‖
√
A (u(k)

n (r) − u(k−1)
n (r))‖ dr.
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Iterating this inequality, we get

sup
0≤t≤T

E‖
√
A (u(k+1)

n (t) − u(k)
n (t))‖ ≤ Ck

T,n

k!
sup

0≤t≤T
E‖

√
A (u(1)

n (t) − u(0)
n (t))‖. (3.10)

Therefore,
∞∑

k=1

sup
0≤t≤T

E‖
√
A (u(k+1)

n (t) − u(k)
n (t))‖ <∞, (3.11)

and there exists un ∈ Λ such that lim
k→∞

u
(k)
n (t) = un(t) uniformly. It is easy to check that un is

a solution to equation (3.5).
For the uniqueness, let un and vn be two solutions to (3.5). Then by the similar arguments

as above,

sup
0≤t≤T

E‖
√
A (un(t) − vn(t))‖ ≤ CT,n

∫ T

0

sup
0≤s≤t

E‖
√
A (un(s) − vn(s))‖ ds. (3.12)

Using Gronwall inequality, we have

sup
0≤t≤T

E‖
√
A (un(t) − vn(t))‖ = 0. (3.13)

Finally, the continuity of un follows from the continuity of S and the integrals.
For each n, define the stopping time τn by

τn = inf{t ≥ 0; ‖
√
Aun(t)‖ ≥ n}.

By the uniqueness of the solution, for m > n, um(t) = un(t) on [0, τn]. So we can define a
local solution u of (1.2) by u(t) = un(t) on [0, T ∧ τn]. Let τ∞ = lim

n→∞ τn. Hence, we construct

a unique continuous local solution to (1.2) on [0, T ∧ τ∞). In the next section, using estimate
(4.12) of the energy function defined as (4.7), we will prove τ∞ = ∞ and finish the proof of the
global existence.

4 Exponential Decay of the Energy

In this section, we will prove that the energy function of the mild solution to equation (1.2)
exponentially decays to a positive constant with more general conditions. With the estimates
of the energy, we continue to prove the global existence of the solution. Note that we could
only use Itô formula on a strong solution to equation (1.2). However, D(

√
A ) is dense in D(A)

and a strong solution is also a mild solution. So we can approximate the energy function of a
mild solution u by a sequence of energy functions such that the corresponding strong solution
sequence {un} converges to u. Hence, the following arguments that should be derived for a
strong solution can be easily extended to a mild solution.

As well-known, equation (1.2) is equivalent to the following Itô system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dut = vt dt,

dvt =
[
−Aut − 2αvt +

∫ t

0

β(t− s)Aus ds− f(ut)
]
dt+ dWt,

ut = 0, on ∂D,
u(0) = u0,

v(0) = u1.

(4.1)
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We will prove a more general result with assumptions on β, of which β(t) = e−σt is a particular
case, that ∫ ∞

0

β(t) dt < 1, (4.2)

β′(t) ≤ −Cβ(t), β′′(t) ≤ Cβ(t), β′′′(t) ≥ Cβ′(t), ∀ t ≥ 0 (4.3)

for some constant C > 0. Furthermore, we assume that the initial data satisfies

‖
√
Au0‖2 + ‖u1‖2 ≤ λ (4.4)

for some λ > 0.
Set

(β�ω)(t) :=
∫ t

0

β(t− s)‖ω(s) − ω(t)‖2ds (4.5)

and

k(t) = 1 −
∫ t

0

β(s) ds. (4.6)

Let u be the unique mild solution to equation (4.1). Then the energy function of u is defined
by

e(ut, vt) :=
1
2
[k(t)‖

√
Aut‖2 + ‖vt‖2 + (β�

√
Au)(t)] +

∫
D

F (ut) dx (4.7)

with e(u0, v0) = 1
2 (‖√Au0‖2 + ‖v0‖2) = 1

2λ.

Remark 4.1 Under conditions (3.3) and (4.2), it is easy to check that e(ut, vt) ≥ 0.

Before we give the estimation of the energy function, we first introduce a useful lemma as
follows.

Lemma 4.1 For any function h ∈ C1([0, T ];D(
√
A )), we have

∫ t

0

β(t− s)〈
√
Ah′(t),

√
Ah(s) ds〉 = −1

2
β(t)‖

√
Ah(t)‖2 +

1
2
(β′�

√
Ah)(t)

− 1
2

d
dt

[
(β�

√
Ah)(t) −

(∫ t

0

β(s) ds
)
‖
√
Ah(t)‖2

]
. (4.8)

Proof This is a direct consequence of [14, Lemma 2.1] by setting a(x) = 1.

Proposition 4.1 The energy function (4.7) satisfies the following equation:

e(ut, vt) = e(u0, v0) − 1
2

[ ∫ t

0

β(s)‖
√
Aus‖2ds−

∫ t

0

(β′�
√
Au)(s) ds

]

− α

∫ t

0

‖vs‖2ds+
∫ t

0

〈vs, dWs〉 +
1
2
t · TrQ. (4.9)

Moreover, we have

E e(ut, vt) = e(u0, v0) − 1
2

[ ∫ t

0

β(s)E‖
√
Aus‖2ds−

∫ t

0

E(β′�
√
Au)(s) ds

]

− α

∫ t

0

E‖vs‖2ds+
1
2
t ·TrQ (4.10)
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and
dE e(ut, vt)

dt
= −1

2
β(t)E‖

√
Aut‖2 +

1
2
E(β′�

√
u )(t) − αE‖vt‖2 +

1
2
TrQ. (4.11)

Proof Using Itô formula in the Hilbert space to ‖vt‖2 and by Lemma 4.1, we get

‖vt‖2 = ‖v0‖2 + 2
∫ t

0

〈vs, dvs〉 +
∫ t

0

d〈vs, vs〉

= ‖v0‖2 + 2
∫ t

0

〈
vs,−Aus − 2αvs +

∫ s

0

β(s− r)Aur dr − f(us)
〉
ds

+
∫ t

0

〈vs, dW (s)〉 + t · TrQ

= ‖v0‖2 + ‖
√
Au0‖2 − ‖

√
Aut‖2 − 2α

∫ t

0

‖vs‖2ds−
∫ t

0

β(s)‖
√
Aus‖2ds

+
∫ t

0

(β′�
√
Au)(s) ds− (β�

√
Au)(t) +

( ∫ t

0

β(s) ds
)
‖
√
Au(t)‖2

− 2F (ut) +
∫ t

0

〈vs, dW (s)〉 + t · TrQ.

Hence, (4.9) follows. Taking the expectation for (4.9), we get (4.10). Finally, (4.11) follows
from (4.10) by taking derivative.

Next, we will give our main estimation of the energy function.

Theorem 4.1 Under the assumptions (3.1)–(3.3) and (4.2)–(4.4), there exist constants
c1, c2, c3 > 0 such that

E e(ut, vt) ≤ c1e−c2t + c3TrQ (4.12)

for any t ∈ [0, T ].

We prove the theorem by the following lemmas.
Consider a nonnegative bounded function φ ∈ C1(D ) such that

φ(x) ≥ δ

2
> 0, x ∈ D . (4.13)

Set

R1(t) := −
∫

D

φ(x)
[
vt(β ∗ u)′t −

1
2
|β ∗

√
Au|2 − 1

2
β(t)′|u|2 +

1
2
(β′′ � u)(t)

]
(x) dx, (4.14)

where

(β ∗ u)t(x) :=
∫ t

0

β(t− s)u(s, x) ds,

(β′′ � u)t(x) :=
∫ t

0

β′′(t− s)|u(t, x) − u(s, x)|2ds

for each x ∈ D.

Lemma 4.2 For any given ε > 0, there exists a constant C > 0 such that

d
dt

ER1(t) ≤ E
[
− δ

2
β(0)‖vt‖2 + Cε((β�

√
Au)t + k(t)‖

√
Aut‖2 + 2α‖vt‖2)

+
C

ε
(β(t)‖

√
Aut‖2 − (β′�

√
Au)t)

]
. (4.15)
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Proof Using the Itô formula, we have

d
∫

D

vt(x)φ(x)(β ∗ u)′t(x) dx := d〈vt, φ(β ∗ u)′t〉

= [−〈
√
Aut, (

√
Aφ)(β ∗ u)′t〉 − 〈

√
Aut, φ(β ∗

√
Aut)′t〉

+ 〈(β ∗
√
Au)t, (

√
Aφ)(β ∗ u)′t〉 + 〈β ∗

√
Aut, φ(β ∗

√
Au)′t〉

− 〈f(ut), φ(β ∗ u)′t〉 − 2α〈vt, φ(β ∗ u)′t〉
+ 〈vt, φ(β ∗ u)′′t 〉] dt+ 〈φ(β ∗ u)′t, dWt〉. (4.16)

From (4.6), it follows that

− 〈
√
Aut, (

√
Aφ)(β ∗ u)′t〉 + 〈(β ∗

√
Au)t, (

√
Aφ)(β ∗ u)′t〉

= −〈(β ◦
√
Au)t + k(t)

√
Aut, (

√
Aφ)(β ∗ u)′t〉, (4.17)

where

(β ◦
√
Au)t :=

∫ t

0

β(t− s)(
√
Aut −

√
Aus) ds.

By Lemma 4.1, we get

〈vt, φ(β ∗ u)′′t 〉 = 〈vt, φ(β(0)vt + β′(0)ut + (β′′ ∗ u)t)〉
= β(0)‖

√
φ vt‖2 +

1
2
β′(0)

d
dt

‖
√
φut‖2 +

1
2
〈β′′′ � u, φ〉 − 1

2
β′′(t)‖

√
φut‖2

− 1
2

d
dt

(〈β′′ � u, φ〉 + (β′(0) − β′(t))‖
√
φut‖2)

= β(0)‖
√
φ vt‖2 − 1

2
β′′(t)‖

√
φut‖2 +

1
2
〈β′′′ � u, φ〉

+
1
2

d
dt

(β′(t)‖
√
φut‖2 − 〈(β′′ � u)t, φ〉). (4.18)

Then, the assumption (3.2) on f , (4.3), (4.16)–(4.18), Fubini theorem and the Young inequality
imply

d
dt

ER1(t) = E
[
〈(β ◦

√
Au)t + k(t)

√
Aut, (

√
Aφ)(β ∗ u)′t〉

+ 〈
√
Aut, φ(β ∗

√
Au)′t〉 − β(0)‖

√
φ vt‖2 +

1
2
β′′(t)‖

√
φut‖2

− 1
2
〈β′′′ � u, φ〉 + 2α〈vt, φ(β ∗ u)′t〉 + 〈f(ut), φ(β ∗ u)′t〉

]
≤ E

[
− β(0)‖

√
φvt‖2 + Cβ(t)‖

√
φut‖2 − C〈β′ � u, φ〉

+ C1ε(‖(β ◦
√
Au)t + k(t)

√
Aut‖2 + ‖

√
Aut‖2 + ‖f(ut)‖2 + 2α‖vt‖2)

+
C1

ε
(‖(

√
Aφ)(β(t)ut − (β′ ◦ u)t)‖2 + ‖φ(β ∗

√
Au)′t‖2

+ ‖φ(β ∗ u)t‖2 + ‖φ(β ∗ u)′t‖2)
]

≤ E
[
− δ

2
β(0)‖vt‖2 + Cε((β�

√
Au)t + k(t)‖

√
Au‖2 + 2α‖vt‖2)

+
C

ε
(β(t)‖

√
Aut‖2 − (β′�

√
Au)t)

]
.
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Here we use the fact L2ρ(D) ⊃ D(
√
A ), which together with assumption (3.1) indicates

‖f(u)‖2 ≤ C‖
√
Au‖2.

Now, we introduce another functional to estimate the energy function.
Define

R2(t) := 〈ut, vt〉. (4.19)

Then we have the following lemma.

Lemma 4.3 There exists some constant C > 0 such that
d
dt

ER2(t) ≤ E
[
‖vt‖2 − 1

2
k(t)‖

√
Aut‖2 + C(β�

√
Au)t

+ 2Cα‖vt‖2 − (ρ+ 1)
∫

D

F (ut(x)) dx
]
. (4.20)

Proof Using Itô formula again to 〈ut, vt〉, we get

d
dt
R2(t) = −‖

√
Aut‖2 + 〈(β ∗

√
Au)t,

√
Aut〉 − 〈f(ut), ut〉

− 2α〈vt, ut〉 + 〈ut, dWt〉 + ‖vt‖2

= ‖vt‖2 − k(t)‖
√
Aut‖2 − 〈(β ◦

√
Au)t,

√
Aut〉

− 〈f(ut), ut〉 − 2α〈vt, ut〉 + 〈ut, dWt〉. (4.21)

Fubini theorem and Young inequality yield

d
dt

ER2(t) ≤ E
[
‖vt‖2 − k(t)‖

√
Aut‖2 +

ε

2
‖
√
Aut‖2 +

2
ε
(β�

√
Au)t

+
ε

2
‖
√
Aut‖2 +

4α
ε
‖vt‖2 − (ρ+ 1)

∫
D

F (ut(x)) dx
]
. (4.22)

According to (4.2), we can take 0 < ε ≤ 1
2 − 1

2

∫ ∞
0 β(t) dt in (4.22) and conclude that (4.20)

holds for some constant C associated to ε.

Define

R(t) = R1(t) +
δβ(0)

4
R2(t), (4.23)

and this functional gives a control to the energy by the following lemma.

Lemma 4.4 There exist two positive constants C and θ such that

d
dt

ER(t) ≤ E[−θe(ut, vt) + C(β(t)‖
√
Au‖2 + (β�

√
Au)t − (β′�

√
Au)t + 2α‖vt‖2)]. (4.24)

Proof The conclusion follows directly from combining Lemmas 4.2 and 4.3 by taking
ε = 1

16δβ(0) in (4.15).

Proof of Theorem 4.1 By (4.3), we have

(β�
√
Au)t ≤ −C(β′�

√
Au)t,

which implies that (4.24) becomes

d
dt

ER(t) ≤ E[−θe(ut, vt) + C(β(t)‖
√
Au‖2 − (β′�

√
Au)t + 2α‖vt‖2)]

≤ −θ
(
E e(ut, vt) − 1

2
t · TrQ

)
− 2C

d
dt

(
E e(ut, vt) − 1

2
t ·TrQ

)
. (4.25)
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From (4.1) in Proposition 4.1, we know that E e(ut, vt) − 1
2 t ·TrQ decreases as t increases.

Define
Φ(t) := 2N E e(ut, vt) + ER(t).

There exists a positive constant N large enough such that

Φ(t) ≥ N
(
E e(ut, vt) − 1

2
t · TrQ

)
− Cλ (4.26)

and
Φ(t) ≤ 3N

(
E e(ut, vt) +

1
2
t · TrQ

)
+ Cλ. (4.27)

On the other hand, (4.25) yields that

d
dt

Φ(t) ≤ −θE e(ut, vt) +
1
2
N TrQ,

which indicates that, in view of inequalities (4.26) and (4.27),

E e(ut, vt) ≤ − θ

N

∫ t

0

E e(us, vs) ds+ t ·TrQ+
F (0) + Cλ

N
.

By Gronwall inequality, we obtain

E e(ut, vt) ≤ − θ

N

∫ t

0

(
s · TrQ+

F (0) + Cλ

N

)
e−

θ
N (t−s)ds+ t · TrQ+

F (0) + Cλ

N

≤ F (0) + Cλ

N
e−

θ
N t +

N

θ
TrQ. (4.28)

The proof is completed.

Proof of Theorem 3.1 (Continuity) Since β(t) = e−σt, it satisfies condition (4.3). By
similar arguments, there exists a positive constant C such that, for each stopping time τn,

E e(uT∧τn, vT∧τn) ≤ C. (4.29)

On the other hand,
e(uT∧τn , vT∧τn) ≥ C′‖

√
AuT∧τn‖2

for some positive constant C′. Then Chebyshev’s inequality indicates

E e(uT∧τn , vT∧τn) ≥ E[I{τn≤T}e(uτn , vτn)]

≥ C′E[I{τn≤T}‖
√
Auτn‖2]

≥ C′n2P (τn ≤ T ). (4.30)

Combining (4.29) and (4.30), we get

P (τn ≤ T ) ≤ CC′

n2
. (4.31)

Finally, Borel-Cantelli lemma implies that

p(τ∞ ≤ T ) = 0

for any T > 0, or equivalent, lim
n→∞ τn = ∞ a.s. This completes the proof of Theorem 3.1.
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Saint Flour XIV —1984, Lecture Notes in Mathematics, 1180, Springer-Verlag, Berlin, 1986, 265–439.

[16] Zuazua, E., Exponetial decay for the semilinear wave equation with locally ditributed damping, Comm.
Part. Diff. Eqs., 15(2), 1990, 205–235.


